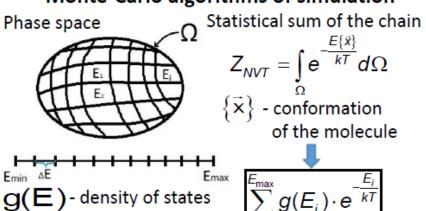
Diagrams of states for single flexible-semiflexible multiblock copolymer chains in different selective solvents: Computer simulations by means of stochastic approximation Monte Carlo

<u>Daria Maltseva</u>¹, Sergey Zablotskiy¹, Julia Martemyanova¹, Viktor Ivanov¹, Timur Shakirov², Wolfgang Paul²

¹Lomonosov Moscow State University, Moscow, Russia ²Martin-Luther-University Halle-Wittenberg, Halle, Germany E-mail: dv.maljtceva@physics.msu.ru

Method of simulation

Monte-Carlo algorithms of simulation



Advantages of SAMC

- 1) SAMC vs. Metropolis algorithm
- The calculation with two-dimensional density of states function vs. the calculation with one-dimensional

We accumulate the estimation of density of states function with certain value of monomermonomer interaction contributions and certain value of stiffness energy contribution

We can calculate average values of observables for any other meanings of parameter $\,\epsilon_{st}\!:$

$$\left\langle A(T) \right\rangle \Big|_{\varepsilon_{st}, T = \text{fixed}} = \frac{1}{Z(T)} \sum_{E_{nv}, n_{st}} \overline{A}(E_{nv}, n_{st}) \cdot g(E_{nv}, n_{st}) \cdot e^{-\frac{E_{nv} + \varepsilon_{st} n_{st}}{kT}}$$

$$\left\langle Z(T) \right\rangle \Big|_{\varepsilon_{st}, T = \text{fixed}} = \sum_{E_{nv}, n_{st}} g(E_{nv}, n_{st}) \cdot e^{-\frac{E_{nv} + \varepsilon_{st} n_{st}}{kT}}$$

Model of investigated system

Stochastic Approximation Monte-Carlo (SAMC)

function

Visits all available *macrostates* <u>uniformly</u>

$$\left\{ \mathsf{E}_{nv}, \mathsf{n}_{st} \right\} \text{ - macrostate, conformation - microstate}$$

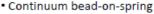
$$\mathsf{p}(\textit{old} \rightarrow \textit{trial}) = \min \left\{ \mathsf{1}, \frac{g(\mathsf{E}_{nv}^{(\textit{old})}, \mathsf{n}_{st}^{(\textit{old})})}{g(\mathsf{E}_{nv}^{(\textit{trial})}, \mathsf{n}_{st}^{(\textit{trial})})} \right\} \text{ - acceptance}$$

$$\mathsf{probability}$$

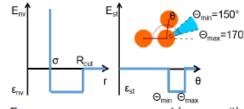
$$lng(\mathsf{E}_{nv},\mathsf{n}_{st}) = lng(\mathsf{E}_{nv},\mathsf{n}_{st}) + \gamma_t \cdot \left[\delta_{(\mathsf{E}_{nv},\mathsf{n}_{st}),(\mathsf{E}_{nv}^{(\mathsf{new})},\mathsf{n}_{st}^{(\mathsf{new})})} - \frac{1}{n} \right],$$

$$\gamma_t = \gamma_0 \cdot \min\left(1, \frac{t_0}{4}\right)$$

Snapshot for a chain with b=4



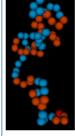
- N=64 monomers
- Bond length 0.8σ-1.25σ
- Flexible and semi-flexible blocks
- Block length b=4,8,16 or 32
- Two energy contributions:
 - non-valence interactions E_{nv}
 energy of stiffness E_{st}
 (for semi-flexible blocks)
- R_{cut}=1.5σ
- Two types of trial moves: local moves and "end-cut-and-regrow"

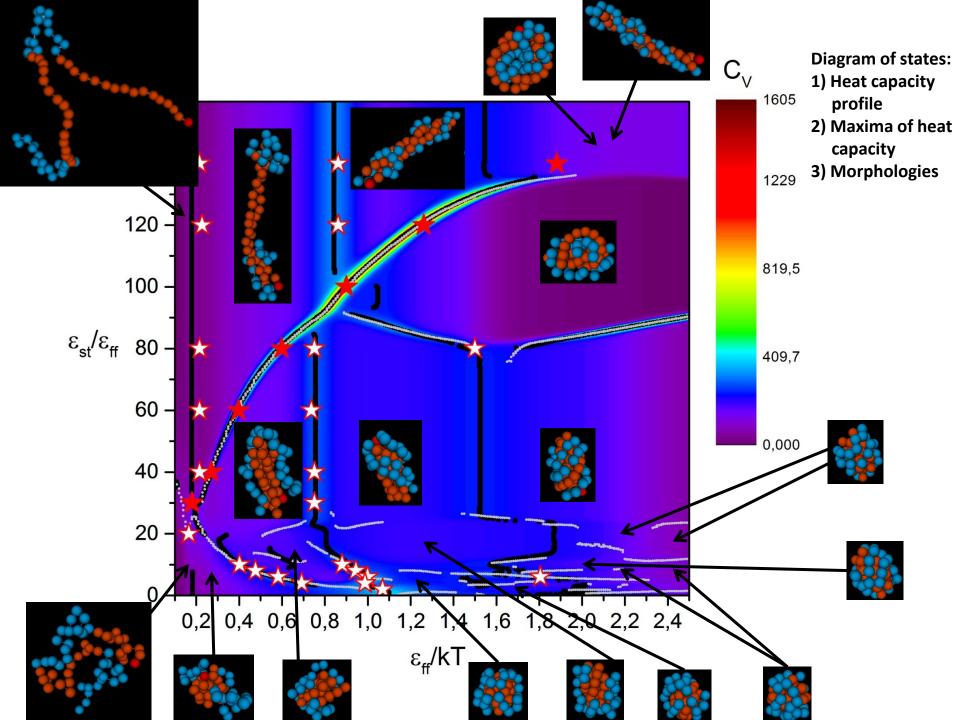


$$\begin{split} \mathsf{E}_{\mathsf{nv}} &= \varepsilon_{\mathsf{ss}} \cdot \mathsf{n}_{\mathsf{ss}} + \varepsilon_{\mathsf{st}} \cdot \mathsf{n}_{\mathsf{st}} + \varepsilon_{\mathsf{ff}} \cdot \mathsf{n}_{\mathsf{ff}}, \varepsilon_{\mathsf{ff}} = 1 \text{ (energy unit)} \\ \varepsilon_{\mathsf{st}} &= \sqrt{\varepsilon_{\mathsf{ss}} \cdot \varepsilon_{\mathsf{ff}}} \quad \text{(Lorentz-Berthelot combining rules)} \\ \mathsf{E}_{\mathsf{st}} &= \varepsilon_{\mathsf{st}} \cdot \mathsf{n}_{\mathsf{st}} \end{split}$$

Full configurational energy of a chain:

$$E = \varepsilon_{_{\rm ff}} \cdot n_{_{\rm ff}} + \varepsilon_{_{\rm ss}} \cdot n_{_{\rm ss}} + \sqrt{\varepsilon_{_{\rm ss}} \varepsilon_{_{\rm ff}}} \cdot n_{_{\rm sf}} + \varepsilon_{_{\rm st}} \cdot n_{_{\rm st}}$$





Analysis in microcanonical ensemble:

- 1) On a base of g(U)
- 2) On a base of g(E)

