Contact process in

inhomogeneous environment

In collaboration with **Róbert Juhász**(Budapest) Phys. Rev. E **95**, 012105 (2017) arXiv:1711.03495

Ferenc Iglói

Wigner RC Budapest University of Szeged

CompPhys17, Leipzig, 1st December (2017)

Contact process

Prototype of stochastic lattice models Lattice sites: empty (Ø) occupied by one particle (A) Continuous time Markov-process: two processes:

• $(\mathbf{A} \rightarrow \emptyset)$ particle at site l disappears with a rate $\mu(l)$

• $\emptyset A \to A A$ new particle is produced on empty sites with a rate $p\Lambda(l)/n$ *n*: coordination number, *p*: number of occupied neighbours

local control parameter: $\lambda(l) = \Lambda(l)/\mu(l)$

Homogeneous contact process

Inhomogeneous contact process

Forms of inhomogeneity

• Free surface: $\rho \rightarrow \rho_1$

 $\nu_{\parallel}, \nu_{\perp} \rightarrow \quad \text{unchanged}$

• Internal defect:

Irrelevant perturbation, exponents are unchanged

- Spatial disorder: Infinite-disorder criticality: $\xi_{\perp} \sim (\ln \xi_{\parallel})^{\psi}, \quad \psi = 1/2$
- Temporal disorder: Conventional disorder criticality:

 $\beta \rightarrow \beta_1$

 $\xi_{\parallel} \sim \xi_{\perp}^z$

• Fractals, complex networks

Inhomogeneous contact process

marginal perturbation with: $s = 1/\nu_{\perp}$

Numerical simulation

- Time-steps: t=1,2,...,10⁶
- N° active sites: N(t)
- Active sites picked randomly:
 - made inactive with pr.
 - activate one neighboring site with pr. $\lambda(l)/[\lambda(l)+1]$
 - for end site activation with pr. $1/2\lambda(l)/[\lambda(l)+1]$
- Seed simulation: initially all but the surface site are inactive
- Measuring the survival probability: P(t) (fraction of active sites) in the long-time limit: $P(t) \rightarrow \rho_1$
- Effective decay exponent:

$$\delta_{\text{eff}}(t) = -\frac{\ln P(t) - \ln P(t')}{\ln t - \ln t'}$$

 $1/[\lambda(l) + 1]$

 $P(t) \simeq b(A)t^{-\delta'(A)} + p(A)$ A = 3.5, 4, 4.5, 5, 5.5, 6, 7, 8 $---- A_c = 3.25$

$$A = 0.5, 1, 1.5, 2, 2.5, 3$$

 $P(t) \sim t^{-\delta(A)}$

$$A = 0.5, 1, 1.5, 2, 2.5, 3$$

 $A_c = 3.25$ A = 3.5, 4, 4.5, 5, 5.5, 6, 7, 8

Surface phase-transition

Smoothly varying inhomogeneity: $\Delta\lambda(l) = Al^{-s}$ Surface critical exponents 1.2 $\delta(A)$ $\nu_{\parallel,1}(A)/\nu_{\parallel}^{-1}$ $\epsilon(A)$

0.4

0

4

6

8

10

2

Ω

Smoothly varying inhomogeneity: $\Delta\lambda(l) = Al^{-s}$ Surface phase-transition

 $A > A_c \quad \text{mixed-order} \qquad P(t) \simeq b(A)t^{-\delta'(A)} + p(A)$

 $A > A_c$ mixed order surface transition

correlation-length scaling is asymmetric

 $\Delta > 0$ active phase $\Delta < 0$ inactive phase 0 -2 0 0 $\Lambda = 0.1024$ -2 In(t^{1+ð′}IdP/dtI) Δ=0.0512 $ln[P(t,\Delta)]$ =0.0256n[P(t,∆)] In(IdP/dtl) ╈╪╪╪╪╪╪┿┿┱╪╶╴╴╴┾╴ **Λ=0.0128** $\Delta = -0.1024$ Δ=0.0064 $\Lambda = -0.0512$ Δ=0.0032 $\Delta = -0.0256$ -5 $\Delta = -0.0128$ -20 $\Delta = -0.0064$ In t 14 n 2 14 In t -6 -6 -8 -4 0 4 $-4 \ln(t\Delta^{\nu_{\parallel}'}) = 0$ -8 4 In[tl∆l^v∥,1] $\nu_{\parallel,1}(A) = \nu_{\parallel}$ $\nu_{\parallel,1}(A)$ depends on A

Smoothly varying inhomogeneity: $\Delta\lambda(l) = Al^{-s}$ Surface critical exponents 1.2 $\delta(A)$ $\nu_{\parallel,1}(A)/\nu_{\parallel}^{-1}$ $\epsilon(A)$

0.4

0

4

6

8

10

2

Ω

 $A = A_c$ tricritical point, logarithmic decay

Multiple junctions

M>2 mixed-order transition

$$P(t) \simeq b_M t^{-\delta'_M} + p_M$$

slope:
$$-\delta'_M - 1$$

-20

-6

2

-8

14

4

0

In(t)

-4

 $\ln[t|\Delta|^{\nu}]$

-5

-6

0

 $\Delta = -0.0128$ $\Delta = -0.0064$

-8

 $\nu_{\parallel,M}=\nu_{\parallel}$

 $\ln(t\Delta^{\nu})$

ln(t)

-4

14

0

4

$\mid M$	P_c	δ'_M	$ u_{\parallel,M}$
3	0.391(2)	0.34(1)	2.20(3)
4	0.507(2)	0.81(3)	3.00(10)
5	0.546(2)	1.25(10)	3.7(1)
6	0.564(2)	1.8(1)	4.5(1)

$$A_3 \approx 4.75$$

 $A_4 \approx 7.3$
 $A_5 \approx 9.5$

Mixed-order transition - Scaling considerations

scaling exponents

local order parameter (survival probability) $P = \partial f / \partial h_1$ $P(\Delta, h_1, \Delta_1, t) = b^{-z+y_{h_1}} f(\Delta b^{1/\nu_{\perp}}, h_1 b^{y_{h_1}}, \Delta_1 b^{y_{\Delta_1}}, t/b^z), \rightarrow y_{h_1} = z$

Mixed-order transition - Scaling considerations

$$\begin{array}{ll} \Delta_1 \quad \text{irrelevant variable} \quad y_{\Delta_1} < 0 \\ \Delta > 0 \quad \underline{\text{active phase - harmless variable - analytic in}} \; \Delta_1 \\ P(\Delta, h_1, \Delta_1, t) - P_c = b^{y_{\Delta_1}} \tilde{P}(\Delta b^{1/\nu_{\perp}}, h_1 b^{y_{h_1}}, t/b^z) \\ b = t^{1/z}, \quad \Delta = h_1 = 0, \quad P(t) - P_c \sim t^{y_{\Delta_1}/z}, \quad \delta'_M = -y_{\Delta_1}/z \\ b = \Delta^{-\nu_{\perp}}, \quad \beta'_M = -y_{\Delta_1}\nu_{\perp} \\ \Delta < 0 \quad \underline{\text{inactive phase - dangerous variable - non-analytic in}} \; \Delta_1 \\ assumption: \quad \xi_{\parallel}(\Delta, h_1, \Delta_1, x) = \Delta_1^{-\epsilon} \tilde{\xi}_{\parallel}(\Delta, h_1 \Delta_1^{-\epsilon}, x) \\ \text{scaling relation:} \; \xi_{\parallel}(\Delta, h_1, \Delta_1, x) = b^{z - \epsilon y_{\Delta_1}} \tilde{\xi}_{\parallel}(\Delta b^{1/\nu_{\perp}}, h_1 b^{z - \epsilon y_{\Delta_1}}, x/b) \\ b = x = \xi_{\perp}, \quad \xi_{\parallel} \sim \xi_{\perp}^{z_M}, \quad z_M = z - \epsilon y_{\Delta_1} \\ \nu_{\parallel,M} = \nu_{\parallel} - \epsilon y_{\Delta_1}\nu_{\perp} = \nu_{\parallel}(1 + \epsilon \delta'_M), \quad \epsilon = (\nu_{\parallel,M}/\nu_{\parallel} - 1)/\delta'_M \end{array}$$

Smoothly varying inhomogeneity: $\Delta\lambda(l) = Al^{-s}$ Surface critical exponents 1.2 $\delta(A)$ $\nu_{\parallel,1}(A)/\nu_{\parallel}^{-1}$ $\epsilon(A)$

0.4

0

4

6

8

10

2

Ω

Summary

Contact process at a smooth (surface) inhomogeneity $\ \Delta\lambda(l) = A l^{-s}$ at a multiple junction Second-order transition for $A < A_c$ and $M \leq 2$ Mixed-order transition for $A > A_c$ and M > 2the critical exponents are non-universal (A and M dependent) scaling theory with (dangerous) irrelevant variables

Thank you for your attention!