The square lattice Ising model on the rectangle

Fred Hucht, Theoretische Physik, Universität Duisburg-Essen, 47048 Duisburg

- Introduction
- Connection to Casimir forces
- Free energy contributions
- Analytical finite-size scaling limit
- Hyperbolic parametrization
- Exact mapping onto effective spin model
- Conclusions \& Outlook

Collaboration: Hendrik Hobrecht (see next talk), Felix M. Schmidt (UDE)

The 2d Ising model

- Exactly solved only if translationally invariant (TI) in at least one direction (yet)

The $2 d$ Ising model

- Exactly solved only if translationally invariant (TI) in at least one direction (yet)
- Onsager (I944): torus TI in both directions [I]

The 2d Ising model

- Exactly solved only if translationally invariant (TI) in at least one direction (yet)
- Onsager (I944): torus TI in both directions [I]
- McCoy \& Wu (1973): cylinder TI in one direction [2]
- other direction homogeneous \rightarrow surface free energy
- other direction randomly distributed \rightarrow Griffith phase

[I] L. Onsager, Phys. Rev. 65, II7 (1944)
[2] B. M. McCoy and T.T.Wu, The Two-Dimensional Ising Model (1973)

The 2d Ising model

- Exactly solved only if translationally invariant (TI) in at least one direction (yet)
- Onsager (1944): torus TI in both directions [I]
- McCoy \& Wu (1973): cylinder TI in one direction [2]
- other direction homogeneous \rightarrow surface free energy
- other direction randomly distributed \rightarrow Griffith phase
- exact results for arbitrary geometry at criticality from CFT [many]
[I] L. Onsager, Phys. Rev. 65, II7 (1944)
[2] B. M. McCoy and T.T.Wu, The Two-Dimensional Ising Model (1973)

The 2d Ising model

- Exactly solved only if translationally invariant (TI) in at least one direction (yet)
- Onsager (1944): torus TI in both directions [I]
- McCoy \& Wu (1973): cylinder TI in one direction [2]
- other direction homogeneous \rightarrow surface free energy
- other direction randomly distributed \rightarrow Griffith phase
- exact results for arbitrary geometry at criticality from CFT [many]
- corner free energy f_{c} in infinite system below $[3,4]$ and above [5] T_{c} known exactly
[I] L. Onsager, Phys. Rev. 65, 117 (1944)
[2] B. M. McCoy and T.T.Wu, The Two-Dimensional Ising Model (1973)
[3] E.Vernier and J. L. Jacobsen, J. Phys.A: Math.Theor. 45, 045003 (2012)
[4] R. J. Baxter, J. Phys. A: Math.Theor. 50, 01400 (2017)
[5] AH, J. Phys. A: Math.Theor. 50, 065201 (2017), arXiv:I609.01963

The 2d Ising model

- Exactly solved only if translationally invariant (TI) in at least one direction (yet)
- Onsager (1944): torus TI in both directions [I]
- McCoy \& Wu (1973): cylinder TI in one direction [2]
- other direction homogeneous \rightarrow surface free energy
- other direction randomly distributed \rightarrow Griffith phase
- exact results for arbitrary geometry at criticality from CFT [many]
- corner free energy f_{c} in infinite system below $[3,4]$ and above [5] T_{c} known exactly
- Problem: exact solution on open rectangle not known (yet)
[I] L. Onsager, Phys. Rev. 65, II7 (I944)
[2] B. M. McCoy and T.T.Wu, The Two-Dimensional Ising Model (1973)
[3] E.Vernier and J. L. Jacobsen, J. Phys. A: Math. Theor. 45, 045003 (2012)
[4] R.J. Baxter, J. Phys. A: Math. Theor. 50, 014001 (2017)

Inhomogeneous 2d Ising model on the cylinder

- partition function

$$
Z=\operatorname{Tr} \exp \sum_{\ell=1}^{L} \sum_{m=1}^{M}\left(K_{\ell, m}^{\overleftrightarrow{\leftrightarrow}} \sigma_{\ell, m} \sigma_{\ell+1, m}+K_{\ell, m}^{\uparrow} \sigma_{\ell, m} \sigma_{\ell, m+1}\right)
$$

- $\sigma_{\ell, m}= \pm 1$
- $K_{L, m}^{\overleftrightarrow{ }}=0$
- allow all $K_{\ell, m}^{\leftrightarrow, \uparrow}$ different!
- special case $K_{\ell, M}^{\uparrow}=0$: open rectangle

Critical Casimir forces

Critical Casimir forces (without corners yet)

- universal finite-size effect near criticality
- depends only on universality class, boundary conditions, shape
- reduced residual free energy for cylinder geometry

$$
F_{\mathrm{res}}\left(t, L_{\perp}, L_{\|}\right) \equiv F\left(t, L_{\perp}, L_{\|}\right)-V f_{\mathrm{b}}(t)-A\left[f_{\mathrm{s}}^{a}(t)+f_{\mathrm{s}}^{b}(t)\right]
$$

- critical Casimir force per area

$$
\beta \mathcal{F}_{\mathrm{C}}\left(t, L_{\perp}, L_{\|}\right) \equiv-\frac{1}{A} \frac{\partial}{\partial L_{\perp}} F_{\mathrm{res}}\left(t, L_{\perp}, L_{\|}\right)
$$

Universal scaling functions

- both $F_{\text {res }}$ and $\beta \mathcal{F}_{\mathrm{C}}$ follow universal finite-size scaling functions

$$
\begin{aligned}
F_{\mathrm{res}}\left(t, L_{\perp}, L_{\|}\right) & \simeq \Theta(x, \rho) \\
L_{\perp}^{d} \beta \mathcal{F}_{\mathrm{C}}\left(t, L_{\perp}, L_{\|}\right) & \simeq \vartheta(x, \rho)
\end{aligned}
$$

with scaling variables

$$
\begin{aligned}
& x \equiv t\left(\frac{L_{\perp}}{\xi_{+}}\right)^{1 / \nu} \underset{t>0}{\widetilde{>0}}\left(\frac{L_{\perp}}{\xi_{\mathrm{b}}(t)}\right)^{1 / \nu} \\
& \rho \equiv L_{\perp} / L_{\|}
\end{aligned}
$$

Universal scaling functions

- both $F_{\text {res }}$ and $\beta \mathcal{F}_{\mathrm{C}}$ follow universal finite-size scaling functions

$$
\begin{aligned}
F_{\mathrm{res}}\left(t, L_{\perp}, L_{\|}\right) & \simeq \Theta(x, \rho) \\
L_{\perp}^{d} \beta \mathcal{F}_{\mathrm{C}}\left(t, L_{\perp}, L_{\|}\right) & \simeq \vartheta(x, \rho)
\end{aligned}
$$

with scaling variables

$$
\begin{aligned}
& x \equiv t\left(\frac{L_{\perp}}{\xi_{+}}\right)^{1 / \nu} \underset{t>0}{\simeq}\left(\frac{L_{\perp}}{\xi_{\mathrm{b}}(t)}\right)^{1 / \nu} \\
& \rho \equiv L_{\perp} / L_{\|}
\end{aligned}
$$

no free parameters!

- Experiment: critical thinning of ${ }^{4} \mathrm{He}$ films near the λ transition Garcia \& Chan, Phys. Rev. Lett. 83, II 87 (1999)
- Theory: MC simulation of XY model with open BCs

AH, Phys. Rev. Lett. 99, I8530I (2007)

Open rectangle (with corners): free energy contributions \& analytic finite-size scaling limit

Free energy contributions on the rectangle

- we find
from decomposition
- compare with
- decomposition of residuals (!)
- sketch of contributions

$$
\begin{aligned}
& F_{\mathrm{strip}}^{\mathrm{res}}(L, M)=-\log \operatorname{det}(\mathbf{1}+\mathbf{Y}) \\
& F(L, M)=L f_{\mathrm{b}, \mathrm{~s}}(M)+F_{\mathrm{s}, \mathrm{c}}(M)+F_{\mathrm{strip}}^{\mathrm{res}}(L, M) \\
& F(L, M)=L M f_{\mathrm{b}}+L f_{\mathrm{s}}^{\leftrightarrow}+M f_{\mathrm{s}}^{\uparrow}+f_{\mathrm{c}}+F_{\infty}^{\mathrm{res}}(L, M)
\end{aligned}
$$

$$
F_{\infty}^{\mathrm{res}}(L, M)=L f_{\mathrm{b}, \mathrm{~s}}^{\mathrm{res}}(M)+F_{\mathrm{s}, \mathrm{c}}^{\mathrm{res}}(M)+F_{\mathrm{strip}}^{\mathrm{res}}(L, M)
$$

Finite-size scaling limit

- scaling variables

$$
x=2 \tau M \quad \rho=\frac{L}{M}
$$

reduced temperature

$$
\tau=1-z / z_{\mathrm{c}}
$$

- scaling functions
- Casimir potential
- Casimir force

$$
\begin{aligned}
F_{\infty}^{\mathrm{res}}(L, M) & \simeq \rho^{-1} \Theta(x, \rho) \\
\mathcal{F}(L, M) & \simeq M^{-2} \vartheta(x, \rho)
\end{aligned}
$$

- our model
- Casimir potential

$$
\begin{aligned}
F_{\infty}^{\mathrm{res}}(L, M) & =L f_{\mathrm{b}, \mathrm{~s}}^{\mathrm{res}}(M)+F_{\mathrm{s}, \mathrm{c}}^{\mathrm{res}}(M)+F_{\mathrm{strip}}^{\mathrm{res}}(L, M) \\
\Rightarrow \Theta(x, \rho) & =\Theta^{(\mathrm{oos})}(x)+\rho^{-1} \Theta_{\mathrm{s}, \mathrm{c}}(x)+\Psi(x, \rho)
\end{aligned}
$$

- Casimir force

$$
\begin{aligned}
& \vartheta(x, \rho \gtrsim 1)=-\Theta^{(\mathrm{oo})}(x)+\psi(x, \rho) \\
& \vartheta(x, \rho \lesssim 1)=\vartheta^{(\mathrm{oo})}(x)-\rho x \Theta_{\mathrm{s}, \mathrm{c}}^{\prime}(x)-\frac{x \partial}{\partial x} \Psi\left(x, \rho^{-1}\right)-\psi\left(x, \rho^{-1}\right)
\end{aligned}
$$

$\Theta^{(\mathrm{oo})}(x)=-\frac{1}{2 \pi} \int_{0}^{\infty} \mathrm{d} \omega \log \left(1+\frac{\sqrt{x^{2}+\omega^{2}}-x}{\sqrt{x^{2}+\omega^{2}}+x} \mathrm{e}^{-2 \sqrt{x^{2}+\omega^{2}}}\right)$
$\vartheta^{(\text {oo })}(x)=-\frac{1}{\pi} \int_{0}^{\infty} \mathrm{d} \omega \sqrt{x^{2}+\omega^{2}}\left(1+\frac{\sqrt{x^{2}+\omega^{2}}+x}{\sqrt{x^{2}+\omega^{2}}-x} \mathrm{e}^{2 \sqrt{x^{2}+\omega^{2}}}\right)^{-1}$

Universal finite-size scaling functions

- Casimir potential [8]

$$
\Theta(x, \rho)=\Theta^{(\mathrm{oo})}(x)+\rho^{-1} \Theta_{\mathrm{s}, \mathrm{c}}(x)+\Psi(x, \rho)
$$

- log. divergence from corner free energy

$$
\Theta_{\mathrm{s}, \mathrm{c}}(x)=-\frac{1}{8} \log |x|-\frac{3}{4} \log 2 \frac{|x|}{x}+r e g
$$

- at $x=0$ we confirm CFT predictions, e.g.,

$$
\Psi(0, \rho)=\frac{\pi}{48}+\frac{1}{4 \rho} \log \eta(\mathrm{i} \rho)
$$

- Casimir amplitude $\neq x=0$ Casimir potential!

$$
\Delta_{\mathrm{C}}(\rho)=\frac{1}{4 \rho} \log \eta(\mathrm{i} \rho) \quad \Theta(0, \rho)=\infty
$$

- Casimir force changes sign with x and ρ
[8] AH, J. Phys.A: Math.Theor. 50, 265205 (20I7), arXiv:I70I. 08722

Hyperbolic Parametrization

- (isotropic) FSS limit $\quad z \mapsto z_{\mathrm{c}}\left(1-\frac{x}{2 M}\right) \quad L \mapsto \rho M \quad \varphi \mapsto \frac{\Phi}{M} \quad \gamma \mapsto \frac{\Gamma}{M} \quad M \rightarrow \infty$
- of Onsager dispersion

$$
\cosh \gamma=t_{+} z_{+}-t_{-} z_{-} \cos \varphi
$$

- gives

$$
\Gamma=\sqrt{x^{2}+\Phi^{2}}
$$

- characteristic polynomial

$$
P(\Phi) \equiv \cos \Phi+\frac{x}{\Phi} \sin \Phi
$$

- complex integrals in Φ plane: branch cuts
- solution: hyperbolic parametrization

$$
\Phi=x \sinh \omega, \quad \Gamma=x \cosh \omega
$$

- separation of odd \& even zeroes!

Calculation of $\Theta_{\mathrm{s}, \mathrm{c}}(x)$

- $\Theta_{\mathrm{s}, \mathrm{c}}(x)$ was calculated numerically in [8] using a scaling relation
- new result: direct calculation of regularized infinite double product

$$
\frac{1}{2} \log \prod_{\substack{\mu=1 \\ \mu \text { odd }}}^{M-1} \prod_{\substack{\nu=2 \\ \nu \text { even }}}^{M} 2\left(\lambda_{\mu,+}-\lambda_{\nu,+}\right)
$$

$\lambda_{\mu,+}$: zeroes of a certain TM characteristic polynomial

- result after hyperbolic parametrization:

$$
\frac{1}{2 \pi^{2}} \int_{0}^{\infty} \mathrm{d} t \int_{0}^{t} \mathrm{~d} w \log \left(\cosh ^{2} t-\cosh ^{2} w\right) \frac{1-S(t) S(w)}{\cosh t \cosh w}
$$

- second contribution simpler (single Cauchy integral)

Effective spin model

- effective Hamiltonian $\left(s_{\mu}=\{0,1\}, b \rightarrow \infty\right)$

$$
\mathcal{H}_{\mathrm{eff}}=-\sum_{\mu<\nu=1}^{M} K_{\mu \nu} s_{\mu} s_{\nu}+L \sum_{\mu=1}^{M} \hat{\gamma}_{\mu} s_{\mu}+b\left[\sum_{\mu=1}^{M} \sigma_{\mu} s_{\mu}\right]^{2}
$$

- two sublattices odd/even ($\sigma_{\mu}= \pm 1$) with equal sub. magnetization
- long-range couplings $K_{\mu \nu}$, intra-sub FM, inter-sub AFM
- magnetic moments $\hat{\gamma}_{\mu}>0$, magnetic field L
- free energies: $\quad F_{\text {strip }}^{\text {res }}(L, M)=F_{\text {eff }}(L, M)$
- critical Casimir force $\xlongequal{\wedge}$ magnetization in magnetic field L

$$
\begin{aligned}
\mathcal{F}_{\text {strip }}(L, M) & =-\frac{1}{M} \frac{\partial}{\partial L} F_{\text {strip }}^{\mathrm{res}}(L, M) \\
& =\frac{1}{M} \frac{\partial}{\partial L} \log \operatorname{Tr} \mathrm{e}^{-\mathcal{H}_{\text {eff }}}=-m_{\text {eff }}(L)
\end{aligned}
$$

- model might be used as starting point for further analysis

Conclusions \& Outlook

- big step towards exact solution of 2 d Ising model on (open) rectangle
- problem reduced from $4 L M \times 4 L M$ to $M / 2 \times M / 2$
- FSS functions calculated analytically
- corner free energy \Rightarrow log divergence of Casimir potential
- Casimir force changes sign
- hyperbolic parametrization lead to great simplifications (see also next talk by Hendrik)
- residual matrix can be mapped exactly onto effective spin model with M spins

