

Molecular Dynamics Simulations on the Austenite-Martensite Phase Transition in Fe₇Pd₃

CompPhys17, November 30 – December 2, 2017 Alexander Holm

[*] K. Ullakko, L. Wendell, A. Smith, P. Müllner, and G. Hampikian, Smart Mater. and Struct. 21, 115020 (2012).

- 1. Martensitic Transformations
- 2. Potential for Molecular Dynamics Simulations
- 3. Temperature Dependent Ground-States
- 4. Strain Induced Transformation
- 5. Conclusion

 Transformations between high temperature, high symmetric austenite and low temperature, lower symmetric martensite phase

- Transformations between high temperature, high symmetric austenite and low temperature, lower symmetric martensite phase
- Changes of the lattice structure and shape

- Transformations between high temperature, high symmetric austenite and low temperature, lower symmetric martensite phase
- Changes of the lattice structure and shape
- Different transformation mechanisms proposed
 - \rightarrow Small ranges of atomic movement
 - \rightarrow Conservation of nearest neighbour relations

Bain Path

- Uniaxial Deformation parallel to the c-direction of the unit cell
- four stable structures corresponding to axis ratios:

Crystal Structure	Axis Ratio (c/a)
FCC	1
FCT	0.940
BCT	0.717
BCC	0.707

Potential for Molecular Dynamics Simulations

• Embedded Atom Method

$$E_{tot} = \sum_{i} F_i \left(\rho_i(R_i) \right) + \frac{1}{2} \sum_{i,j;j \neq i} \phi(R_{ij})$$

 Fit of the potential in order to adept Bain path properties observed in DFT simulations

[S G Mayr and A Arabi-Hashemi 2012 *New J. Phys.* **14** 103006]

Thermally Induced Phase Transition

Thermally Induced Phase Transition

Resulting Phases

- Preparing a two phase system
- Depending on Temperature: two different equilibrium phases
- Compute the Radial Distribution
 Function (RDF)

Resulting Phases

- Providing 50 Temperature Sets for each Temperature to the two phase system
- Measure the relative frequentness of the FCC (austenite) phase compared to the BCC (martensite) phase

Thermally Induced Phase Transition

Resulting Phases

- Providing 50 Temperature Sets for each Temperature to the two phase system
- Measure the relative frequentness of the FCC (austenite) phase compared to the BCC (martensite) phase

values

CompPhys17, Alexander Holm

Setup according to the Bain path:

- Uniaxial deformation along the [001] direction with a constant strainrate of ε_{77} (t) = -0.1 z_0/ns
- 2 ns of simulated time
- Calculated RDF every 10 ps

RDF Structure Analysis

Radial Distribution Function

- Rather continuous transformation from FC zu BC structure
- Limited to resolve internal structures or events

Structure Analysis

Radial Distribution Function

- Limited to resolve tetragonal phases
- Rather continuous transformation from FC zu BC structure

RDF Separation Function

$$\Delta_{RDF} = \int_{r_{ij}} |g(r_{ij})_{t0} - g(r_{ij})_{t0} | dr_{ij}$$

 Indication of "avalanche" events

Common Neighbour Dislocation Analysis Analysis

- Evaluation of lattice enviornment of atomic positions
- Output of the associated lattice type per atom
- Identyfication of all defects in a crystal of **given** lattice structure
- Output of defect mesh: triangulated surface deviding the "good" and the "bad" crystal region

[Honeycutt and Andersen, J. Phys. Chem. 91, 4950] [A. Stukowski, V.V. Bulatov and A. Arsenlis.
Modelling Simul. Mater. Sci. Eng. 2
0, 085007 (2012)]

CompPhys17, Alexander Holm

IØM

IŐM

IØM

Analysing the Peaks

Angle of Tilt Dislocations

• $\varphi = 2\left(\arctan\left(\frac{c_t}{a_t}\right) - \frac{\pi}{4}\right)$ [1]

[1] A. Khachaturyan, S. Shapiro, andS. Semenovskaya, Physical Review B43, 10832 (1991).

ΙϭϺ

Analysing the Peaks

Angle of Tilt Dislocations

- $\varphi = 2\left(\arctan\left(\frac{c_t}{a_t}\right) \frac{\pi}{4}\right)$
- Indication of a temporary *FCT* phase

BCC/FCC Ratio

Check Bain Path for Different Temperatures, Temperature Sets and Atomic Orders

- Every simulation exhibits the same pattern of (101) and (011) habit planes
- *BCC/FCC* ratio graphs: all simulated transitions follow the same pattern (except for minor fluctuations)

Conclusion

- Successfully determined a phase transition temperature
- Nishiyama Wassermann Transformation vs. Bain Path
- Avalanche effects:
 - Habit plane formation due to shear deformation
- RDF-Separation-Function complementary method to investigate structural changes

Acknowledgements

- Prof. Stefan G. Mayr
- "AG Mayr" work group
- Open Visualization Tool "Ovito" [www.ovito.org – Alexander Stukowski]
- Prof. Wolfhard Janke
- You!

IØM

