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Motivational Introduction 

CompPhys17, Alexander Holm 

Fe7Pd3 

 

Mechanical Properties 

 

• High and low temperature 

solid state phases 

• Martensitic transformations 

• Highly ductile 

• Magnetically anisotropic 

• High Currie temperature  

(720 K) 

 

 

Biocompatibility 

 

• No foreign body reactions 

• Good adhesion properties 

 

 

 

Shape Changing Effects 

 

• Thermal Shape Memory Effect 

• Invar Effect 

• Ferromagnetic Shape Memory Effect 

Applications 

 

• Mechanically active coatings for prosthesis  

• Vascular Grafts  

• Magnetically controllable actuators for medical 

applications [*] 

Functional Surfaces 

[*] K. Ullakko, L. Wendell, A. Smith, P. Müllner, and G. Hampikian, Smart Mater. and Struct. 21, 115020 (2012). 
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Martensitic Transformations 

• Transformations between high temperature, high symmetric 

austenite and low temperature, lower symmetric martensite 

phase 
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Martensitic Transformations 

• Transformations between high temperature, high symmetric 

austenite and low temperature, lower symmetric martensite 

phase 

 

• Changes of the lattice structure and shape 

 

• Different transformation mechanisms proposed 

 Small ranges of atomic movement 

 Conservation of nearest neighbour relations 
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Bain Path 

• Uniaxial Deformation parallel to the 

c-direction of the unit cell 

• four stable structures corresponding 

to axis ratios: 

 

Martensitic Transformations 

Crystal 
Structure 

Axis Ratio 
(c/a) 

FCC 1 

FCT 0.940 

BCT 0.717 

BCC 0.707 
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Potential for Molecular 

Dynamics Simulations 

• Embedded Atom Method 

 
𝐸𝑡𝑜𝑡 = 𝐹𝑖 ρ𝑖 𝑅𝑖 +

1

2
 ϕ(𝑅𝑖𝑗)

 

𝑖,𝑗;𝑗≠𝑖

 

𝑖

 

 

• Fit of the potential in order to 

adept Bain path properties 

observed in DFT simulations 

 

[S G Mayr and A Arabi-Hashemi 

2012 New J. Phys. 14 103006] 
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Thermally Induced Phase Transition 
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Resulting Phases 

• Preparing a two phase system 

 

• Depending on Temperature: two 

different equilibrium phases 

 

• Compute the Radial Distribution 

Function (RDF) 
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Resulting Phases 

• Providing 50 Temperature Sets for 

each Temperature to the two phase 

system 

 

• Measure the relative frequentness of 

the FCC (austenite) phase compared 

to the BCC (martensite) phase 
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Resulting Phases 

• Compute the Radial Distribution 

Function (RDF) 

 

• Measure the relative frequentness of 

the fcc (austenite) phase compared 

to the bcc (martensite) phase 

 

• Good accordance of the determined 

phase transition temperature  

( 281.17 ± 0.05  𝐾) to literature 

values 

 

Thermally Induced Phase Transition 
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Strain Induced Phase Transition 

Strain Induced Phase Transition 

Master Thesis Defence Talk, Alexander Holm 
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Setup according to the 
Bain path: 
 
• Uniaxial deformation 

along the [001] direction 
with a constant strainrate 
of  
εzz (t) = -0.1 z0/ns 
 

• 2 ns of simulated time 
 

• Calculated RDF every  
10 ps 

ε 



RDF Structure Analysis 

Strain Induced Phase Transition 

Master Thesis Defence Talk, Alexander Holm 

 

Radial Distribution Function 

 

• Rather continuous 

transformation from FC zu 

BC structure 

• Limited to resolve internal 

structures or events 
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RDF Structure Analysis 

Strain Induced Phase Transition 
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Radial Distribution Function 

 

• Limited to resolve 

tetragonal phases 

• Rather continuous 

transformation from fc zu 

BC structure 
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RDF Structure Analysis 

Strain Induced Phase Transition 
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Radial Distribution Function 

 

• Limited to resolve 

tetragonal phases 

• Rather continuous 

transformation from fc zu 

BC structure 
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Structure Analysis 

Strain Induced Phase Transition 

Master Thesis Defence Talk, Alexander Holm 
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RDF Separation Function 

 

• ∆𝑅𝐷𝐹 =

  |𝑔 𝑟𝑖𝑗 𝑡0− 𝑔 𝑟𝑖𝑗 𝑡0 − |𝑑𝑟𝑖𝑗𝑟
𝑖𝑗

 

 

• Indication of “avalanche” 

events 

Radial Distribution Function 

 

• Limited to resolve 

tetragonal phases 

• Rather continuous 

transformation from FC zu 

BC structure 



Common Neighbour 
Analysis 

Strain Induced Phase Transition 
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• Identyfication of all defects 

in a crystal of given lattice 

structure 

 

• Output of defect mesh: 

triangulated surface deviding 

the “good“ and the “bad“ 

crystal region 

 

[A. Stukowski, V.V. Bulatov and A.

 Arsenlis. 

Modelling Simul. Mater. Sci. Eng. 2

0, 085007 (2012)] 

Dislocation Analysis 

• Evaluation of lattice 

enviornment of atomic 

positions 

 

• Output of the associated 

lattice type per atom 

 

 

 

[Honeycutt and Andersen, J. 

Phys. Chem. 91, 4950] 



Strain Induced Phase Transition 
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Strain Induced Phase Transition 
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o FCC      o BCC 

o FCC      o BCC 

o FCC 

o BCC 
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Strain Induced Phase Transition 
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(011) (101) 



Strain Induced Phase Transition 

CompPhys17, Alexander Holm 

 

Nishiyama - Wassermann 



Analysing the Peaks 
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Formation of (101) 
habit planes 
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Vanishing of (011) 
habit planes 



Analysing the Peaks 
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Angle of Tilt Dislocations 

 

• 𝜑 = 2 arctan
𝑐
𝑡

𝑎
𝑡

−
𝜋

4
 [1] 

 
[1] A. Khachaturyan, S. Shapiro, and 
S. Semenovskaya, Physical Review B 
43, 10832 (1991). 



Analysing the Peaks 
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Angle of Tilt Dislocations 

 

• 𝜑 = 2 arctan
𝑐
𝑡

𝑎
𝑡

−
𝜋

4
 

 

• Indication of a temporary 

FCT phase 

 



BCC/FCC Ratio 
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Check Bain Path for 
Different 

Temperatures, 
Temperature Sets 
and Atomic Orders 

• Every simulation exhibits the 

same pattern of (101) and 

(011) habit planes 

• BCC/FCC ratio graphs: 

all simulated transitions 

follow the same pattern 

(except for minor 

fluctuations) 

 

 

 



Conclusion 
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• Successfully determined a phase transition temperature 

 

• Nishiyama – Wassermann Transformation vs. Bain Path 

 

• Avalanche effects: 

•  Habit plane formation due to shear deformation 

 

• RDF-Separation-Function complementary method to 

investigate structural changes 
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Strain Induced Phase Transition 
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BCC to FCC Ratio 

• Total Number of Particles in 

BCC / FCC enviornment 

 

 


