Interface tension and the cluster exchange algorithm

Martin Hasenbusch

Institut für Physik, Humboldt-Universität zu Berlin

Leipzig, CompPhys17, 1 December 2017

Interface tension and the cluster exchange algorithm

Plan of the talk

- 3D Ising and Blume-Capel model
- Anti-periodic boundary conditions
- Exchange cluster algorithm
- Numerical results
- Conclusions

M. H., The interface tension in the improved Blume-Capel model, arXiv:1707.05665, Phys. Rev. E 96, 032803 (2017)

We study a simple cubic lattice with periodic boundary conditions in 3 dimensions. The reduced Hamiltonian of the Ising model

$$H = -\beta \sum_{x,\mu} J_{x,\mu} s_x s_{x+\hat{\mu}}$$

 $x_i \in \{0, 1, 2, ..., L_i - 1\}, \quad \mu = 0, 1, 2, \quad \hat{\mu} \text{ unit-vector in } \mu\text{-direction}$ $s_x \in \{-1, 1\} \text{ and } J_{x,\mu} \in \{-1, 1\} \text{ quenched variable; } J_{x,\mu} = 1, \text{ if not} \text{ specified otherwise; } \beta = 1/kT; Z = \sum_{\{s\}} \exp(-H[\{s\}])$

In our context: simplified model of a binary liquid mixture or solid in equilibrium with its vapor.

Generalization: Blume-Capel model

$$H = -\beta \sum_{x,\mu} J_{x,\mu} s_x s_{x+\hat{\mu}} + D \sum_x s_x^2 , \quad s_x \in \{-1,0,1\}$$

Phase diagram of the Blume-Capel model

Anti-periodic boundary conditions Set $J_{x,\mu} = -1$ for $x_0 = L_0 - 1$ and $\mu = 0$ \implies Translational invariance in 0-direction

Martin Hasenbusch

Interface free energy for anti-periodic boundary conditions

 $F_s = -\ln(Z_a/Z_p) + \ln L_0$

periodic/anti-periodic boundary conditions: no/one interface

Alternatives:

- different ensemble; E.g. fixing magnetisation m = 0
- Histogram method (pioneered by Binder) , Multicanonical simulations;

Monte Carlo Simulations

boundary-flip cluster algorithm (M.H. 1993) that allows to directly compute Z_a/Z_p Rough idea: Simulate an ensemble with the type of the boundary condition *b* as variable; $Z = Z_a + Z_p$. Clusters are constructed as for the Swendsen-Wang cluster algorithm. If there is no cluster that wraps around the torus, the boundary conditions can be flipped along with the cluster update.

$$\frac{Z_{a}}{Z_{p}} = \frac{\langle \delta_{b,a} \rangle}{\langle \delta_{b,p} \rangle}$$

Efficient as long as $\frac{Z_a}{Z_p}$ is not too small

For large σA : Integration over β (very old idea)

$$F_{s}(eta) = F_{s}(eta_{0}) + \int_{eta_{0}}^{eta} \mathsf{d} ilde{eta} \;\; E_{s}(ilde{eta})$$

where $E_s = E_a - E_p$

$$E = -\frac{\partial \ln Z(\beta)}{\partial \beta} = \frac{\sum_{\{s\}} \exp[-\beta H(\{s\})] H(\{s\})}{\sum_{\{s\}} \exp[-\beta H(\{s\})]} = \left\langle \sum_{x,\mu} J_{x,\mu} s_x s_{x+\hat{\mu}} \right\rangle$$

In practice: simulate at O(100) values of β and perform numerical integration by using e.g. the trapezoidal rule.

Variance reduced estimator for $E_s = E_a - E_p$ based on the exchange cluster algorithm (Redner, Machta, and Chayes 1998) swap spins between two systems; here periodic and anti-periodic

$$s'_{a,x} = s_{p,x}$$

 $s'_{p,x} = s_{a,x}$

Probability to delete link $p_{d,<xy>} = \min[1, \exp(-2\beta_{embed,<xy>})]$

$$\beta_{embed,} = \beta \frac{J_{p,} + J_{a,}}{4} (s_{p,x} - s_{a,x}) (s_{p,y} - s_{a,y})$$

Hence

$$\beta_{embed, \in B} = 0$$
 and $\beta_{embed, \notin B} = \frac{\beta}{2}(s_{p,x} - s_{a,x})(s_{p,y} - s_{a,y})$

where *B* is set of pairs $\langle xy \rangle$ with $x_0 = 0$ and $y_0 = L_0 - 1$

For $J_{p,<xy>} \neq J_{a,<xy>}$ external field:

$$h_{embed,x,} = \beta \frac{J_{p,} - J_{a,}}{4} (s_{p,x} - s_{a,x}) (s_{p,y} + s_{a,y})$$

$$h_{x,,embed} = \frac{\beta}{2}(s_{p,x} - s_{a,x})(s_{p,y} + s_{a,y})$$

$$p_{d,h} = \min[1, \exp(-2h_{x,embed})]$$

Alignment of configurations

At B:

- ► Translate the configurations such that the physical interface is located at x₀ = 0, L₀ 1
- Change sign of the spins such that the magnetisation of both systems is the same

Idea: Swap as many spins as possible

Variance reduction: contributions to observables from swapped clusters exactly cancel

Update/measurement cycle:

- Align configurations
- Construct exchange clusters; Start with magnetic field at the boundary; perform the measurement
- Unalign: random shift; random overall sign

Interface tension and the cluster exchange algorithm

Martin Hasenbusch

< D > < B

Improvement achieved by the variance reduced estimator, L = 64

Martin Hasenbusch

$$\sigma = \sigma_0(-t)^{\mu}(1+a_{\sigma}(-t)^{\theta}+ct...) \quad , \quad \mu = 2\nu$$

$$\begin{split} R_{2nd,+} &= \sigma_0 f_{2nd,+}^2 = 0.3863(6), \ R_{2nd,-} = \sigma_0 f_{2nd,-}^2 = 0.1028(1), \\ R_{exp,-} &= \sigma_0 f_{exp,-}^2 = 0.1077(3) \end{split}$$

Summary of experimental results for various binary liquid mixtures: M. R. Moldover, Interfacial tension of fluids near critical points and two-scale-factor universality, Phys. Rev. A **31**, 1022 (1985)

 $R_{+} = 0.386$

study of a cyclohexane-aniline mixture: T. Mainzer and D. Woermann, (1996)

 $R_{+} = 0.41(4)$

Brézin and Feng (1984) to order ϵ^2 , $R_{2nd,-} = \approx 0.051$ up to ≈ 0.057

Münster, semiclassical calculation at one-loop level (1990); P. Hoppe and G. Münster, two-loop level (1998)

 $R_{2nd,-} = 0.1088(2)$

Conclusions and outlook

Universal amplitude ratios $R = \sigma_0 f^2$ computed to high precision

Cluster exchange algorithm:

- Thermodynamic Casimir effect
- Correlation function for Z₂ symmetry breaking

Further applications of the variance reduced estimator based on the exchange cluster algorithm? Defect properties

Thanks for your attention!

Thanks to DFG for support under the grants No HA 3150/3-1 HA and 3150/4-1

Alternate: Define a family of systems that interpolate between periodic and anti-periodic boundary conditions

$$J_b = rac{2i}{N_r} - 1$$
 , $i \in \{0, 1, ..., N_r\}$

then

$$\frac{Z_a}{Z_p} = \prod_{i=1}^{N_r} \frac{Z_{i-1}}{Z_i}$$

Defining

$$H_{R} = -\beta \sum_{x_{1}, x_{2}} s_{0, x_{1}, x_{2}} s_{L_{0}-1, x_{1}, x_{2}}$$

we get

$$F_s^{(1)} = \ln L_0 - \ln rac{Z_a}{Z_p} = \ln L_0 - \int_{-1}^1 \mathrm{d}J_b \ \langle H_R
angle_{J_b}$$

Difficulty for J_b slightly larger than -1:

the entropy gain of the interface moving freely along the lattice and the energetic advantage of sitting at $x_0 = L_0 - 1/2$ compete.

⇒ large variance of H_R and large autocorrelation times Parallel tempering simulation; making use of the translational invariance at $J_b = -1$ should eliminate the problem of large autocorrelation times

Running the 64³ system one month with 42 copies

 $F_s = 118.61255(37)$