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Plan of the talk

I 3D Ising and Blume-Capel model

I Anti-periodic boundary conditions

I Exchange cluster algorithm

I Numerical results

I Conclusions

M. H., The interface tension in the improved Blume-Capel model,
arXiv:1707.05665, Phys. Rev. E 96, 032803 (2017)
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We study a simple cubic lattice with periodic boundary conditions in
3 dimensions. The reduced Hamiltonian of the Ising model

H = −β
∑
x ,µ

Jx ,µsxsx+µ̂

xi ∈ {0, 1, 2, ..., Li − 1}, µ = 0, 1, 2, µ̂ unit-vector in µ-direction
sx ∈ {−1, 1} and Jx ,µ ∈ {−1, 1} quenched variable; Jx ,µ = 1, if not
specified otherwise; β = 1/kT ; Z =

∑
{s} exp(−H[{s}])

In our context: simplified model of a binary liquid mixture or solid in
equilibrium with its vapor.

Generalization: Blume-Capel model

H = −β
∑
x ,µ

Jx ,µsxsx+µ̂ + D
∑
x

s2x , sx ∈ {−1, 0, 1}
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Phase diagram of the Blume-Capel model
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Anti-periodic boundary conditions
Set Jx ,µ = −1 for x0 = L0 − 1 and µ = 0
=⇒ Translational invariance in 0-direction
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Interface free energy for anti-periodic boundary conditions

Fs = − ln(Za/Zp) + ln L0

periodic/anti-periodic boundary conditions: no/one interface

Alternatives:
- different ensemble; E.g. fixing magnetisation m = 0
- Histogram method (pioneered by Binder) , Multicanonical
simulations;
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Monte Carlo Simulations

boundary-flip cluster algorithm (M.H. 1993) that allows to
directly compute Za/Zp

Rough idea: Simulate an ensemble with the type of the boundary
condition b as variable; Z = Za + Zp. Clusters are constructed as for
the Swendsen-Wang cluster algorithm. If there is no cluster that
wraps around the torus, the boundary conditions can be flipped along
with the cluster update.

Za

Zp
=
〈δb,a〉
〈δb,p〉

Efficient as long as Za
Zp

is not too small
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For large σA: Integration over β (very old idea)

Fs(β) = Fs(β0) +

∫ β

β0

dβ̃ Es(β̃)

where Es = Ea − Ep

E = −∂ lnZ (β)

∂β
=

∑
{s} exp[−βH({s})] H({s})∑

{s} exp[−βH({s})]
=

〈∑
x ,µ

Jx ,µsxsx+µ̂

〉

In practice: simulate at O(100) values of β and perform numerical
integration by using e.g. the trapezoidal rule.
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Variance reduced estimator for Es = Ea − Ep based on the exchange
cluster algorithm (Redner, Machta, and Chayes 1998)

swap spins between two systems; here periodic and anti-periodic

s ′a,x = sp,x

s ′p,x = sa,x

Probability to delete link pd ,<xy> = min[1, exp(−2βembed ,<xy>)]

βembed ,<xy> = β
Jp,<xy> + Ja,<xy>

4
(sp,x − sa,x)(sp,y − sa,y )

Hence

βembed ,<xy>∈B = 0 and βembed ,<xy>/∈B =
β

2
(sp,x − sa,x)(sp,y − sa,y )

where B is set of pairs < xy > with x0 = 0 and y0 = L0 − 1
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For Jp,<xy> 6= Ja,<xy> external field:

hembed ,x ,<xy> = β
Jp,<xy> − Ja,<xy>

4
(sp,x − sa,x)(sp,y + sa,y )

At B:

hx ,<xy>,embed =
β

2
(sp,x − sa,x)(sp,y + sa,y )

pd ,h = min[1, exp(−2hx ,embed)]

Alignment of configurations

I Translate the configurations such that the physical interface is
located at x0 = 0, L0 − 1

I Change sign of the spins such that the magnetisation of both
systems is the same
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Idea: Swap as many spins as possible

Variance reduction: contributions to observables from swapped
clusters exactly cancel

Update/measurement cycle:

I Align configurations

I Construct exchange clusters; Start with magnetic field at the
boundary; perform the measurement

I Unalign: random shift; random overall sign
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Size of the frozen clusters per area
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Improvement achieved by the variance reduced estimator, L = 64
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σ = σ0(−t)µ(1+aσ(−t)θ+ct...) , µ = 2ν
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R2nd ,+ = σ0f
2
2nd ,+ = 0.3863(6), R2nd ,− = σ0f

2
2nd ,− = 0.1028(1),

Rexp,− = σ0f
2
exp,− = 0.1077(3)
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Summary of experimental results for various binary liquid mixtures:
M. R. Moldover, Interfacial tension of fluids near critical points and
two-scale-factor universality, Phys. Rev. A 31, 1022 (1985)

R+ = 0.386

study of a cyclohexane-aniline mixture:
T. Mainzer and D. Woermann, (1996)

R+ = 0.41(4)

Brézin and Feng (1984) to order ε2, R2nd ,− =≈ 0.051 up to ≈ 0.057

Münster, semiclassical calculation at one-loop level (1990);
P. Hoppe and G. Münster, two-loop level (1998)

R2nd ,− = 0.1088(2)
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Conclusions and outlook

Universal amplitude ratios R = σ0f
2 computed to high precision

Cluster exchange algorithm:

I Thermodynamic Casimir effect

I Correlation function for Z2 symmetry breaking

Further applications of the variance reduced estimator based on the
exchange cluster algorithm? Defect properties

Thanks for your attention!

Thanks to DFG for support under the grants No HA 3150/3-1 HA
and 3150/4-1
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Alternate: Define a family of systems that interpolate between
periodic and anti-periodic boundary conditions

Jb =
2i

Nr
− 1 , i ∈ {0, 1, ...,Nr}

then

Za

Zp
=

Nr∏
i=1

Zi−1
Zi

Defining

HR = −β
∑
x1,x2

s0,x1,x2sL0−1,x1,x2

we get

F
(1)
s = ln L0 − ln

Za

Zp
= ln L0 −

∫ 1

−1
dJb 〈HR〉Jb
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Difficulty for Jb slightly larger than −1:

the entropy gain of the interface moving freely along the lattice and

the energetic advantage of sitting at x0 = L0 − 1/2 compete.

=⇒ large variance of HR and large autocorrelation times

Parallel tempering simulation; making use of the translational
invariance at Jb = −1 should eliminate the problem of large
autocorrelation times
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Running the 643 system one month with 42 copies

Fs = 118.61255(37)
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