Enhanced Sampling Simulations of protein aggregation

Ulrich H.E. Hansmann

Dept. of Chemistry & Biochemistry, University of Oklahoma http://www.hansmann-lab.com/

Misfolding and aggregation

- Misfolding and aggregates are associated with diseases:
 - Alzheimer's
 - Parkinson
 - Cystic Fibrosis
- marker for these disease are amyloid fibril deposits
 - 4.7 Å between β-strands perpendicular to fibril axis
 - 6-10 Å between neighboring β-sheets
- but toxic species: solvable oligomers rather than fibrils?

FIBER STABILITY AND TOXICITY

Jiang et al Elife. 2013. 2:e00857

Department of Chemistry and Biochemistry

Cylindrin β-barrel amyloid oligomers

- six identical 11-residue peptides that form out-of-register antiparallel β-strands in the shape of a barrel, instead of the in-register β-strands typically observed in amyloid fibrils
- Model for solvable toxic oligomers
- What determines stability of the oligomers?
- On or off pathway to formation of unsolvable fibrils?
- Mechanism of toxicity?

Cylindrin as Model System (a) fibril (b) barrel

Folding and Aggregation Landscape?

- Folding takes > ms s; aggregation takes even longer: ≈ h d
- Computational effort increases exponentially with system size (including solvent!)

Requirements on Sampling Methods

- Find local minima
- Escape out of local minima and continue search

Can be achieved by:

- Improved/adaptive steps
- Improved/adaptive weights

Replica Exchange Sampling (Parallel Tempering)

- The probability of crossing barriers increases with temperature

- Walk in temperature, replica exchange with $\min(1, \exp(\Delta\beta\Delta E))$, $\beta = 1 / k_B T$

Replica Exchange with Tunneling

F. Yasar, N.A. Bernhardt & U.H.E. Hansmann, J. Chem. Phys., 143 (2015) 224102.

- Common situation: exchange move leads to energetically unfavorable state in Multi-Markov-chain →low acceptance rate
- But if accepted, the system quickly evolves to a state with energies similar to the state before the exchange move.
- Examples: proteins in explicit solvent, resolution exchange
 - Number of replicas increases rapidly with system size, otherwise low acceptance rates
 - Simulation time increases, too, as more time required for round trips
- How to "tunnel" through the unfavorable "transition state"?

Replica Exchange with Tunneling

F. Yasar, N.A. Bernhardt & U.H.E. Hansmann, J. Chem. Phys., 143 (2015) 224102

- Microcanonical molecular dynamics from A to A' (B to B')
- Conditional exchange of configurations, with kinetic energies rescaled such that total energies E(B") = E(A') and E(A") = E(B')

$$v''_{A} = v'_{A} \sqrt{\frac{E_2 - E_{pot}(q'_{A})}{E_{kin}(v'_{A})}} \qquad \qquad v''_{B} = v'_{B} \sqrt{\frac{E_1 - E_{pot}(q'_{B})}{E_{kin}(v'_{B})}}$$

• Microcanonical molecular dynamics from A" to \hat{A} (B" to \hat{B})

- The configurations \hat{A} and \hat{B} are accepted with probability $\exp(-\beta_1(E_{pot}(\hat{q}_A) - E_{pot}(q_B) - \beta_2(E_{pot}(\hat{q}_B) - E_{pot}(q_A)))$
- If rejected, the simulation continues with configurations A and B

Systems With Competing Attractors

N.A. Bernhardt, W. Xi, W. Wang and U.H.E. Hansmann, JCTC 12 (2016) 5656.

- Problem: conversion between structures
- "feeding" of physical model by Go-model(s) $E = E_{phys} + \lambda E_{Go}$

- Replicas walk between Helix and Sheet folds.
- Measurements only at $\lambda=0$ (no bias)
- Low Acceptance rate → use RET!

First Test: helix and sheet forming peptides N.A. Bernhardt, W. Xi, W. Wang and U.H.E. Hansmann, JCTC **12** (2016) 5656.

- **AFP:** 11 residue long polypeptide sequence ELLEKLLEKEK has 51% helicity at physiological temperature
- BFP: 16 residue long C-terminus of the B domain of protein G, known to form β-hairpins with a frequency of 42%

Department of Chemistry and Biochemistry

Walk in lambda-space

N.A. Bernhardt, W. Xi, W. Wang and U.H.E. Hansmann, JCTC 12 (2016) 5656.

Department of Chemistry and Biochemistry

Go Model feeding does not lead to Bias

N.A. Bernhardt, W. Xi, W. Wang and U.H.E. Hansmann, JCTC 12 (2016) 5656.

RET simulations were compared to REMD simulations

AFP		
	% Helix	% Hairpin
RET	42	0
REMD	53	0
Experiment	51	0
BFP		
	% Helix	% Hairpin
RET	% Helix 0	% Hairpin 48
RET REMD	% Helix 0 0	% Hairpin 48 38

Cylindrin as Model System (a) fibril (b) barrel

Walk in λ-Space

H. Zhang, W. Xi, U.H.E. Hansmann and Y. Wei, JCTC, 13 (2017) 3936

Department of Chemistry and Biochemistry

Walk in λ-Space

H. Zhang, W. Xi, U.H.E. Hansmann and Y. Wei, JCTC, 13 (2017) 3936

Department of Chemistry and Biochemistry

Free Energy Landscape

H. Zhang, W. Xi, U.H.E. Hansmann and Y. Wei, JCTC, 13 (2017) 3936

Department of Chemistry and Biochemistry

In vitro and patient-derived Aβ-fibrils

- *In vitro* generated Aβ-fibrils are polymorphic
- In patient-derived fibrils only one form found J-X Lu et al., Cell 154 (2013) 1257
- This difference is not because of higher stability of patient-derived form!
 E.J. Alred, E.G. Scheele, W.M. Berhanu & U.H., JCP, 141 (2014) 175101.
- Are some Aβ-fibril structures "infectious"?

Comparison of the two polymorphic forms of A β wild-type and A β_{1-40} E22 Δ

Aβ₁₋₄₀ WT Angew. Chem. Int. Ed. 2015, 54, 331 – 335 J Am Chem Soc 2011,133:16013-16022

Department of Chemistry and Biochemistry

Cross-seeding and infectious strains

- $A\beta_{1-40}$ WT fibrils can be seeded with $A\beta_{1-40}$ E22 Δ nuclei
- But not $A\beta_{1-40} E22\Delta$ fibrils with $A\beta_{1-40}$ WT nuclei
- Polymorphism of Aβ wild type
- Aβ wild type can form "infectious" strains

Neurodegener Dis 2014;14:151–159 ;Angew. Chem. Int. Ed. 2015, 54, 331–335

Hybrid model simulation are used to study interconversion of two forms

Co-worker:

- Workalemahu Berhanu (OU)
- Wei Wang (OU) ۲
- Wenhui Xi (OU)
- Erik Alred (OU) ٠
- Nathan Bernhard (OU) ۲
- Wenhua Wang (OU) ۲
- Michael Nguyen (OU) ۲
- Maggie Martin (OU) ۲
- Elliott Vanderford (OU) •
- Fatih Yasar (Hacettepe U) ٠
- Yanjie Wei (SIAT) ٠

