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P-S reversible worm

• Applications in classical and 
quantum systems

• Here classical Ising only

• Updates completely local.

• Rapidly mixing on any graph and 
any temperature.

• On Z^3_L more efficient than SW 
for measuring susceptibility & 
2nd-moment correlation length.

P-S := Prokof’ev-Svistunov
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The lifting technique

• For worm dynamics one expects 
energy (edge) diffusion to be the 
slowest “mode” (cause of slowing-
down)

• Idea: Apply lifting along “edge”-
direction, but how?
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P-S worm B-S worm irr. worm

Apply 
Lifting



The Berretti-Sokal worm
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Boosts on tori
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Critical speeding-up in the 
mean-field limit



Extensive ballistic drift
Some scaling results

β = 1
n

⇒ x ∼ 1
n

μ (!0)
N ∼ Γ(7/4)

3Γ(5/4)
n

1
2 ≈ 0.5854143 n

1
2

σN ∼ 9
4 − 24Γ(5/4)4

π2 n
1
2 ≈ 0.7801732 n

1
2



Critical speeding-up

τ(BS)
int,! ≈n

τ(irr)
int,! ≈n

1
2



An irreversible cluster algorithm
Eulerian loop configuration

x ∈ [0,1]

Add vacant 
edges 

with prob. x

Grimmett, Geoffrey, and Svante Janson. "Random even graphs." the electronic journal of combinatorics 16.1 (2009): R46.



An irreversible cluster algorithm
Eulerian loop configuration

x ∈ [0,1]

FK Ising configuration

p = 2x
1 + x q = 2

Add vacant 
edges 

with prob. x

Grimmett, Geoffrey, and Svante Janson. "Random even graphs." the electronic journal of combinatorics 16.1 (2009): R46.



An irreversible cluster algorithm
ω1 ∈ "0 → ω2 ∈ "2 → ω3 ∈ "2 → ⋯ → ωT ∈ "2 → ωT+1 ∈ "0

Random running time T

Preliminary analysis / picture on complete graph 

- Scaling 

- Mean of T is dominant time scale (deviations that dominate mean asymptotically are at least exp. unlikely)

- Induced FK cluster algorithm has integrated autocorrelation for edges (energy) that is bounded as n 

becomes large.

- Compare: SW is expected to have mixing time 

μT ≈ χ

χ ≈ n
1
2

n
1
4
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Ballistic cycle creation



Ballistic path / cycle erasure



Facts

β = 1
n

⇒ x ∼ 1
n

χ ≈ n
1
2

σN ∼ 9
4 − 24Γ(5/4)4

π2 n
1
2 ≈ 0.7801732 n

1
2

σ(!0)
N ∼ 3

4 − 6π2

Γ(1/4)4 n
1
2 ≈ 0.4072901 n

1
2

μ (!0)
N ∼ Γ(7/4)

3Γ(5/4)
n

1
2 ≈ 0.5854143 n

1
2

μN ∼ 2 6Γ(5/4)2

π
n

1
2 ≈ 1.2811439 n

1
2



Figure pool


