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We design an irreversible worm algorithm for the zero-field ferromagnetic Ising model by using
the lifting technique. We study the dynamic critical behavior of an energy estimator on both the
complete graph and toroidal grids, and compare our findings with reversible algorithms such as the
Prokof’ev-Svistunov worm algorithm. Our results show that the lifted worm algorithm improves
the dynamic exponent of the energy estimator on the complete graph, and leads to a significant

constant improvement on toroidal grids.

I. INTRODUCTION

Markov-chain Monte Carlo (MCMC) algorithms are a
powerful and widely-used tool in various areas of physics
and other disciplines, such as in machine learning [1| and
statistics [2]. In many practical applications MCMC al-
gorithms are constructed via the Metropolis [3] or heat
bath update scheme [1]. Such algorithms are necessarily
reversible.

One important example of a Metropolis algorithm is
the Prokof’ev-Svistunov Worm Algorithm (P-S worm al-
gorithm) which has widespread application for both clas-

sical and quantum systems [, 6]. As opposed to clus-
ter algorithms like the Wolff [7] or Swendsen-Wang algo-
rithm [3], the updates of the worm algorithm are purely

local. On the simple-cubic lattice with periodic bound-

For the Ising model on the complete graph, it was numer-
ically observed that the lifted single-spin flip Metropolis
algorithm improves the scaling (with volume) of the rate
of decay of the autocorrelation function of the magnetiza-
tion [11]. Another study [!3] proved that a lifted MCMC
algorithm for uniformly sampling leaves from a given tree
reduces the mixing time. In other examples [16, 20, 22]
it was numerically observed that lifting speeds up re-
versible MCMC algorithms by a possibly large constant
factor but does not asymptotically affect the scaling with
the system size.

In this work we investigate how lifting affects worm
algorithms. More precisely, we design a lifted worm al-
gorithm for the zero-field ferromagnetic Ising model, and
numerically study the dynamic critical behavior of an es-
timator of the energy. Our simulations were performed
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P-S reversible worm
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Algorithm 1 P-S Worm Algorithm

if w € Cp then
Choose a uniformly random vertex x

else
Choose a uniformly random odd vertex x

end if

Choose a uniformly random edge xz’ among the set of edges
incident to x. With probability ap.s(w,wAzz’), let w —
wAzz'. Otherwise w — w

P-S := Prokof’ev-Svistunov
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P-S reversible worm

Applications in classical and
quantum systems

* Here classical Ising only

Updates completely local.

Rapidly mixing on any graph and
any temperature.

On ZA3_L more efficient than SW
for measuring susceptibility &
2nd-moment correlation length.

7 = 2Vl cosh! Fl(8) Z tanh'“!(3)

wECop

Algorithm 1 P-S Worm Algorithm

if w € Cp then
Choose a uniformly random vertex x
else

Choose a uniformly random odd vertex x

end if

Choose a uniformly random edge xz’ among the set of edges
incident to x. With probability ap.s(w,wAzz’), let w —

wAzxx". Otherwise w — w

P-S := Prokof’ev-Svistunov
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Figure taken from “Lifting — A nonreversible Markov chain Monte Carlo algorithm” by M. Vucelja, arXiv:1412.8762
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Figure taken from “Lifting — A nonreversible Markov chain Monte Carlo algorithm” by M. Vucelja, arXiv:1412.8762
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The lifting technique
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Figure taken from “Lifting — A nonreversible Markov chain Monte Carlo algorithm” by M. Vucelja, arXiv:1412.8762
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The Berretti-Sokal worm

Algorithm 2 B-S type Worm Algorithm

Choose A = {4+, —} uniformly at random
__________________________________________________________________ if w € Cyp then
Y | Choose a uniformly random vertex x
: else

Choose a uniformly random odd vertex x
end if

X U1 if Ny (x,\) =0 then
01 Set w — w and skip all following steps
5 5 5 else
Choose a uniformly random edge zx’ € N, (z,\). With
probability ap.s(w,wAzz’), let w — wAzz’. Otherwise
W — W.

end if




Lifting the B-S worm

Algorithm 2 B-S type Worm Algorithm

Choose A = {+, —} uniformly at random
if w € Cp then

Choose a uniformly random vertex x
else

Choose a uniformly random odd vertex x
end if

if N,(z,\) =0 then

Set w — w and skip all following steps
else

Choose a uniformly random edge zz' € N, (z, A). With
probability ap.s(w,wAzz’), let w — wAzz'. Otherwise
W — W.

end if




Lifting the B-S worm

Algorithm 2 B-S type Worm Algorithm Algorithm 3 Irreversible Worm Algorithm
Choose A = {+, —} uniformly at random if & = (w, \) where w € Cy then
if w € Cp then Choose a uniformly random vertex x
Choose a uniformly random vertex x else
else Choose a uniformly random odd vertex x
Choose a uniformly random odd vertex x end if
end if
9 if N, (z,\) =0 then
if No(z,\) =0 then Set (w,\) = (w, —\) and skip all following steps
Set w — w and skip all following steps else
else Choose a uniform random edge zz’ € N, (x,\). With
Choose a uniformly random edge zz’ € N, (z, \). With probability ap.g (w, WAz ), let (w,\) = (wAzz’,\). Oth-
probability ap.s(w,wAzz’), let w — wAzz'. Otherwise erwise (w, A) — (w, —\)
W —r W. end if

end if
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Slow suppressed modes

Two-time-scale ansatz

(t) = ay exp(—t/m) + ag exp(—t/12)
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Slow suppressed modes

Two-time-scale ansatz




Critical speeding-up in the
mean-field limit




Intra replica time

102 -

=
()
[

Extensive ballistic drift

Some scaling results

| |
f=—>x~—
n n

@y L(/4)
v/ 3[(5/4)

9  24I'(5/4)*
CXA] ""1\ —_— n

I I
n2 ~ 0.5854143 n2

N|—

]
~ (0.7801732 n2

4 2

101

10° 10° 104



Critical speeding-up
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An irreversible cluster algorithm

Eulerian loop configuration
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Add vacant
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with prob. x

Grimmett, Geoffrey, and Svante Janson. "Random even graphs." the electronic journal of combinatorics 16.1 (2009): R46.



An irreversible cluster algorithm

Eulerian loop configuration FK Ising configuration

Add vacant
edges

‘ \ with prob. x
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Grimmett, Geoffrey, and Svante Janson. "Random even graphs." the electronic journal of combinatorics 16.1 (2009): R46.




An irreversible cluster algorithm
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Preliminary analysis / picture on complete graph
1
- Scaling ¥ =~ n?2
- Mean of T is dominant time scale (deviations that dominate mean asymptotically are at least exp. unlikely)

- Induced FK cluster algorithm has integrated autocorrelation for edges (energy) that is bounded as n
becomes large. 1

- Compare: SW is expected to have mixing time n4

Random running time T




Ballistic path creation
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Ballistic path creation
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Ballistic path creation
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Ballistic path creation
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Ballistic cycle creation
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Ballistic path / cycle erasure
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