
Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Efficient implementation of connectivity changing
moves for dense polymers

Nathan Clisby
Swinburne University of Technology

CompPhys17
Leipzig University

November 30, 2017

1 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Dense polymers

Interested in both polymer melts and dense configurations of
individual polymers.

In a melt each individual chain behaves like a simple random
walk and obeys Gaussian statistics1, although bond correlation
function decays with a power law.2

Dynamics (including molecular dynamics) for long polymers
very slow due to entanglement.

Monte Carlo algorithms may allow for dramatically better
sampling rates for equilibrium systems.

1P. G. de Gennes: Scaling Concepts in Polymer Physics, 1979.
2J. P. Wittmer et al.: Why polymer chains in a melt are not random walks,

in: EPL (Europhysics Letters) 77 (2007), p. 56003.

2 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Dense polymers

Interested in both polymer melts and dense configurations of
individual polymers.

In a melt each individual chain behaves like a simple random
walk and obeys Gaussian statistics1, although bond correlation
function decays with a power law.2

Dynamics (including molecular dynamics) for long polymers
very slow due to entanglement.

Monte Carlo algorithms may allow for dramatically better
sampling rates for equilibrium systems.

1P. G. de Gennes: Scaling Concepts in Polymer Physics, 1979.
2J. P. Wittmer et al.: Why polymer chains in a melt are not random walks,

in: EPL (Europhysics Letters) 77 (2007), p. 56003.

2 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Dense polymers

Interested in both polymer melts and dense configurations of
individual polymers.

In a melt each individual chain behaves like a simple random
walk and obeys Gaussian statistics1, although bond correlation
function decays with a power law.2

Dynamics (including molecular dynamics) for long polymers
very slow due to entanglement.

Monte Carlo algorithms may allow for dramatically better
sampling rates for equilibrium systems.

1P. G. de Gennes: Scaling Concepts in Polymer Physics, 1979.
2J. P. Wittmer et al.: Why polymer chains in a melt are not random walks,

in: EPL (Europhysics Letters) 77 (2007), p. 56003.

2 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Dense polymers

Interested in both polymer melts and dense configurations of
individual polymers.

In a melt each individual chain behaves like a simple random
walk and obeys Gaussian statistics1, although bond correlation
function decays with a power law.2

Dynamics (including molecular dynamics) for long polymers
very slow due to entanglement.

Monte Carlo algorithms may allow for dramatically better
sampling rates for equilibrium systems.

1P. G. de Gennes: Scaling Concepts in Polymer Physics, 1979.
2J. P. Wittmer et al.: Why polymer chains in a melt are not random walks,

in: EPL (Europhysics Letters) 77 (2007), p. 56003.

2 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Fast global moves

We will implement a Markov chain Monte Carlo algorithm.

For computational efficiency, want it to be:

Global, so that it moves rapidly around the state space.
Fast! Ideally, for system of size N want to be able to perform
the move in CPU time o(N).

Ideally, want a move and implementation such that τint for a
suitable global observable, in CPU time units, scales as less
than the system size.

Will now give an example: the pivot algorithm for
self-avoiding walks.

3 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Fast global moves

We will implement a Markov chain Monte Carlo algorithm.

For computational efficiency, want it to be:

Global, so that it moves rapidly around the state space.
Fast! Ideally, for system of size N want to be able to perform
the move in CPU time o(N).

Ideally, want a move and implementation such that τint for a
suitable global observable, in CPU time units, scales as less
than the system size.

Will now give an example: the pivot algorithm for
self-avoiding walks.

3 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Fast global moves

We will implement a Markov chain Monte Carlo algorithm.

For computational efficiency, want it to be:

Global, so that it moves rapidly around the state space.

Fast! Ideally, for system of size N want to be able to perform
the move in CPU time o(N).

Ideally, want a move and implementation such that τint for a
suitable global observable, in CPU time units, scales as less
than the system size.

Will now give an example: the pivot algorithm for
self-avoiding walks.

3 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Fast global moves

We will implement a Markov chain Monte Carlo algorithm.

For computational efficiency, want it to be:

Global, so that it moves rapidly around the state space.
Fast! Ideally, for system of size N want to be able to perform
the move in CPU time o(N).

Ideally, want a move and implementation such that τint for a
suitable global observable, in CPU time units, scales as less
than the system size.

Will now give an example: the pivot algorithm for
self-avoiding walks.

3 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Fast global moves

We will implement a Markov chain Monte Carlo algorithm.

For computational efficiency, want it to be:

Global, so that it moves rapidly around the state space.
Fast! Ideally, for system of size N want to be able to perform
the move in CPU time o(N).

Ideally, want a move and implementation such that τint for a
suitable global observable, in CPU time units, scales as less
than the system size.

Will now give an example: the pivot algorithm for
self-avoiding walks.

3 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Fast global moves

We will implement a Markov chain Monte Carlo algorithm.

For computational efficiency, want it to be:

Global, so that it moves rapidly around the state space.
Fast! Ideally, for system of size N want to be able to perform
the move in CPU time o(N).

Ideally, want a move and implementation such that τint for a
suitable global observable, in CPU time units, scales as less
than the system size.

Will now give an example: the pivot algorithm for
self-avoiding walks.

3 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Self-avoiding walk model

Self-avoiding walk (SAW): a walk between nearest neighbours
on a graph that avoids itself.

Graph: typically Zd , but sometimes random networks,
percolation clusters.

Models dilute solution of polymers in a good solvent.

4 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Self-avoiding walk model

Self-avoiding walk (SAW): a walk between nearest neighbours
on a graph that avoids itself.

Graph: typically Zd , but sometimes random networks,
percolation clusters.

Models dilute solution of polymers in a good solvent.

4 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Self-avoiding walk model

Self-avoiding walk (SAW): a walk between nearest neighbours
on a graph that avoids itself.

Graph: typically Zd , but sometimes random networks,
percolation clusters.

Models dilute solution of polymers in a good solvent.

4 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Self-avoiding walks of 15 and 225 steps.

4 / 28
Efficient implementation of connectivity changing moves for dense polymers

N





Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Self-avoiding walk model

Mean-squared end-to-end distance for SAWs of length N:

〈R2
E〉N = DEN

2ν
(

1 + O(N−∆1)
)

Flory exponent ν is universal; same for SAWs and real world
polymers.

5 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Self-avoiding walk model

Mean-squared end-to-end distance for SAWs of length N:

〈R2
E〉N = DEN

2ν
(

1 + O(N−∆1)
)

Flory exponent ν is universal; same for SAWs and real world
polymers.

5 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Pivot algorithm

The pivot algorithm3 is the fastest method for sampling
SAWs.

Procedure:

Choose a pivot site at random
Then rotate or reflect one of the two parts of the walk.
Retain new walk if it is self-avoiding, otherwise restore original
walk.

“Global” because on average half of the monomers are moved.

Ergodic, samples SAWs uniformly at random.

3Neal Madras/Alan D. Sokal: The Pivot Algorithm: A Highly Efficient
Monte Carlo Method for the Self-Avoiding Walk, in: J. Stat. Phys. 50 (1988),
pp. 109–186.

6 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Pivot algorithm

The pivot algorithm3 is the fastest method for sampling
SAWs.

Procedure:

Choose a pivot site at random
Then rotate or reflect one of the two parts of the walk.
Retain new walk if it is self-avoiding, otherwise restore original
walk.

“Global” because on average half of the monomers are moved.

Ergodic, samples SAWs uniformly at random.

3Neal Madras/Alan D. Sokal: The Pivot Algorithm: A Highly Efficient
Monte Carlo Method for the Self-Avoiding Walk, in: J. Stat. Phys. 50 (1988),
pp. 109–186.

6 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Pivot algorithm

The pivot algorithm3 is the fastest method for sampling
SAWs.

Procedure:

Choose a pivot site at random

Then rotate or reflect one of the two parts of the walk.
Retain new walk if it is self-avoiding, otherwise restore original
walk.

“Global” because on average half of the monomers are moved.

Ergodic, samples SAWs uniformly at random.

3Neal Madras/Alan D. Sokal: The Pivot Algorithm: A Highly Efficient
Monte Carlo Method for the Self-Avoiding Walk, in: J. Stat. Phys. 50 (1988),
pp. 109–186.

6 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Pivot algorithm

The pivot algorithm3 is the fastest method for sampling
SAWs.

Procedure:

Choose a pivot site at random
Then rotate or reflect one of the two parts of the walk.

Retain new walk if it is self-avoiding, otherwise restore original
walk.

“Global” because on average half of the monomers are moved.

Ergodic, samples SAWs uniformly at random.

3Neal Madras/Alan D. Sokal: The Pivot Algorithm: A Highly Efficient
Monte Carlo Method for the Self-Avoiding Walk, in: J. Stat. Phys. 50 (1988),
pp. 109–186.

6 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Pivot algorithm

The pivot algorithm3 is the fastest method for sampling
SAWs.

Procedure:

Choose a pivot site at random
Then rotate or reflect one of the two parts of the walk.
Retain new walk if it is self-avoiding, otherwise restore original
walk.

“Global” because on average half of the monomers are moved.

Ergodic, samples SAWs uniformly at random.

3Neal Madras/Alan D. Sokal: The Pivot Algorithm: A Highly Efficient
Monte Carlo Method for the Self-Avoiding Walk, in: J. Stat. Phys. 50 (1988),
pp. 109–186.

6 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Pivot algorithm

The pivot algorithm3 is the fastest method for sampling
SAWs.

Procedure:

Choose a pivot site at random
Then rotate or reflect one of the two parts of the walk.
Retain new walk if it is self-avoiding, otherwise restore original
walk.

“Global” because on average half of the monomers are moved.

Ergodic, samples SAWs uniformly at random.

3Neal Madras/Alan D. Sokal: The Pivot Algorithm: A Highly Efficient
Monte Carlo Method for the Self-Avoiding Walk, in: J. Stat. Phys. 50 (1988),
pp. 109–186.

6 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Pivot algorithm

The pivot algorithm3 is the fastest method for sampling
SAWs.

Procedure:

Choose a pivot site at random
Then rotate or reflect one of the two parts of the walk.
Retain new walk if it is self-avoiding, otherwise restore original
walk.

“Global” because on average half of the monomers are moved.

Ergodic, samples SAWs uniformly at random.

3Neal Madras/Alan D. Sokal: The Pivot Algorithm: A Highly Efficient
Monte Carlo Method for the Self-Avoiding Walk, in: J. Stat. Phys. 50 (1988),
pp. 109–186.

6 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Example pivot move

7 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Example pivot move

7 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Time O(N) to write down an N-step walk, so this must be
best possible for pivot move?

In fact, don’t need to write down! CPU time O(N0.74)4.

Just verify that walk is self-avoiding after a pivot move,
update information about global observables.

Bookkeeping can be handled efficiently in binary tree structure
O(logN)5.

4Tom Kennedy: A faster implementation of the pivot algorithm for
self-avoiding walks, in: J. Stat. Phys. 106 (2002), pp. 407–429.

5Nathan Clisby: Accurate Estimate of the Critical Exponent ν for
Self-Avoiding Walks via a Fast Implementation of the Pivot Algorithm, in:
Phys. Rev. Lett. 104 (2010), p. 055702.

8 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Time O(N) to write down an N-step walk, so this must be
best possible for pivot move?

In fact, don’t need to write down! CPU time O(N0.74)4.

Just verify that walk is self-avoiding after a pivot move,
update information about global observables.

Bookkeeping can be handled efficiently in binary tree structure
O(logN)5.

4Tom Kennedy: A faster implementation of the pivot algorithm for
self-avoiding walks, in: J. Stat. Phys. 106 (2002), pp. 407–429.

5Nathan Clisby: Accurate Estimate of the Critical Exponent ν for
Self-Avoiding Walks via a Fast Implementation of the Pivot Algorithm, in:
Phys. Rev. Lett. 104 (2010), p. 055702.

8 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Time O(N) to write down an N-step walk, so this must be
best possible for pivot move?

In fact, don’t need to write down! CPU time O(N0.74)4.

Just verify that walk is self-avoiding after a pivot move,
update information about global observables.

Bookkeeping can be handled efficiently in binary tree structure
O(logN)5.

4Tom Kennedy: A faster implementation of the pivot algorithm for
self-avoiding walks, in: J. Stat. Phys. 106 (2002), pp. 407–429.

5Nathan Clisby: Accurate Estimate of the Critical Exponent ν for
Self-Avoiding Walks via a Fast Implementation of the Pivot Algorithm, in:
Phys. Rev. Lett. 104 (2010), p. 055702.

8 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Time O(N) to write down an N-step walk, so this must be
best possible for pivot move?

In fact, don’t need to write down! CPU time O(N0.74)4.

Just verify that walk is self-avoiding after a pivot move,
update information about global observables.

Bookkeeping can be handled efficiently in binary tree structure
O(logN)5.

4Tom Kennedy: A faster implementation of the pivot algorithm for
self-avoiding walks, in: J. Stat. Phys. 106 (2002), pp. 407–429.

5Nathan Clisby: Accurate Estimate of the Critical Exponent ν for
Self-Avoiding Walks via a Fast Implementation of the Pivot Algorithm, in:
Phys. Rev. Lett. 104 (2010), p. 055702.

8 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

SAW-tree representation of a walk.

9 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

SAW-tree implementation

Represent the SAW as binary trees, with “bounding box”
information for sub-walks.

Store symmetry operations in nodes of the tree.

Most operations take O(logN).

In CPU units, τint(R
2
E) = O(Np logN), with p ≈ 0.11 for

d = 3.

Global effect for local cost.

10 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

SAW-tree implementation

Represent the SAW as binary trees, with “bounding box”
information for sub-walks.

Store symmetry operations in nodes of the tree.

Most operations take O(logN).

In CPU units, τint(R
2
E) = O(Np logN), with p ≈ 0.11 for

d = 3.

Global effect for local cost.

10 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

SAW-tree implementation

Represent the SAW as binary trees, with “bounding box”
information for sub-walks.

Store symmetry operations in nodes of the tree.

Most operations take O(logN).

In CPU units, τint(R
2
E) = O(Np logN), with p ≈ 0.11 for

d = 3.

Global effect for local cost.

10 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

SAW-tree implementation

Represent the SAW as binary trees, with “bounding box”
information for sub-walks.

Store symmetry operations in nodes of the tree.

Most operations take O(logN).

In CPU units, τint(R
2
E) = O(Np logN), with p ≈ 0.11 for

d = 3.

Global effect for local cost.

10 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

SAW-tree implementation

Represent the SAW as binary trees, with “bounding box”
information for sub-walks.

Store symmetry operations in nodes of the tree.

Most operations take O(logN).

In CPU units, τint(R
2
E) = O(Np logN), with p ≈ 0.11 for

d = 3.

Global effect for local cost.

10 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Results

Simulations of SAWs with up to 1 billion monomers.

ν = 0.587 597 0(4)6.

γ = 1.156 953(1)7.

For 4-dimensional SAWs, obtained power of log correction for
〈R2

E〉 of 0.2516(14)8, versus prediction of 1/4.

Can we find a fast global move for dense polymers?

6Nathan Clisby/Burkhard Dünweg: High-precision estimate of the
hydrodynamic radius for self-avoiding walks, in: Phys. Rev. E 94 (2016),
p. 052102.

7Nathan Clisby: Scale-free Monte Carlo method for calculating the critical
exponent of self-avoiding walks, in: J. Phys. A: Math. Theor. 50 (2017),
p. 264003.

8Nathan Clisby: Monte Carlo study of four-dimensional self-avoiding walks
of up to one billion steps, in: arXiv (2017), p. 1703.10557.

11 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Results

Simulations of SAWs with up to 1 billion monomers.

ν = 0.587 597 0(4)6.

γ = 1.156 953(1)7.

For 4-dimensional SAWs, obtained power of log correction for
〈R2

E〉 of 0.2516(14)8, versus prediction of 1/4.

Can we find a fast global move for dense polymers?

6Nathan Clisby/Burkhard Dünweg: High-precision estimate of the
hydrodynamic radius for self-avoiding walks, in: Phys. Rev. E 94 (2016),
p. 052102.

7Nathan Clisby: Scale-free Monte Carlo method for calculating the critical
exponent of self-avoiding walks, in: J. Phys. A: Math. Theor. 50 (2017),
p. 264003.

8Nathan Clisby: Monte Carlo study of four-dimensional self-avoiding walks
of up to one billion steps, in: arXiv (2017), p. 1703.10557.

11 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Results

Simulations of SAWs with up to 1 billion monomers.

ν = 0.587 597 0(4)6.

γ = 1.156 953(1)7.

For 4-dimensional SAWs, obtained power of log correction for
〈R2

E〉 of 0.2516(14)8, versus prediction of 1/4.

Can we find a fast global move for dense polymers?

6Nathan Clisby/Burkhard Dünweg: High-precision estimate of the
hydrodynamic radius for self-avoiding walks, in: Phys. Rev. E 94 (2016),
p. 052102.

7Nathan Clisby: Scale-free Monte Carlo method for calculating the critical
exponent of self-avoiding walks, in: J. Phys. A: Math. Theor. 50 (2017),
p. 264003.

8Nathan Clisby: Monte Carlo study of four-dimensional self-avoiding walks
of up to one billion steps, in: arXiv (2017), p. 1703.10557.

11 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Results

Simulations of SAWs with up to 1 billion monomers.

ν = 0.587 597 0(4)6.

γ = 1.156 953(1)7.

For 4-dimensional SAWs, obtained power of log correction for
〈R2

E〉 of 0.2516(14)8, versus prediction of 1/4.

Can we find a fast global move for dense polymers?

6Nathan Clisby/Burkhard Dünweg: High-precision estimate of the
hydrodynamic radius for self-avoiding walks, in: Phys. Rev. E 94 (2016),
p. 052102.

7Nathan Clisby: Scale-free Monte Carlo method for calculating the critical
exponent of self-avoiding walks, in: J. Phys. A: Math. Theor. 50 (2017),
p. 264003.

8Nathan Clisby: Monte Carlo study of four-dimensional self-avoiding walks
of up to one billion steps, in: arXiv (2017), p. 1703.10557.

11 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Results

Simulations of SAWs with up to 1 billion monomers.

ν = 0.587 597 0(4)6.

γ = 1.156 953(1)7.

For 4-dimensional SAWs, obtained power of log correction for
〈R2

E〉 of 0.2516(14)8, versus prediction of 1/4.

Can we find a fast global move for dense polymers?

6Nathan Clisby/Burkhard Dünweg: High-precision estimate of the
hydrodynamic radius for self-avoiding walks, in: Phys. Rev. E 94 (2016),
p. 052102.

7Nathan Clisby: Scale-free Monte Carlo method for calculating the critical
exponent of self-avoiding walks, in: J. Phys. A: Math. Theor. 50 (2017),
p. 264003.

8Nathan Clisby: Monte Carlo study of four-dimensional self-avoiding walks
of up to one billion steps, in: arXiv (2017), p. 1703.10557.

11 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Hamiltonian paths

Hamiltonian paths are self-avoiding walks which visit every
vertex in a graph.

Generally take the graph to be a region of the square or
simple cubic lattices.

Model of the crystal phase of polymers.

Can extend to polymer melts which involve many paths.

Universality implies that these lattice models capture essential
physics of real dense polymer systems.

What do they look like?

12 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Hamiltonian paths

Hamiltonian paths are self-avoiding walks which visit every
vertex in a graph.

Generally take the graph to be a region of the square or
simple cubic lattices.

Model of the crystal phase of polymers.

Can extend to polymer melts which involve many paths.

Universality implies that these lattice models capture essential
physics of real dense polymer systems.

What do they look like?

12 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Hamiltonian paths

Hamiltonian paths are self-avoiding walks which visit every
vertex in a graph.

Generally take the graph to be a region of the square or
simple cubic lattices.

Model of the crystal phase of polymers.

Can extend to polymer melts which involve many paths.

Universality implies that these lattice models capture essential
physics of real dense polymer systems.

What do they look like?

12 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Hamiltonian paths

Hamiltonian paths are self-avoiding walks which visit every
vertex in a graph.

Generally take the graph to be a region of the square or
simple cubic lattices.

Model of the crystal phase of polymers.

Can extend to polymer melts which involve many paths.

Universality implies that these lattice models capture essential
physics of real dense polymer systems.

What do they look like?

12 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Hamiltonian paths

Hamiltonian paths are self-avoiding walks which visit every
vertex in a graph.

Generally take the graph to be a region of the square or
simple cubic lattices.

Model of the crystal phase of polymers.

Can extend to polymer melts which involve many paths.

Universality implies that these lattice models capture essential
physics of real dense polymer systems.

What do they look like?

12 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Hamiltonian paths

Hamiltonian paths are self-avoiding walks which visit every
vertex in a graph.

Generally take the graph to be a region of the square or
simple cubic lattices.

Model of the crystal phase of polymers.

Can extend to polymer melts which involve many paths.

Universality implies that these lattice models capture essential
physics of real dense polymer systems.

What do they look like?

12 / 28
Efficient implementation of connectivity changing moves for dense polymers

N









Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite and bond rebridging moves

One of the most effective methods for equilibrating dense
polymer systems is via connectivity changing moves. (Another
powerful technique is coarse graining.)

Three important examples are:

Backbite: choose an end, extend by a single step which will
form a loop, traverse loop in opposite direction and delete last
bond.
Rebridging.
Double rebridging.

13 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite and bond rebridging moves

One of the most effective methods for equilibrating dense
polymer systems is via connectivity changing moves. (Another
powerful technique is coarse graining.)

Three important examples are:

Backbite: choose an end, extend by a single step which will
form a loop, traverse loop in opposite direction and delete last
bond.
Rebridging.
Double rebridging.

13 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite and bond rebridging moves

One of the most effective methods for equilibrating dense
polymer systems is via connectivity changing moves. (Another
powerful technique is coarse graining.)

Three important examples are:

Backbite: choose an end, extend by a single step which will
form a loop, traverse loop in opposite direction and delete last
bond.

Rebridging.
Double rebridging.

13 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite and bond rebridging moves

One of the most effective methods for equilibrating dense
polymer systems is via connectivity changing moves. (Another
powerful technique is coarse graining.)

Three important examples are:

Backbite: choose an end, extend by a single step which will
form a loop, traverse loop in opposite direction and delete last
bond.
Rebridging.

Double rebridging.

13 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite and bond rebridging moves

One of the most effective methods for equilibrating dense
polymer systems is via connectivity changing moves. (Another
powerful technique is coarse graining.)

Three important examples are:

Backbite: choose an end, extend by a single step which will
form a loop, traverse loop in opposite direction and delete last
bond.
Rebridging.
Double rebridging.

13 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

14 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

14 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

14 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite moves for sampling Hamiltonian paths.

Each time we make a backbite move we create a loop, delete the
edge which completes the loop, and reverse the orientation of the
remaining edges of the loop.

15 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite moves for sampling Hamiltonian paths.

Each time we make a backbite move we create a loop, delete the
edge which completes the loop, and reverse the orientation of the
remaining edges of the loop.

15 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite moves for sampling Hamiltonian paths.

Each time we make a backbite move we create a loop, delete the
edge which completes the loop, and reverse the orientation of the
remaining edges of the loop.

15 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite moves for sampling Hamiltonian paths.

Each time we make a backbite move we create a loop, delete the
edge which completes the loop, and reverse the orientation of the
remaining edges of the loop.

15 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite moves for sampling Hamiltonian paths.

Each time we make a backbite move we create a loop, delete the
edge which completes the loop, and reverse the orientation of the
remaining edges of the loop.

15 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite moves for sampling Hamiltonian paths.

Each time we make a backbite move we create a loop, delete the
edge which completes the loop, and reverse the orientation of the
remaining edges of the loop.

15 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite algorithm properties

Is the algorithm correct?

Yes, it satisfies detailed balance, and ergodicity has been
verified for small lattices.
(But no proof! If you have any ideas how to prove this let me
know. See:
http://clisby.net/projects/hamiltonian_path/ )

Are the moves global?

Kind of! Global change to connectivity, but endpoint shifts by
only two steps.

Are the moves fast?

For a loop of length N, naive implementation of backbite move
takes CPU time O(N) as it requires reversal of N steps.

16 / 28
Efficient implementation of connectivity changing moves for dense polymers

N

http://clisby.net/projects/hamiltonian_path/


Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite algorithm properties

Is the algorithm correct?

Yes, it satisfies detailed balance, and ergodicity has been
verified for small lattices.

(But no proof! If you have any ideas how to prove this let me
know. See:
http://clisby.net/projects/hamiltonian_path/ )

Are the moves global?

Kind of! Global change to connectivity, but endpoint shifts by
only two steps.

Are the moves fast?

For a loop of length N, naive implementation of backbite move
takes CPU time O(N) as it requires reversal of N steps.

16 / 28
Efficient implementation of connectivity changing moves for dense polymers

N

http://clisby.net/projects/hamiltonian_path/


Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite algorithm properties

Is the algorithm correct?

Yes, it satisfies detailed balance, and ergodicity has been
verified for small lattices.
(But no proof! If you have any ideas how to prove this let me
know. See:
http://clisby.net/projects/hamiltonian_path/ )

Are the moves global?

Kind of! Global change to connectivity, but endpoint shifts by
only two steps.

Are the moves fast?

For a loop of length N, naive implementation of backbite move
takes CPU time O(N) as it requires reversal of N steps.

16 / 28
Efficient implementation of connectivity changing moves for dense polymers

N

http://clisby.net/projects/hamiltonian_path/


Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite algorithm properties

Is the algorithm correct?

Yes, it satisfies detailed balance, and ergodicity has been
verified for small lattices.
(But no proof! If you have any ideas how to prove this let me
know. See:
http://clisby.net/projects/hamiltonian_path/ )

Are the moves global?

Kind of! Global change to connectivity, but endpoint shifts by
only two steps.

Are the moves fast?

For a loop of length N, naive implementation of backbite move
takes CPU time O(N) as it requires reversal of N steps.

16 / 28
Efficient implementation of connectivity changing moves for dense polymers

N

http://clisby.net/projects/hamiltonian_path/


Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite algorithm properties

Is the algorithm correct?

Yes, it satisfies detailed balance, and ergodicity has been
verified for small lattices.
(But no proof! If you have any ideas how to prove this let me
know. See:
http://clisby.net/projects/hamiltonian_path/ )

Are the moves global?

Kind of! Global change to connectivity, but endpoint shifts by
only two steps.

Are the moves fast?

For a loop of length N, naive implementation of backbite move
takes CPU time O(N) as it requires reversal of N steps.

16 / 28
Efficient implementation of connectivity changing moves for dense polymers

N

http://clisby.net/projects/hamiltonian_path/


Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite algorithm properties

Is the algorithm correct?

Yes, it satisfies detailed balance, and ergodicity has been
verified for small lattices.
(But no proof! If you have any ideas how to prove this let me
know. See:
http://clisby.net/projects/hamiltonian_path/ )

Are the moves global?

Kind of! Global change to connectivity, but endpoint shifts by
only two steps.

Are the moves fast?

For a loop of length N, naive implementation of backbite move
takes CPU time O(N) as it requires reversal of N steps.

16 / 28
Efficient implementation of connectivity changing moves for dense polymers

N

http://clisby.net/projects/hamiltonian_path/


Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite algorithm properties

Is the algorithm correct?

Yes, it satisfies detailed balance, and ergodicity has been
verified for small lattices.
(But no proof! If you have any ideas how to prove this let me
know. See:
http://clisby.net/projects/hamiltonian_path/ )

Are the moves global?

Kind of! Global change to connectivity, but endpoint shifts by
only two steps.

Are the moves fast?

For a loop of length N, naive implementation of backbite move
takes CPU time O(N) as it requires reversal of N steps.

16 / 28
Efficient implementation of connectivity changing moves for dense polymers

N

http://clisby.net/projects/hamiltonian_path/


Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite move

For the simple cubic lattice, loops are of mean size O(N).

⇒ mean CPU time per backbite move O(N).

But, like with SAW, we don’t need to explicitly “write down”
each step of the walk, just need to be able to store
information about structure, and find neighbours of walk ends.

Use binary tree data structure with time reversal as our
symmetry operation, with bookkeeping for determining
neighbours.

Can generalise to other moves for dense polymers, e.g. bond
rebridging.

17 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite move

For the simple cubic lattice, loops are of mean size O(N).

⇒ mean CPU time per backbite move O(N).

But, like with SAW, we don’t need to explicitly “write down”
each step of the walk, just need to be able to store
information about structure, and find neighbours of walk ends.

Use binary tree data structure with time reversal as our
symmetry operation, with bookkeeping for determining
neighbours.

Can generalise to other moves for dense polymers, e.g. bond
rebridging.

17 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite move

For the simple cubic lattice, loops are of mean size O(N).

⇒ mean CPU time per backbite move O(N).

But, like with SAW, we don’t need to explicitly “write down”
each step of the walk, just need to be able to store
information about structure, and find neighbours of walk ends.

Use binary tree data structure with time reversal as our
symmetry operation, with bookkeeping for determining
neighbours.

Can generalise to other moves for dense polymers, e.g. bond
rebridging.

17 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite move

For the simple cubic lattice, loops are of mean size O(N).

⇒ mean CPU time per backbite move O(N).

But, like with SAW, we don’t need to explicitly “write down”
each step of the walk, just need to be able to store
information about structure, and find neighbours of walk ends.

Use binary tree data structure with time reversal as our
symmetry operation, with bookkeeping for determining
neighbours.

Can generalise to other moves for dense polymers, e.g. bond
rebridging.

17 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite move

For the simple cubic lattice, loops are of mean size O(N).

⇒ mean CPU time per backbite move O(N).

But, like with SAW, we don’t need to explicitly “write down”
each step of the walk, just need to be able to store
information about structure, and find neighbours of walk ends.

Use binary tree data structure with time reversal as our
symmetry operation, with bookkeeping for determining
neighbours.

Can generalise to other moves for dense polymers, e.g. bond
rebridging.

17 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Time reversal symmetry elements in the binary tree nodes.

+

+

1 2

+

3 4

1 2 3 4

+

−

1 2

+

3 4

2 1 3 4

−

−

1 2

+

3 4

4 3 1 2

18 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Time reversal symmetry elements in the binary tree nodes.

+

+

1 2

+

3 4

1 2 3 4

+

−

1 2

+

3 4

2 1 3 4

−

−

1 2

+

3 4

4 3 1 2

18 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Time reversal symmetry elements in the binary tree nodes.

+

+

1 2

+

3 4

1 2 3 4

+

−

1 2

+

3 4

2 1 3 4

−

−

1 2

+

3 4

4 3 1 2

18 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Time reversal symmetry elements in the binary tree nodes.

+

+

1 2

+

3 4

1 2 3 4

+

−

1 2

+

3 4

2 1 3 4

−

−

1 2

+

3 4

4 3 1 2

18 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Time reversal symmetry elements in the binary tree nodes.

+

+

1 2

+

3 4

1 2 3 4

+

−

1 2

+

3 4

2 1 3 4

−

−

1 2

+

3 4

4 3 1 2

18 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Time reversal symmetry elements in the binary tree nodes.

+

+

1 2

+

3 4

1 2 3 4

+

−

1 2

+

3 4

2 1 3 4

−

−

1 2

+

3 4

4 3 1 2

18 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

How do we reverse sequences of steps which don’t align with the
tree?

+

+

1 2

+

3 4

1 2 3 4

+

1 +

2 +

3 4
1 2 3 4

+

1 −

2 +

3 4
1 4 3 2

19 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

How do we reverse sequences of steps which don’t align with the
tree?

+

+

1 2

+

3 4

1 2 3 4

+

1 +

2 +

3 4
1 2 3 4

+

1 −

2 +

3 4
1 4 3 2

19 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

How do we reverse sequences of steps which don’t align with the
tree?

+

+

1 2

+

3 4

1 2 3 4

+

1 +

2 +

3 4

1 2 3 4

+

1 −

2 +

3 4
1 4 3 2

19 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

How do we reverse sequences of steps which don’t align with the
tree?

+

+

1 2

+

3 4

1 2 3 4

+

1 +

2 +

3 4
1 2 3 4

+

1 −

2 +

3 4
1 4 3 2

19 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

How do we reverse sequences of steps which don’t align with the
tree?

+

+

1 2

+

3 4

1 2 3 4

+

1 +

2 +

3 4
1 2 3 4

+

1 −

2 +

3 4

1 4 3 2

19 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

How do we reverse sequences of steps which don’t align with the
tree?

+

+

1 2

+

3 4

1 2 3 4

+

1 +

2 +

3 4
1 2 3 4

+

1 −

2 +

3 4
1 4 3 2

19 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite algorithm performance

Binary tree implementation: to reverse O(N) steps requires
O(logN) tree rotations.

For square lattice, mean size of loops is O(N≈0.75).

L = 8192, N ≈ 67 million: 360 thousand steps, versus 6.77
tree rotations.

For simple cubic lattice, mean size of loops is O(N).

L = 512, N ≈ 134 million:

Reverse 46 million steps, · · ·
· · · or perform 20.6 tree rotations.

20 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite algorithm performance

Binary tree implementation: to reverse O(N) steps requires
O(logN) tree rotations.

For square lattice, mean size of loops is O(N≈0.75).

L = 8192, N ≈ 67 million: 360 thousand steps, versus 6.77
tree rotations.

For simple cubic lattice, mean size of loops is O(N).

L = 512, N ≈ 134 million:

Reverse 46 million steps, · · ·
· · · or perform 20.6 tree rotations.

20 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite algorithm performance

Binary tree implementation: to reverse O(N) steps requires
O(logN) tree rotations.

For square lattice, mean size of loops is O(N≈0.75).

L = 8192, N ≈ 67 million: 360 thousand steps, versus 6.77
tree rotations.

For simple cubic lattice, mean size of loops is O(N).

L = 512, N ≈ 134 million:

Reverse 46 million steps, · · ·
· · · or perform 20.6 tree rotations.

20 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite algorithm performance

Binary tree implementation: to reverse O(N) steps requires
O(logN) tree rotations.

For square lattice, mean size of loops is O(N≈0.75).

L = 8192, N ≈ 67 million: 360 thousand steps, versus 6.77
tree rotations.

For simple cubic lattice, mean size of loops is O(N).

L = 512, N ≈ 134 million:

Reverse 46 million steps, · · ·
· · · or perform 20.6 tree rotations.

20 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite algorithm performance

Binary tree implementation: to reverse O(N) steps requires
O(logN) tree rotations.

For square lattice, mean size of loops is O(N≈0.75).

L = 8192, N ≈ 67 million: 360 thousand steps, versus 6.77
tree rotations.

For simple cubic lattice, mean size of loops is O(N).

L = 512, N ≈ 134 million:

Reverse 46 million steps, · · ·
· · · or perform 20.6 tree rotations.

20 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite algorithm performance

Binary tree implementation: to reverse O(N) steps requires
O(logN) tree rotations.

For square lattice, mean size of loops is O(N≈0.75).

L = 8192, N ≈ 67 million: 360 thousand steps, versus 6.77
tree rotations.

For simple cubic lattice, mean size of loops is O(N).

L = 512, N ≈ 134 million:

Reverse 46 million steps, · · ·

· · · or perform 20.6 tree rotations.

20 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Backbite algorithm performance

Binary tree implementation: to reverse O(N) steps requires
O(logN) tree rotations.

For square lattice, mean size of loops is O(N≈0.75).

L = 8192, N ≈ 67 million: 360 thousand steps, versus 6.77
tree rotations.

For simple cubic lattice, mean size of loops is O(N).

L = 512, N ≈ 134 million:

Reverse 46 million steps, · · ·
· · · or perform 20.6 tree rotations.

20 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Is the backbite move global?

When sampling Hamiltonian path configurations via backbite
moves, the endpoints only move by two steps.

Would like a truly global move.

Also, for efficiency, would like to study polymer melt with a
single long polymer. (Avoids necessity of taking two limits,
polymer length N, number of polymers k, both N, k →∞.)

What if we use periodic boundary conditions? (PBC)

21 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Is the backbite move global?

When sampling Hamiltonian path configurations via backbite
moves, the endpoints only move by two steps.

Would like a truly global move.

Also, for efficiency, would like to study polymer melt with a
single long polymer. (Avoids necessity of taking two limits,
polymer length N, number of polymers k, both N, k →∞.)

What if we use periodic boundary conditions? (PBC)

21 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Is the backbite move global?

When sampling Hamiltonian path configurations via backbite
moves, the endpoints only move by two steps.

Would like a truly global move.

Also, for efficiency, would like to study polymer melt with a
single long polymer. (Avoids necessity of taking two limits,
polymer length N, number of polymers k, both N, k →∞.)

What if we use periodic boundary conditions? (PBC)

21 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Is the backbite move global?

When sampling Hamiltonian path configurations via backbite
moves, the endpoints only move by two steps.

Would like a truly global move.

Also, for efficiency, would like to study polymer melt with a
single long polymer. (Avoids necessity of taking two limits,
polymer length N, number of polymers k, both N, k →∞.)

What if we use periodic boundary conditions? (PBC)

21 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

A single dense polymer with PBC

Can explicitly see random walk behaviour for d = 3 when we
unwind it.

Multiple copies are space filling, because in reduced
coordinates the walk must fill the original grid.

In the large N limit, do we get the same behaviour as the
polymer melt?

For a segment of length k to wind around box we expect that:

k1/2 = L = N1/d ;

⇒ k = O(N2/d).

In 2d, k = O(N) and walks wind around O(1) times. In 3d,
k = O(N2/3) and walks wind around O(N1/3) times.

22 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

A single dense polymer with PBC

Can explicitly see random walk behaviour for d = 3 when we
unwind it.

Multiple copies are space filling, because in reduced
coordinates the walk must fill the original grid.

In the large N limit, do we get the same behaviour as the
polymer melt?

For a segment of length k to wind around box we expect that:

k1/2 = L = N1/d ;

⇒ k = O(N2/d).

In 2d, k = O(N) and walks wind around O(1) times. In 3d,
k = O(N2/3) and walks wind around O(N1/3) times.

22 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

A single dense polymer with PBC

Can explicitly see random walk behaviour for d = 3 when we
unwind it.

Multiple copies are space filling, because in reduced
coordinates the walk must fill the original grid.

In the large N limit, do we get the same behaviour as the
polymer melt?

For a segment of length k to wind around box we expect that:

k1/2 = L = N1/d ;

⇒ k = O(N2/d).

In 2d, k = O(N) and walks wind around O(1) times. In 3d,
k = O(N2/3) and walks wind around O(N1/3) times.

22 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

A single dense polymer with PBC

Can explicitly see random walk behaviour for d = 3 when we
unwind it.

Multiple copies are space filling, because in reduced
coordinates the walk must fill the original grid.

In the large N limit, do we get the same behaviour as the
polymer melt?

For a segment of length k to wind around box we expect that:

k1/2 = L = N1/d ;

⇒ k = O(N2/d).

In 2d, k = O(N) and walks wind around O(1) times. In 3d,
k = O(N2/3) and walks wind around O(N1/3) times.

22 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

A single dense polymer with PBC

Can explicitly see random walk behaviour for d = 3 when we
unwind it.

Multiple copies are space filling, because in reduced
coordinates the walk must fill the original grid.

In the large N limit, do we get the same behaviour as the
polymer melt?

For a segment of length k to wind around box we expect that:

k1/2 = L = N1/d ;

⇒ k = O(N2/d).

In 2d, k = O(N) and walks wind around O(1) times. In 3d,
k = O(N2/3) and walks wind around O(N1/3) times.

22 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

40× 40 grid, with copies from winding. Random walk behaviour
competing with space-filling nature (remains disc like).

23 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

3× 3× 3 grid.

23 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

3× 3× 3 grid, with copies from winding around.

23 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

8× 8× 8 grid; random walk behaviour clearly observable.

23 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

What are backbite moves like when we use PBC?

23 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

24 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

N.B.: 2d representation is a bit misleading, because phenomenon
of random walk diffusion winding around multiple times occurs for
d > 2.

24 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

24 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

24 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

24 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

24 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

24 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

24 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

24 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

With PBC, endpoints can shift by even multiples of the boundary
length with each backbite move.

24 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

What are rebridging moves like when we use PBC?

24 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

With PBC, endpoints can shift by even multiples of the boundary
length.

25 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

With PBC, endpoints can shift by even multiples of the boundary
length.

25 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

With PBC, endpoints can shift by even multiples of the boundary
length.

25 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

With PBC, endpoints can shift by even multiples of the boundary
length.

25 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

With PBC, endpoints can shift by even multiples of the boundary
length.

25 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

With PBC, endpoints can shift by even multiples of the boundary
length.

25 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

With PBC, endpoints can shift by even multiples of the boundary
length.

25 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

With PBC, endpoints can shift by even multiples of the boundary
length.

25 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

With PBC, endpoints can shift by even multiples of the boundary
length.

25 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

←→

With PBC, endpoints can shift by even multiples of the boundary
length.

25 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

26 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

26 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

26 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Conclusion

Backbite and other connectivity changing moves can be
implemented in CPU time O(logN).

Allows for rapid sampling of dense polymers with millions of
monomers.

With PBC, backbite moves are global, in the sense that they
make macroscopic changes to position of endpoints.

What is the interplay between different timescales? Large
jumps in even multiples of the box dimensions, but slower
exploration of the box in reduced coordinates.

Key question: what is τint(R
2
E)?

In large N limit, do periodic boundary conditions for a single
polymer correspond to a single polymer in the midst of a melt?

27 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Conclusion

Backbite and other connectivity changing moves can be
implemented in CPU time O(logN).

Allows for rapid sampling of dense polymers with millions of
monomers.

With PBC, backbite moves are global, in the sense that they
make macroscopic changes to position of endpoints.

What is the interplay between different timescales? Large
jumps in even multiples of the box dimensions, but slower
exploration of the box in reduced coordinates.

Key question: what is τint(R
2
E)?

In large N limit, do periodic boundary conditions for a single
polymer correspond to a single polymer in the midst of a melt?

27 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Conclusion

Backbite and other connectivity changing moves can be
implemented in CPU time O(logN).

Allows for rapid sampling of dense polymers with millions of
monomers.

With PBC, backbite moves are global, in the sense that they
make macroscopic changes to position of endpoints.

What is the interplay between different timescales? Large
jumps in even multiples of the box dimensions, but slower
exploration of the box in reduced coordinates.

Key question: what is τint(R
2
E)?

In large N limit, do periodic boundary conditions for a single
polymer correspond to a single polymer in the midst of a melt?

27 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Conclusion

Backbite and other connectivity changing moves can be
implemented in CPU time O(logN).

Allows for rapid sampling of dense polymers with millions of
monomers.

With PBC, backbite moves are global, in the sense that they
make macroscopic changes to position of endpoints.

What is the interplay between different timescales? Large
jumps in even multiples of the box dimensions, but slower
exploration of the box in reduced coordinates.

Key question: what is τint(R
2
E)?

In large N limit, do periodic boundary conditions for a single
polymer correspond to a single polymer in the midst of a melt?

27 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Conclusion

Backbite and other connectivity changing moves can be
implemented in CPU time O(logN).

Allows for rapid sampling of dense polymers with millions of
monomers.

With PBC, backbite moves are global, in the sense that they
make macroscopic changes to position of endpoints.

What is the interplay between different timescales? Large
jumps in even multiples of the box dimensions, but slower
exploration of the box in reduced coordinates.

Key question: what is τint(R
2
E)?

In large N limit, do periodic boundary conditions for a single
polymer correspond to a single polymer in the midst of a melt?

27 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Conclusion

Backbite and other connectivity changing moves can be
implemented in CPU time O(logN).

Allows for rapid sampling of dense polymers with millions of
monomers.

With PBC, backbite moves are global, in the sense that they
make macroscopic changes to position of endpoints.

What is the interplay between different timescales? Large
jumps in even multiples of the box dimensions, but slower
exploration of the box in reduced coordinates.

Key question: what is τint(R
2
E)?

In large N limit, do periodic boundary conditions for a single
polymer correspond to a single polymer in the midst of a melt?

27 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Future work

Study bond correlations within chain. (Use periodic boundary
conditions?)

Combine Monte Carlo with molecular dynamics to study
dynamics. E.g., melts of rings are quite poorly understood,
and their dynamics are even slower than for linear polymers as
reptation is not possible.

Develop efficient algorithms for other cases, e.g. θ-transition?
Semi-dilute regime? Explicit solvent?

Continuum models.

Copolymers, star polymers, and many more applications.

28 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Alternate representation of connectivity
changing moves

Can we find additional useful moves?

Long history of algorithms to find optimal paths for the
traveling salesman problem.

Lin-Kernighan heuristic9 involves 2-opt and 3-opt connectivity
changing moves. No lattice, so these moves are represented
differently.

Hamiltonian path search problem for a graph is a special case
of the traveling salesman problem.10

Any further insight if we abstract away the underlying lattice?

9S. Lin/B. W. Kernighan: An Effective Heuristic Algorithm for the
Traveling-Salesman Problem, in: Oper. Res. 21 (1973), pp. 498–516.

10Pouya Baniasadi et al.: Deterministic Snakes and Ladders Heuristic for the
Hamiltonian cycle problem, in: Mathematical Programming Computation 6
(2014), pp. 55–75.

28 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Alternate representation of connectivity
changing moves

Can we find additional useful moves?

Long history of algorithms to find optimal paths for the
traveling salesman problem.

Lin-Kernighan heuristic9 involves 2-opt and 3-opt connectivity
changing moves. No lattice, so these moves are represented
differently.

Hamiltonian path search problem for a graph is a special case
of the traveling salesman problem.10

Any further insight if we abstract away the underlying lattice?

9S. Lin/B. W. Kernighan: An Effective Heuristic Algorithm for the
Traveling-Salesman Problem, in: Oper. Res. 21 (1973), pp. 498–516.

10Pouya Baniasadi et al.: Deterministic Snakes and Ladders Heuristic for the
Hamiltonian cycle problem, in: Mathematical Programming Computation 6
(2014), pp. 55–75.

28 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Alternate representation of connectivity
changing moves

Can we find additional useful moves?

Long history of algorithms to find optimal paths for the
traveling salesman problem.

Lin-Kernighan heuristic9 involves 2-opt and 3-opt connectivity
changing moves. No lattice, so these moves are represented
differently.

Hamiltonian path search problem for a graph is a special case
of the traveling salesman problem.10

Any further insight if we abstract away the underlying lattice?

9S. Lin/B. W. Kernighan: An Effective Heuristic Algorithm for the
Traveling-Salesman Problem, in: Oper. Res. 21 (1973), pp. 498–516.

10Pouya Baniasadi et al.: Deterministic Snakes and Ladders Heuristic for the
Hamiltonian cycle problem, in: Mathematical Programming Computation 6
(2014), pp. 55–75.

28 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Alternate representation of connectivity
changing moves

Can we find additional useful moves?

Long history of algorithms to find optimal paths for the
traveling salesman problem.

Lin-Kernighan heuristic9 involves 2-opt and 3-opt connectivity
changing moves. No lattice, so these moves are represented
differently.

Hamiltonian path search problem for a graph is a special case
of the traveling salesman problem.10

Any further insight if we abstract away the underlying lattice?

9S. Lin/B. W. Kernighan: An Effective Heuristic Algorithm for the
Traveling-Salesman Problem, in: Oper. Res. 21 (1973), pp. 498–516.

10Pouya Baniasadi et al.: Deterministic Snakes and Ladders Heuristic for the
Hamiltonian cycle problem, in: Mathematical Programming Computation 6
(2014), pp. 55–75.

28 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Alternate representation of connectivity
changing moves

Can we find additional useful moves?

Long history of algorithms to find optimal paths for the
traveling salesman problem.

Lin-Kernighan heuristic9 involves 2-opt and 3-opt connectivity
changing moves. No lattice, so these moves are represented
differently.

Hamiltonian path search problem for a graph is a special case
of the traveling salesman problem.10

Any further insight if we abstract away the underlying lattice?
9S. Lin/B. W. Kernighan: An Effective Heuristic Algorithm for the

Traveling-Salesman Problem, in: Oper. Res. 21 (1973), pp. 498–516.
10Pouya Baniasadi et al.: Deterministic Snakes and Ladders Heuristic for the

Hamiltonian cycle problem, in: Mathematical Programming Computation 6
(2014), pp. 55–75.

28 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

28 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

28 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

28 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

28 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

28 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

28 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

28 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

28 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Alternate representation of
connectivity-changing moves

Abstracts away the lattice. Instead, think about
transformations, and then determine which lattices are
commensurate with those moves.

One insight from this point of view so far: combination of
backbite and rebridging may allow preferential sampling of
moves close to the end. (Desirable for efficiency in 2d.)

Also, makes it easier to understand effect of moves, and how
to implement them, as tree representation encodes linear
information.

28 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Alternate representation of
connectivity-changing moves

Abstracts away the lattice. Instead, think about
transformations, and then determine which lattices are
commensurate with those moves.

One insight from this point of view so far: combination of
backbite and rebridging may allow preferential sampling of
moves close to the end. (Desirable for efficiency in 2d.)

Also, makes it easier to understand effect of moves, and how
to implement them, as tree representation encodes linear
information.

28 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Alternate representation of
connectivity-changing moves

Abstracts away the lattice. Instead, think about
transformations, and then determine which lattices are
commensurate with those moves.

One insight from this point of view so far: combination of
backbite and rebridging may allow preferential sampling of
moves close to the end. (Desirable for efficiency in 2d.)

Also, makes it easier to understand effect of moves, and how
to implement them, as tree representation encodes linear
information.

28 / 28
Efficient implementation of connectivity changing moves for dense polymers

N



Polymers SAWs Hamiltonian paths Fast? Global? Conclusion

Computational efficiency

d = 2, N = 109

Pr(success) = 0.0189

4-5 microseconds per pivot attempt

250 microseconds per pivot success

d = 3, N = 109

Pr(success) = 0.098

9 microseconds per pivot attempt

90 microseconds per pivot success

d = 4, N = 109

Pr(success) = 0.50

30 microseconds per pivot attempt

60 microseconds per pivot success

28 / 28
Efficient implementation of connectivity changing moves for dense polymers

N


	Polymers
	Efficient algorithms for self-avoiding walks
	Hamiltonian paths
	Fast?
	Global?
	Conclusion

