Efficient Method of Simulating with Long-Range Interactions: The Case of Coarsening in the Ising Model

Henrik Christiansen, Suman Majumder, and Wolfhard Janke

18th International NTZ-Workshop on New Developments in Computational Physics December 1, 2017

- In coarsening one is interested in the growth of ordered structures when a system is quenched from a "random" high temperature state to a "ordered" low temperature/energy state.
- The driving force is the reduction of energetically unfavored interfaces.
- This process can be quantified by calculating the average "size" l(t) or oriented regions for different times during the process.
- Even though the observed structures may be quite complex, l(t) is in most cases a simple function of time; typically a power law.

- In coarsening one is interested in the growth of ordered structures when a system is quenched from a "random" high temperature state to a "ordered" low temperature/energy state.
- The driving force is the reduction of energetically unfavored interfaces.
- This process can be quantified by calculating the average "size" l(t) of oriented regions for different times during the process.
- Even though the observed structures may be quite complex, l(t) is in most cases a simple function of time; typically a power law.

- In coarsening one is interested in the growth of ordered structures when a system is quenched from a "random" high temperature state to a "ordered" low temperature/energy state.
- The driving force is the reduction of energetically unfavored interfaces.
- This process can be quantified by calculating the average "size" l(t) of oriented regions for different times during the process.
- Even though the observed structures may be quite complex, l(t) is in most cases a simple function of time; typically a power law.

- In coarsening one is interested in the growth of ordered structures when a system is quenched from a "random" high temperature state to a "ordered" low temperature/energy state.
- The driving force is the reduction of energetically unfavored interfaces.
- This process can be quantified by calculating the average "size" l(t) of oriented regions for different times during the process.
- Even though the observed structures may be quite complex, l(t) is in most cases a simple function of time; typically a power law.

Until now, most of the studies were conducted on short-range interacting systems, because long-range interacting systems were not feasible.

The model considered here now is the long-range 2D Ising model with Hamiltonian

$$H = -\sum_{i\neq j} J(|\mathbf{r}_i - \mathbf{r}_j|) s_i s_j,$$

where

$$J(r)=\frac{1}{r^{d+\sigma}}.$$

In the simulation only local (and thereby "physical") moves are allowed \rightarrow cluster-algorithms cannot be used \rightarrow standard local Metropolis simulation

 $\rightarrow \! \mathsf{Possible}$ application of long-range Ising model in modelling of the dynamics of neuron activity patterns

Until now, most of the studies were conducted on short-range interacting systems, because long-range interacting systems were not feasible.

The model considered here now is the long-range 2D Ising model with Hamiltonian

$$H = -\sum_{i\neq j} J(|\mathbf{r}_i - \mathbf{r}_j|) s_i s_j,$$

where

$$J(r)=\frac{1}{r^{d+\sigma}}.$$

In the simulation only local (and thereby "physical") moves are allowed \rightarrow cluster-algorithms cannot be used \rightarrow standard local Metropolis simulation

ightarrowPossible application of long-range Ising model in modelling of the dynamics of neuron activity patterns

Until now, most of the studies were conducted on short-range interacting systems, because long-range interacting systems were not feasible.

The model considered here now is the long-range 2D Ising model with Hamiltonian

$$H = -\sum_{i\neq j} J(|\mathbf{r}_i - \mathbf{r}_j|) s_i s_j,$$

where

$$J(r)=\frac{1}{r^{d+\sigma}}.$$

In the simulation only local (and thereby "physical") moves are allowed \to cluster-algorithms cannot be used \to standard local Metropolis simulation

ightarrowPossible application of long-range Ising model in modelling of the dynamics of neuron activity patterns

Until now, most of the studies were conducted on short-range interacting systems, because long-range interacting systems were not feasible.

The model considered here now is the long-range 2D Ising model with Hamiltonian

$$H = -\sum_{i\neq j} J(|\mathbf{r}_i - \mathbf{r}_j|) s_i s_j,$$

where

$$J(r)=\frac{1}{r^{d+\sigma}}.$$

In the simulation only local (and thereby "physical") moves are allowed \to cluster-algorithms cannot be used \to standard local Metropolis simulation

 $\rightarrow\!\mathsf{Possible}$ application of long-range Ising model in modelling of the dynamics of neuron activity patterns

Growth of Lengthscale

For the growth of the characteristic length scale $\ell(t)$ there exists a prediction in dependence on the value of σ in $J(r)^1$:

$$\ell(t) \propto egin{cases} t^{rac{1}{1+\sigma}} & \sigma < 1 \ (t\ln(t))^{rac{1}{2}} & \sigma \equiv 1 \ t^{rac{1}{2}} & \sigma > 1 \end{cases}$$

Previous studies of this problem for the long-range lsing model relied on a cut-off $(r_c = 2.5^{6/(2+\sigma)})$ for the long-range interactions to make the problem tractable.

This, however, gives the short-range behaviour of²

$$\ell(t) \propto t^{1/2}$$

independent of σ .

¹AJ Bray and AD Rutenberg, "Growth laws for phase ordering," Phys. Rev. E 49, R27 (1994). ²J Gundh, A Singh, and RK Brojen Singh, "Ordering dynamics in neuron activity pattern model: An insight to brain functionality," PloS one 10, e0141463 (2015).

Growth of Lengthscale

For the growth of the characteristic length scale $\ell(t)$ there exists a prediction in dependence on the value of σ in $J(r)^1$:

$$\ell(t) \propto egin{cases} t^{rac{1}{1+\sigma}} & \sigma < 1 \ (t\ln(t))^{rac{1}{2}} & \sigma \equiv 1 \ t^{rac{1}{2}} & \sigma > 1 \end{cases}$$

Previous studies of this problem for the long-range lsing model relied on a cut-off ($r_c = 2.5^{6/(2+\sigma)}$) for the long-range interactions to make the problem tractable.

This, however, gives the short-range behaviour of²

$$\ell(t) \propto t^{1/2}$$

independent of σ .

¹AJ Bray and AD Rutenberg, "Growth laws for phase ordering," Phys. Rev. E 49, R27 (1994). ²J Gundh, A Singh, and RK Brojen Singh, "Ordering dynamics in neuron activity pattern model: An insight to brain functionality," PloS one 10, e0141463 (2015).

Growth of Lengthscale

For the growth of the characteristic length scale $\ell(t)$ there exists a prediction in dependence on the value of σ in $J(r)^1$:

$$\ell(t) \propto egin{cases} t^{rac{1}{1+\sigma}} & \sigma < 1 \ (t\ln(t))^{rac{1}{2}} & \sigma \equiv 1 \ t^{rac{1}{2}} & \sigma > 1 \end{cases}$$

Previous studies of this problem for the long-range lsing model relied on a cut-off ($r_c = 2.5^{6/(2+\sigma)}$) for the long-range interactions to make the problem tractable.

This, however, gives the short-range behaviour of²

$$\ell(t) \propto t^{1/2}$$

independent of σ .

 ¹AJ Bray and AD Rutenberg, "Growth laws for phase ordering," Phys. Rev. E 49, R27 (1994).
 ²J Gundh, A Singh, and RK Brojen Singh, "Ordering dynamics in neuron activity pattern

model: An insight to brain functionality," PloS one 10, e0141463 (2015).

Calculation of Local Energy Change

Short-Range Ising Model:

 $\Delta E(x,y) = -2S(x,y)J(S(x+1,y) + S(x,y+1) + S(x-1,y) + S(x,y-1))$

A Number

Long-Range Ising Model:

$$\Delta E(x,y) = -2S(x,y) \times \begin{cases} \\ J(1)(S(x+1,y) + S(x,y+1) + S(x-1,y) + S(x,y-1) \\ +J(\sqrt{2})(S(x+1,y+1) + S(x+1,y-1) + S(x-1,y+1) + S(x-1,y-1)) \\ +J(2)(S(x+2,y) + S(x,y-2) + S(x-2,y) + S(x,y+2)) \\ &+ \dots \end{cases}$$

Here $\{\dots\}$ is again a number.
 \rightarrow This number we call the *pseudo heatbath* $h(x,y)$.

Calculation of Local Energy Change

Short-Range Ising Model:

 $\Delta E(x,y) = -2S(x,y)J(\underbrace{S(x+1,y) + S(x,y+1) + S(x-1,y) + S(x,y-1)}_{(x,y)})$

A Number

Long-Range Ising Model:

$$\Delta E(x,y) = -2S(x,y) \times \begin{cases} J(1)(S(x+1,y) + S(x,y+1) + S(x-1,y) + S(x,y-1) + J(\sqrt{2})(S(x+1,y+1) + S(x+1,y-1) + S(x-1,y+1) + S(x-1,y-1)) + J(2)(S(x+2,y) + S(x,y-2) + S(x-2,y) + S(x,y+2)) + \dots \end{cases}$$
Here $\{\ldots\}$ is again a number.
 \Rightarrow This number we call the needed beatbath $h(x,y)$

Basic Idea

Using the *pseudo heatbath* h(x, y), the local energy change can now be written as

$$\Delta E(x,y) = -2S(x,y)h(x,y).$$

But how can we efficiently calculate h when using long-range interactions?

Idea: Store *pseudo heatbath* h(x, y) for every spin.

During the quench only a subset of the system changes

ightarrow update heatbath of all other spins only if current spin actually flipped

Basic Idea

Using the *pseudo heatbath* h(x, y), the local energy change can now be written as

$$\Delta E(x,y) = -2S(x,y)h(x,y).$$

But how can we efficiently calculate h when using long-range interactions?

Idea: Store *pseudo heatbath* h(x, y) for every spin.

During the quench only a subset of the system changes \rightarrow update heatbath of **all** other spins only if current spin actually flipped

Basic Idea

Using the *pseudo heatbath* h(x, y), the local energy change can now be written as

$$\Delta E(x,y) = -2S(x,y)h(x,y).$$

But how can we efficiently calculate h when using long-range interactions?

Idea: Store *pseudo heatbath* h(x, y) for every spin.

During the quench only a subset of the system changes

 \rightarrow update heatbath of all other spins only if current spin actually flipped

Algorithm

Start the simulation with an aligned lattice and calculate the starting pseudo heatbath $h(x, y) = h_0 \forall x, y$.

Set $h(x, y) = h_0 \forall (x, y)$

Then flip 50% of spins to arrive at random start configuration. Whenever a spin flipped, update the heatbath of **all** other spins.

- Choose random spin with coordinates (x, y)
- Calculate $\Delta E(x, y) = -2S(x, y)h(x, y)$
- Flip spin with Metropolis criterion: $p = \min\{1, exp(-\beta \Delta E)\}$
- If flip accepted, update heatbath h(x, y) of all other spins

Algorithm

Start the simulation with an aligned lattice and calculate the starting pseudo heatbath $h(x, y) = h_0 \forall x, y$.

Set $h(x, y) = h_0 \forall (x, y)$

Then flip 50% of spins to arrive at random start configuration. Whenever a spin flipped, update the heatbath of **all** other spins.

- Choose random spin with coordinates (x, y)
- Calculate $\Delta E(x, y) = -2S(x, y)h(x, y)$
- Flip spin with Metropolis criterion: $p = \min\{1, exp(-\beta \Delta E)\}$
- If flip accepted, update heatbath h(x, y) of all other spins

Algorithm

Start the simulation with an aligned lattice and calculate the starting pseudo heatbath $h(x, y) = h_0 \forall x, y$.

Set $h(x, y) = h_0 \forall (x, y)$

Then flip 50% of spins to arrive at random start configuration. Whenever a spin flipped, update the heatbath of **all** other spins.

- Choose random spin with coordinates (x, y)
- Calculate $\Delta E(x, y) = -2S(x, y)h(x, y)$
- Flip spin with Metropolis criterion: $p = \min\{1, exp(-\beta \Delta E)\}$
- If flip accepted, update heatbath h(x, y) of all other spins

Algorithm

Start the simulation with an aligned lattice and calculate the starting pseudo heatbath $h(x, y) = h_0 \forall x, y$.

Set $h(x, y) = h_0 \forall (x, y)$

Then flip 50% of spins to arrive at random start configuration. Whenever a spin flipped, update the heatbath of **all** other spins.

- Choose random spin with coordinates (x, y)
- Calculate $\Delta E(x, y) = -2S(x, y)h(x, y)$
- Flip spin with Metropolis criterion: $p = \min\{1, exp(-\beta \Delta E)\}$
- If flip accepted, update heatbath h(x, y) of all other spins

Runtime for different σ

Table: Table of clocks needed for a simulation of length t = 2500 (MCS) and L = 128 in both algorithm.

σ	Clocks New Algorithm (10 ⁶)	Clocks Old Algorithm (10 ⁶)
0.25	7.5 ± 0.1	1382 ± 4
0.50	8.3 ± 0.2	1386 ± 7
0.75	10.4 ± 0.5	1398 ± 6
1.00	13.2 ± 0.8	1403 ± 6
1.50	22.8 ± 1.7	1461 ± 14

Speed up of a factor of $\approx 180!$

Snapshots of Evolution

Results

Correlation Function and Structure Factor - for different times

$$C(r,t) = \langle s_i s_j \rangle - \langle s_i \rangle \langle s_j \rangle, \ S(k,t) = \int dr C(r,t) e^{ikr}$$

Extract characteristic length from intersection of C(r, t) with 0.5 Here the graphs have constant $\sigma = 0.75$.

Correlation Function and Structure Factor - for different σ

With constant time t = 100

Results

Growth of Lengthscale

In inset result with cut-off $r_c=2.5^{6/(2+\sigma)}$ and $\sigma=0.75$

Results

Finite Size Scaling

• First conformation of theoretical prediction of

$$\ell(t) = egin{cases} t^{rac{1}{1+\sigma}} & \sigma < 1 \ (t\ln(t))^{rac{1}{2}} & \sigma \equiv 1 \ t^{rac{1}{2}} & \sigma > 1 \end{cases}$$

- Introduction of (too small) cut-off changes the dynamics of the model to be effectively short-ranged
- \rightarrow the use of the full potential is made possible by the introduction of a new way of looking at the local energy change calculation
- Adaptation to models with "discrete" states quite "straight-forward", e.g. q-state Potts model or q-state Clock model

• First conformation of theoretical prediction of

$$\ell(t) = egin{cases} t^{rac{1}{1+\sigma}} & \sigma < 1 \ (t\ln(t))^{rac{1}{2}} & \sigma \equiv 1 \ t^{rac{1}{2}} & \sigma > 1 \end{cases}$$

- Introduction of (too small) cut-off changes the dynamics of the model to be effectively short-ranged
- \rightarrow the use of the full potential is made possible by the introduction of a new way of looking at the local energy change calculation
- Adaptation to models with "discrete" states quite "straight-forward", e.g. q-state Potts model or q-state Clock model

• First conformation of theoretical prediction of

$$\ell(t) = egin{cases} t^{rac{1}{1+\sigma}} & \sigma < 1 \ (t\ln(t))^{rac{1}{2}} & \sigma \equiv 1 \ t^{rac{1}{2}} & \sigma > 1 \end{cases}$$

- Introduction of (too small) cut-off changes the dynamics of the model to be effectively short-ranged
- \rightarrow the use of the full potential is made possible by the introduction of a new way of looking at the local energy change calculation
- Adaptation to models with "discrete" states quite "straight-forward", e.g. q-state Potts model or q-state Clock model

• First conformation of theoretical prediction of

$$\ell(t) = egin{cases} t^{rac{1}{1+\sigma}} & \sigma < 1 \ (t\ln(t))^{rac{1}{2}} & \sigma \equiv 1 \ t^{rac{1}{2}} & \sigma > 1 \end{cases}$$

- Introduction of (too small) cut-off changes the dynamics of the model to be effectively short-ranged
- \rightarrow the use of the full potential is made possible by the introduction of a new way of looking at the local energy change calculation
- Adaptation to models with "discrete" states quite "straight-forward", e.g. q-state Potts model or q-state Clock model

• First conformation of theoretical prediction of

$$\ell(t) = egin{cases} t^{rac{1}{1+\sigma}} & \sigma < 1 \ (t\ln(t))^{rac{1}{2}} & \sigma \equiv 1 \ t^{rac{1}{2}} & \sigma > 1 \end{cases}$$

- Introduction of (too small) cut-off changes the dynamics of the model to be effectively short-ranged
- \rightarrow the use of the full potential is made possible by the introduction of a new way of looking at the local energy change calculation
- Adaptation to models with "discrete" states quite "straight-forward", e.g. q-state Potts model or q-state Clock model