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Motivation

Coarsening

In coarsening one is interested in the
growth of ordered structures when a
system is quenched from a “random”
high temperature state to a “ordered”
low temperature/energy state.

The driving force is the reduction of
energetically unfavored interfaces.

This process can be quantified by
calculating the average “size” `(t) of
oriented regions for different times
during the process.

Even though the observed structures
may be quite complex, `(t) is in most
cases a simple function of time;
typically a power law.
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Motivation

2D Long-Range Ising model

Until now, most of the studies were conducted on short-range interacting
systems, because long-range interacting systems were not feasible.

The model considered here now is the long-range 2D Ising model with
Hamiltonian

H = −
∑
i 6=j

J(|ri − rj |)si sj ,

where

J(r) =
1

rd+σ
.

In the simulation only local (and thereby “physical”) moves are allowed
→ cluster-algorithms cannot be used → standard local Metropolis
simulation

→Possible application of long-range Ising model in modelling of the
dynamics of neuron activity patterns
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Motivation

Growth of Lengthscale

For the growth of the characteristic length scale `(t) there exists a
prediction in dependence on the value of σ in J(r)1:

`(t) ∝


t

1
1+σ σ < 1

(t ln(t))
1
2 σ ≡ 1

t
1
2 σ > 1

Previous studies of this problem for the long-range Ising model relied on
a cut-off (rc = 2.56/(2+σ)) for the long-range interactions to make the
problem tractable.
This, however, gives the short-range behaviour of2

`(t) ∝ t1/2

independent of σ.

1AJ Bray and AD Rutenberg, “Growth laws for phase ordering,” Phys. Rev. E 49, R27 (1994).
2J Gundh, A Singh, and RK Brojen Singh, “Ordering dynamics in neuron activity pattern

model: An insight to brain functionality,” PloS one 10, e0141463 (2015).
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Motivation

Calculation of Local Energy Change

Short-Range Ising Model:

∆E (x , y) = −2S(x , y)J(S(x + 1, y) + S(x , y + 1) + S(x − 1, y) + S(x , y − 1)︸ ︷︷ ︸
A Number

)

Long-Range Ising Model:

∆E (x , y) = −2S(x , y)×

{
J(1)(S(x + 1, y) + S(x , y + 1) + S(x − 1, y) + S(x , y − 1)

+J(
√

2)(S(x + 1, y + 1) + S(x + 1, y − 1) + S(x − 1, y + 1) + S(x − 1, y − 1))

+J(2)(S(x + 2, y) + S(x , y − 2) + S(x − 2, y) + S(x , y + 2))

+ . . .

}

Here

{
. . .

}
is again a number.

→ This number we call the pseudo heatbath h(x , y).
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New Algorithm

Basic Idea

Using the pseudo heatbath h(x , y), the local energy change can now be
written as

∆E (x , y) = −2S(x , y)h(x , y).

But how can we efficiently calculate h when using long-range
interactions?

Idea: Store pseudo heatbath h(x , y) for every spin.

During the quench only a subset of the system changes
→ update heatbath of all other spins only if current spin actually flipped
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New Algorithm

Algorithm

Start the simulation with an aligned lattice and calculate the starting
pseudo heatbath h(x , y) = h0∀x , y .

Set h(x , y) = h0∀(x , y)

Then flip 50% of spins to arrive at random start configuration.
Whenever a spin flipped, update the heatbath of all other spins.

In the actual simulation then:

Choose random spin with coordinates (x , y)

Calculate ∆E (x , y) = −2S(x , y)h(x , y)

Flip spin with Metropolis criterion: p = min{1, exp(−β∆E )}
If flip accepted, update heatbath h(x , y) of all other spins
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New Algorithm

Runtime for different σ

Table: Table of clocks needed for a simulation of length t = 2500 (MCS) and
L = 128 in both algorithm.

σ Clocks New Algorithm (106) Clocks Old Algorithm (106)
0.25 7.5± 0.1 1382± 4
0.50 8.3± 0.2 1386± 7
0.75 10.4± 0.5 1398± 6
1.00 13.2± 0.8 1403± 6
1.50 22.8± 1.7 1461± 14

Speed up of a factor of ≈ 180!
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Results

Snapshots of Evolution

(a) σ = 0.5
t = 100 (MCS)

(b) σ = 1.0
t = 100 (MCS)

(c) σ = 1.5
t = 100 (MCS)

(d) σ = 0.5
t = 400 (MCS)

(e) σ = 1.0
t = 400 (MCS)

(f) σ = 1.5
t = 400 (MCS)

1
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Results

Correlation Function and Structure Factor
- for different times

C (r , t) = 〈si sj〉 − 〈si 〉〈sj〉, S(k , t) =

∫
drC (r , t)e ikr
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Extract characteristic length from intersection of C (r , t) with 0.5
Here the graphs have constant σ = 0.75.
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Results

Correlation Function and Structure Factor
- for different σ

OJK: C (r , t) = 2
π sin−1(e−r

2/`(t)2

)

Porod’s law: S(k , t) ∼ k−(d+1)
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Results

Growth of Lengthscale
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t
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(t ln(t))
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2 σ ≡ 1
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1
2 σ > 1
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In inset result with cut-off rc = 2.56/(2+σ) and σ = 0.75
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Results

Finite Size Scaling

`(t) = `0 + A(t − t0)
1

1+σ ⇒ Y (y) =
`(t)

`max
, y = fs

(`max − `0)1/(1+σ)

t − t0

0.1

1

10 100

Y
(y
)

y

L = 1024
L = 512
L = 256

With σ = 0.75
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Conclusion

Concluding Remarks

First conformation of theoretical prediction of

`(t) =


t

1
1+σ σ < 1

(t ln(t))
1
2 σ ≡ 1

t
1
2 σ > 1

by using the full potential J(r) = (r (d+σ))−1 instead of a cut-off

Introduction of (too small) cut-off changes the dynamics of the
model to be effectively short-ranged

→ the use of the full potential is made possible by the introduction
of a new way of looking at the local energy change calculation

Adaptation to models with “discrete” states quite
“straight-forward”, e.g. q-state Potts model or q-state Clock model
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