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Motivation

Coarsening

@ In coarsening one is interested in the
growth of ordered structures when a |} 10 mcs
system is quenched from a “random”
high temperature state to a “ordered”
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Motivation

Coarsening

@ In coarsening one is interested in the
growth of ordered structures when a |} 10 mcs
system is quenched from a “random”
high temperature state to a “ordered”
low temperature/energy state.
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@ The driving force is the reduction of
energetically unfavored interfaces.

@ This process can be quantified by
calculating the average “size” {(t) of
oriented regions for different times
during the process.

@ Even though the observed structures
may be quite complex, £(t) is in most
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typically a power law.
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2D Long-Range Ising model

Until now, most of the studies were conducted on short-range interacting
systems, because long-range interacting systems were not feasible.

The model considered here now is the long-range 2D Ising model with
Hamiltonian
H==> J(ri—xi])sis;,
i#j

where

J(r) =

rd+o’

In the simulation only local (and thereby “physical”) moves are allowed
— cluster-algorithms cannot be used — standard local Metropolis
simulation

—Possible application of long-range Ising model in modelling of the
dynamics of neuron activity patterns
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Growth of Lengthscale

For the growth of the characteristic length scale ¢(t) there exists a
prediction in dependence on the value of o in J(r)!:

ti+o o<1
0t) < < (tn(t): o=1
£ o>1

N Bray and AD Rutenberg, “Growth laws for phase ordering,” Phys. Rev. E 49, R27 (1994).
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Growth of Lengthscale

For the growth of the characteristic length scale ¢(t) there exists a
prediction in dependence on the value of o in J(r)!:

tTHo o<1
0t) < < (tn(t): o=1
£ o>1

Previous studies of this problem for the long-range Ising model relied on
a cut-off (r. = 2.5%/(2+9)) for the long-range interactions to make the
problem tractable.

This, however, gives the short-range behaviour of?

o(t) o< t1/2

independent of o.

N Bray and AD Rutenberg, “Growth laws for phase ordering,” Phys. Rev. E 49, R27 (1994).
2J Gundh, A Singh, and RK Brojen Singh, “Ordering dynamics in neuron activity pattern
model: An insight to brain functionality,” PloS one 10, e0141463 (2015).
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A Number
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Calculation of Local Energy Change

Short-Range Ising Model:
AE(x,y) = =250, y)J(S(x +1,y) + S(x,y +1) + S(x = L,y) + S(x,y — 1))

A Number

Long-Range Ising Model:

AE(x,y) = ~25(x, ) x {

JA)(S(x+1,y)+S(x,y+1)+S(x—1,y) + S(x,y — 1)
+J(V2)(S(x+ 1,y + 1)+ S(x+1,y — 1)+ S(x—1,y +1) + S(x — 1,y — 1))
+J2)(S(x+2,y) + S(x,y —2)+ S(x — 2,y) + S(x,y + 2))

+}

Here < ... » is again a number.

— This number we call the pseudo heatbath h(x,y).
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New Algorithm

Basic Idea

Using the pseudo heatbath h(x,y), the local energy change can now be

written as
AE(Xay) = _2S(X,y)h(xa)/)'

But how can we efficiently calculate h when using long-range
interactions?
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New Algorithm

Basic Idea

Using the pseudo heatbath h(x,y), the local energy change can now be

written as
AE(Xay) = _2S(X>y)h(xa)/)'

But how can we efficiently calculate h when using long-range
interactions?

Idea: Store pseudo heatbath h(x,y) for every spin.

During the quench only a subset of the system changes
— update heatbath of all other spins only if current spin actually flipped
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Algorithm

Start the simulation with an aligned lattice and calculate the starting
pseudo heatbath h(x,y) = hoVx,y.
Set h(x,y) = hoV(x, y)
Then flip 50% of spins to arrive at random start configuration.
Whenever a spin flipped, update the heatbath of all other spins.
In the actual simulation then:

@ Choose random spin with coordinates (x, y)

o Calculate AE(x,y) = —25(x,y)h(x,y)

o Flip spin with Metropolis criterion: p = min{1, exp(—BAE)}

o If flip accepted, update heatbath h(x, y) of all other spins
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New Algorithm

Runtime for different o

Table: Table of clocks needed for a simulation of length t = 2500 (MCS) and
L =128 in both algorithm.

o Clocks New Algorithm (10%)  Clocks Old Algorithm (10°)

0.25 75+0.1 1382 +4
0.50 8.3£0.2 1386 £ 7
0.75 10.4 £0.5 1398 £ 6
1.00 13.2£0.8 1403 £ 6
1.50 228=£1.7 1461 £ 14

Speed up of a factor of ~ 180!
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Results

Snapshots of Evolution
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Correlation Function and Structure Factor
- for different times
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Extract characteristic length from intersection of C(r,t) with 0.5
Here the graphs have constant o = 0.75.
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Correlation Function and Structure Factor
- for different o

OJK: C(r,t) = 2sin~(e r/H0Y)
Porod's law: 5( t) ~ k=(d+D)
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With constant time t = 100
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Growth of Lengthscale

tTi o<1
0(t) o<} (tn(t): o=1
t2 o>1
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In inset result with cut-off r. = 2.5%/(2+9) and ¢ = 0.75
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Finite Size Scaling

E(t) (gmax _ 60)1/(14-0)
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Conclusion

Concluding Remarks

@ First conformation of theoretical prediction of

1
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t2 o>1

by using the full potential J(r) = (r(+9))~1 instead of a cut-off
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Conclusion

Concluding Remarks

@ First conformation of theoretical prediction of

1
tTio o<1
ot) =1 (th(t)): o=1
t2 o>1

by using the full potential J(r) = (r(+9))~1 instead of a cut-off

@ Introduction of (too small) cut-off changes the dynamics of the
model to be effectively short-ranged

@ — the use of the full potential is made possible by the introduction
of a new way of looking at the local energy change calculation

@ Adaptation to models with “discrete” states quite
“straight-forward”, e.g. g-state Potts model or g-state Clock model
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