ONTHE INTERFACETENSION OFTHE ISING MODEL

Elmar Bittner, University Heidelberg and Andreas Nußbaumer, University Mainz

Goal

- determine the interface tension for the two and three dimensional Ising model for various temperatures:

$$
H=-\sum_{\langle i j\rangle} s_{i} s_{j} \quad s_{i}= \pm 1
$$

$$
\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow
$$

$$
Z=\sum_{\left\{s_{i}\right\}} e^{-\beta H}=\sum_{E} \Omega(E) e^{-\beta E}
$$

Interface tension

$$
\begin{aligned}
& \sigma(T, L)=1 /\left(L^{d-1} T\right)\left(F^{\mathrm{ap}}(T, L)-F^{\mathrm{pp}}(T, L)\right) \\
& F^{B}(T, L)=-T \ln (Z)=-T \ln \left(\sum_{E} \Omega(E) e^{-\beta E}\right)
\end{aligned}
$$

two dimensional Ising model

to compare your numerical results we used

Exact finite-size scaling functions for the interfacial tensions of the Ising model on planar lattices
 M-CWu, PRE (2006) 046135

two dimensional Ising model

other definition of the interface tension:

$$
\sigma(T, L)=\frac{T}{L^{d-1}} \ln \left(\frac{P_{\max }^{(L)}}{P_{\min }^{(L)}}\right)
$$

Binder, Z. Phys. B43 (|98|) | I 9; Phys. Rev. A25 (I982) 1699

two dimensional Ising model

other definition of the interface tension:

$$
\sigma(T, L)=\frac{T}{L^{d-1}} \ln \left(\frac{P_{\max }^{(L)}}{P_{\min }^{(L)}}\right)
$$

Binder, Z. Phys. B43 (I98|) I I9; Phys. Rev. A25 (I982) I699

two dimensional Ising model

other definition of the interface tension:

$$
\sigma(T, L)=\frac{T}{L^{d-1}} \ln \left(\frac{P_{\max }^{(L)}}{P_{\min }^{(L)}}\right)
$$

Parallel Tempering Multi-Magnetic Algorithm

```
Bittner, Nußbaumer, and Janke, Nuclear Physics B 820 (2009), pp. 694
```

exponentially large barrier between the strip configuration and the droplet configuration K. Leung and R. K. P. Zia, J. Phys. A: Math. Gen. 23 (1990) 4593

two dimensional Ising model

$2 \mathrm{D}: \mathrm{T}=1.0$

(a) Droplet

(b) Stripe

Parallel Tempering Multi-Magnetic Algorithm

Bittner, Nußbaumer, and Janke, Nuclear Physics B 820 (2009), pp. 694
exponentially large barrier between the strip configuration and the droplet configuration K. Leung and R. K. P. Zia, J. Phys. A: Math. Gen. 23 (1990) 4593

three dimensional Ising model

intermediate

intermediate

intermediate

cylinder

three dimensional Ising model

other definition of the interface tension:

$$
\sigma(T, L)=\frac{T}{L^{d-1}} \ln \left(\frac{P_{\max }^{(L)}}{P_{\min }^{(L)}}\right)
$$

3d: T=3.333

two dimensional Ising model

Multicanonical Monte Carlo Algorithm

in the MuCa method one constructs auxiliary weights $W(E)$

$$
P_{\text {muca }}(E)=P_{\text {can }, \beta}(E) W(E)
$$

to construct the weights we use an accumulative recursion
defining the weight ratio $R(E)=\frac{W(E+\Delta E)}{W(E)}$

Multicanonical Monte Carlo Algorithm

I. set histogram $H(E)$ to zero, perform m update sweeps with $R(E)$ and measure $H(E)$
2. compute for each bin the statistical weight of the current run $p(E)=H(E) H(E+\Delta E) /[H(E)+H(E+\Delta E)]$
3. Accumulate statistics

$$
\begin{aligned}
p_{n+1}(E) & =p_{n}(E)+p(E) \\
\kappa(E) & =p(E) / p_{n+1}(E)
\end{aligned}
$$

4. Update weight ratios

$$
R_{\mathrm{new}}(E)=R(E)[H(E) / H(E+\Delta E)]^{\kappa(E)}
$$

set $R(E)=R_{\text {new }}(E)$ and go to ।

Multicanonical Monte Carlo Algorithm

$L=64$

two dimensional Ising model

- Get exact free energy for PBC:

Ferdinand and Fisher Phys. Rev. I 85 (1969) 832
Beale Phys. Rev. Lett. 76 (I996) 78

- Get exact free energy for APBC:

Galluccio, Loebl, and Vondrák Phys. Rev. Lett. 84 (2000) 5924
a algorithm to calculate the density of states for a finite size two-dimensional
Edwards-Anderson-Ising model with $\pm \mathrm{J}$ couplings

```
Input file for ISING
#-
# Lattice width and height:
4 4
```


\# Verticel edge weights:
-| - - - - - |
1 1 1 |
| | | |
| | | |

two dimensional Ising model

Final results for a 4×4 lattice, composed from I finite fields
--------------------------------------- E exac--------------------------

Total modulus $=$	EA7I	
Energy	$-32 \ldots$	0 states
Energy	$-28 \ldots$	0 states
Energy	$-24 \ldots$	8 states
Energy	$-20 . \ldots$	60 states
Energy	$-16 \ldots$	190 states
Energy	$-12 \ldots$	6 EO states
Energy	$-8 \ldots$	1978 states
Energy	$-4 \ldots$	38 CO states
Energy	$0 \ldots$	49 EO states
Energy	$4 \ldots$	38 CO states
Energy	$8 \ldots$	1978 states
Energy	$12 \ldots$	6 EO states
Energy	$16 \ldots$	190 states
Energy	$20 \ldots$	60 states
Energy	$24 \ldots$	8 states
Energy	$28 \ldots$	0 states
Energy	$32 \ldots$	0 states

In total ... 10000 states
Note the hexadecimal notation for the number of states.

two dimensional Ising model

Interface tension

$$
\begin{aligned}
& \sigma(T, L)=1 /\left(L^{d-1} T\right)\left(F^{\mathrm{ap}}(T, L)-F^{\mathrm{pp}}(T, L)\right) \\
& F^{B}(T, L)=-T \ln (Z)=-T \ln \left(\sum_{E} \Omega(E) e^{-\beta E}\right)
\end{aligned}
$$

two dimensional Ising model

three dimensional Ising model

three dimensional Ising model

three dimensional Ising model

three dimensional Ising model

three dimensional Ising model

two and three dimensional Ising model

$$
a_{0}^{a_{0}}+a_{1} \frac{\ln (L)}{L^{2}}+a_{2} / L^{2}
$$

two and three dimensional Ising model

$a_{0}+a_{1} \frac{\ln (L)}{L}+a_{2} / L+a_{3} / L^{2}$

two dimensional Ising model

two dimensional Ising model

three dimensional Ising model

$T_{\mathrm{R}} \approx 2.4535$

Hasenbusch, Meyer, and Pütz, Journal of Statistical Physics 85 (I996) 383
Hasenbusch and Pinn, J. Phys. A: Math. Gen. 30 (I997) 63

three dimensional Ising model

$$
T_{\mathrm{R}} \approx 2.4535
$$

Hasenbusch, Meyer, and Pütz, Journal of Statistical Physics 85 (1996) 383
Hasenbusch and Pinn, J. Phys. A: Math. Gen. 30 (I997) 63

three dimensional Ising model

$T_{\mathrm{R}} \approx 2.4535$

Hasenbusch, Meyer, and Pütz, Journal of Statistical Physics 85 (1996) 383
Hasenbusch and Pinn, J. Phys. A: Math. Gen. 30 (I997) 63

three dimensional Ising model

$T_{\mathrm{R}} \approx 2.4535$

Hasenbusch, Meyer, and Pütz, Journal of Statistical Physics 85 (1996) 383
Hasenbusch and Pinn, J. Phys. A: Math. Gen. 30 (I997) 63

three dimensional Ising model

Fig. 16. Energy and specific heat per vertex, U and C, of the F model $\left(\varepsilon_{1}=0, \varepsilon_{2}=\varepsilon>0\right)$ in zero field. The transition temperature is $T_{0}=\varepsilon /(k \ln 2)$.

E.H. Lieb, Phys.Rev. Lett. I 8 (I967) I046

Summery

- We determined the interface tension for the two and three dimensional Ising model
- We compared the FSS of the interface tension measured with different methods

Summery \& open questions

- We determined the interface tension for the two and three dimensional Ising model
- We compared the FSS of the interface tension measured with different methods
- How can we determine roughening transition?

Summery \& open questions \& outlook

$$
u=\exp (-4 \beta J)
$$

Summery \& open questions \& outlook

Partition function zeros: 3D Ising APBC $6^{3}-16^{3}$

Summery \& open questions \& outlook

Thanks for your attention!

three dimensional Ising model

a typical configuration with two 100 interfaces ($\beta=0.3$)
three dimensional Ising model

typical configurations with two $\mid 10$ and III interfaces ($\beta=0.3$)

two dimensional Ising model

- various boundary conditions (free, fixed ferromagnetic, fixed antiferromagnetic, double antiferromagnetic) see X.Wu and N. Izmailyan PRE 91, 012102 (2015)
- shape-dependent finite-size effect on a triangular lattice see X .Wu, N. Izmailian, and W. Guo PRE 87, 022124 (20I3)
- finite-size on a rectangle with free boundaries see X .Wu, N. Izmailian, and W. Guo PRE 86, 04।I49 (20I2)
- with Brascamp-Kunz Boundary Conditions see W. Janke and R. Kenna PRB 65(2002) 064IIO
- MxN with periodic boundary conditions see N. Izmailian and C-K Hu PRE (2002) 036I03

