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• determine the interface tension for the two and three 
dimensional Ising model for various temperatures:



Interface tension
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two dimensional Ising model

to compare your numerical results we used 

Exact finite-size scaling functions for the interfacial tensions 
 of the Ising model on planar lattices

M-C Wu, PRE (2006) 046135



two dimensional Ising model

other definition of the interface tension:

L=10 - 80
T=2.0

Binder, Z. Phys. B43 (1981) 119; Phys. Rev. A25 (1982) 1699 
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two dimensional Ising model

other definition of the interface tension:
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Binder, Z. Phys. B43 (1981) 119; Phys. Rev. A25 (1982) 1699 



two dimensional Ising model

other definition of the interface tension:

�(T, L) =
T

Ld�1
ln

 
P (L)
max

P (L)
min

!

Parallel Tempering Multi-Magnetic Algorithm
Bittner, Nußbaumer, and Janke, Nuclear Physics B 820 (2009), pp. 694

exponentially large barrier between the strip configuration and the droplet configuration
K. Leung and R. K. P. Zia, J. Phys. A: Math. Gen. 23 (1990) 4593 



two dimensional Ising model
(a) Droplet (b) Stripe

Figure 7: Interfacial free energy fi(θ) for a transition from droplet (a) to stripe
(b) at temperatature T = 0.3.

(a) Droplet (b) Stripe

Figure 8: Interfacial free energy fi(θ) for a transition from droplet (a) to stripe
(b) at temperatature T = 1 .0.
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2D: T=1.0

Parallel Tempering Multi-Magnetic Algorithm
Bittner, Nußbaumer, and Janke, Nuclear Physics B 820 (2009), pp. 694

exponentially large barrier between the strip configuration and the droplet configuration
K. Leung and R. K. P. Zia, J. Phys. A: Math. Gen. 23 (1990) 4593 



three dimensional Ising model
5. Geometrical transitions 1

sphere intermediate intermediate

intermediate citron intermediate (maximal area)

intermediate intermediate cylinder

Figure 5.49.: Three-dimensional configurations starting from a sphere ending in a cylinder with
various intermediate states. The horizontal line (configurations 1–5) indicates the
symmetry axis, while the crosses at the end mark the intersection with the system
boundary. The circular ring (configurations 6–9) marks the diameter R = 2/9 of the
cylinder. The sixth configuration is related to the angle φt, i.e. it is the one with
maximal area.
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5.4. Isotropic case
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Figure 5.47.: Normalized interfacial free energy f/σ in dependence of the ratio of the magneti-
sations m/m0 for a positive/negative minority droplet, cylinder and slab. In the
range −1 ≤ m/m0 < 8π/81 − 1 a positive (minority) droplet is most favourable
since it has the lowest free energy. The same is true for a (minority) cylinder with
the ratio of the magnetisations 8π/81 − 1 < m/m0 < 2π − 1. Within the range
2π − 1 < m/m0 < 1− 2/π the slab is the most favourable configuration followed by
negative (minority) cylinder for 1− 2π < m/m0 < 1− 8π/81 and finally a negative
(minority) droplet for 1− 8π/81 < m/m0 ≤ 1. At the points m/m0 = ±(1− 8π/81)
and m/m0 = ±(1− 2π) the corresponding configurations have the same free energy
which is where the transitions occur.

At this point, the free energy is (4/9)L2πσ ≈ 1.3963L2σ, which clearly smaller than the value
2L2σ at the transition point of the sphere and the slab. The value MSC

t /(m0L3) ≈ 0.6897 shows,
that the transition point is located much earlier than that of the sphere and the slab which has a
value MSP

t /(m0L3) ≈ 0.4681.
The second transition is that of the cylinder into a slab. Solving the equation for the free

energies Fc = Fp gives a cylinder radius of

RCP
t = L/π , (5.81)

and from Mc = Mp, the width of the slab is found to be

dt =
πRCP

t

L
=

L

π
. (5.82)

where Eq. (5.81) was used to eliminate RCP
t . Then, the magnetisation at the transition point can

be stated to be

MCP
t = m0L

3

(
1−

2

π

)
, (5.83)

Apparently, the fraction MCP
t /(m0L3) = 1 − 2/π is the same as M2D

t /(m0L2) for the two-
dimensional case, given in Eq. (5.7).

Naturally, all calculations can be performed for the inverse situation as well, which yields the
same values but with opposite signs. Figure. 5.47 shows the intensive free energy for the different
objects. It underlines the fact, that within a range 1− 2/π to 1− 8π/34 the cylinder has a smaller
free energy than sphere and the plane.

In the following to sections, the droplet to cylinder and the cylinder to plane transition will be
discussed in some detail.
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three dimensional Ising model

other definition of the interface tension:
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two dimensional Ising model

T=2.3



two dimensional Ising model

T=2.3
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two dimensional Ising model
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two dimensional Ising model



two dimensional Ising model



Multicanonical Monte Carlo Algorithm

in the MuCa method one constructs auxiliary weights

to construct the weights we use an accumulative recursion

defining the weight ratio

W (E)

Pmuca(E) = Pcan,�(E)W (E)

R(E) =
W (E +�E)

W (E)



Multicanonical Monte Carlo Algorithm

1. set histogram          to zero, perform     update sweeps with  
         and measure

2. compute for each bin the statistical weight of the current 
run  

3. Accumulate statistics 
 
 

4. Update weight ratios 
 
 
set                            and go to 1

H(E)
R(E)

p(E) = H(E)H(E +�E)/[H(E) +H(E +�E)]

pn+1(E) = pn(E) + p(E)

(E) = p(E)/pn+1(E)

Rnew(E) = R(E) [H(E)/H(E +�E)](E)

R(E) = Rnew(E)

H(E)
m



Multicanonical Monte Carlo Algorithm

L = 64



two dimensional Ising model

Galluccio, Loebl, and Vondrák Phys. Rev. Lett. 84 (2000) 5924

• Get exact free energy for APBC: 

• Get exact free energy for PBC: 
Ferdinand and Fisher Phys. Rev. 185 (1969) 832

Beale Phys. Rev. Lett. 76 (1996) 78

a algorithm to calculate the density of states for a finite size two-dimensional 
Edwards-Anderson-Ising model with ±J couplings

 Input file for ISING
#----------------------
# Lattice width and height:
4 4

# Verticel edge weights:
-1 -1 -1 -1
 1  1  1  1
 1  1  1  1
 1  1  1  1

#  Horizontal edge weights:
 1  1  1  1
 1  1  1  1
 1  1  1  1
 1  1  1  1



two dimensional Ising model

  Final results for a 4x4 lattice, composed from 1 finite fields
---------------------------------------g_E_exac--------------------------

Total modulus =      EA71

Energy   -32 ...        0 states
Energy   -28 ...        0 states
Energy   -24 ...        8 states
Energy   -20 ...       60 states
Energy   -16 ...      190 states
Energy   -12 ...      6E0 states
Energy    -8 ...     1978 states
Energy    -4 ...     38C0 states
Energy     0 ...     49E0 states
Energy     4 ...     38C0 states
Energy     8 ...     1978 states
Energy    12 ...      6E0 states
Energy    16 ...      190 states
Energy    20 ...       60 states
Energy    24 ...        8 states
Energy    28 ...        0 states
Energy    32 ...        0 states

In total     ...    10000 states
 Note the hexadecimal notation for the number of states.



two dimensional Ising model



Interface tension
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two dimensional Ising model



three dimensional Ising model

Tr Tc



three dimensional Ising model



three dimensional Ising model

Tr Tc



three dimensional Ising model
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three dimensional Ising model
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two and three dimensional Ising model
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Schmitz, Virnau, and Binder, Phys. Rev. Lett. 112 (2014) 125701
and PRE 90 (2014) 012128
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two and three dimensional Ising model
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Schmitz, Virnau, and Binder, Phys. Rev. Lett. 112 (2014) 125701
and PRE 90 (2014) 012128
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two dimensional Ising model
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two dimensional Ising model
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three dimensional Ising model
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TR ⇡ 2.4535
Hasenbusch, Meyer, and Pütz, Journal of Statistical Physics 85 (1996) 383
Hasenbusch and Pinn, J. Phys. A: Math. Gen. 30 (1997) 63 



three dimensional Ising model
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Hasenbusch, Meyer, and Pütz, Journal of Statistical Physics 85 (1996) 383
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three dimensional Ising model

d2�(T, L)

dT 2

1.2 1.4 1.6 1.8 2.0 2.2 2.4

-0.8

-0.6

-0.4

-0.2

4

8

10

12

16

20

24

28

32

36

40

4x8

6x12

8x16

10x20

12x24

T

TR ⇡ 2.4535
Hasenbusch, Meyer, and Pütz, Journal of Statistical Physics 85 (1996) 383
Hasenbusch and Pinn, J. Phys. A: Math. Gen. 30 (1997) 63 



three dimensional Ising model
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three dimensional Ising model

E.H. Lieb, Phys.Rev. Lett. 18 (1967) 1046



Summery

• We determined the interface tension for the two and three 
dimensional Ising model

• We compared the FSS of the interface tension measured with 
different methods



Summery & open questions

• We determined the interface tension for the two and three 
dimensional Ising model

• We compared the FSS of the interface tension measured with 
different methods

• How can we determine roughening transition?



Summery & open questions & outlook

u = exp(�4�J)



u = exp(�4�J)

Summery & open questions & outlook

ucuR



Summery & open questions & outlook

Thanks for your attention!



three dimensional Ising model

a typical configuration with two 100 interfaces (             ) � = 0.3



typical configurations with two 110 and 111 interfaces (             ) � = 0.3

three dimensional Ising model



two dimensional Ising model

• various boundary conditions (free, fixed ferromagnetic, fixed 
antiferromagnetic, double antiferromagnetic)  
see X. Wu and N. Izmailyan PRE 91, 012102 (2015)  

• shape-dependent finite-size effect on a triangular lattice 
see X. Wu, N. Izmailian, and W. Guo  PRE 87, 022124 (2013)  

• finite-size on a rectangle with free boundaries  
see X. Wu, N. Izmailian, and W. Guo  PRE 86, 041149 (2012)

• with Brascamp-Kunz Boundary Conditions 
see W. Janke and R. Kenna PRB 65(2002) 064110 

• MxN with periodic boundary conditions 
see N. Izmailian and C-K Hu PRE (2002) 036103


