Application of quantum Hamilton equations

Michael Beyer¹, Jeanette Köppe¹, Markus Patzold¹, Wilfried Grecksch², Wolfgang Paul¹

¹Institute for physics Martin-Luther-Universität Halle-Wittenberg

²Institute for mathematics Martin-Luther-Universität Halle-Wittenberg

30th Nov 2017

- Nelson's stochastic mechanics
- Stochastic Mechanics as an optimal control problem (Derivation of quantum Hamilton equations)
- Numerical algorithm
- Results for stationary problems
 - > Double-well potential
 - > Excited states
 - > Simple multidimensional systems

MICHAEL BEYER (MLU)

Quantum mechanics

Nelson's stochastic mechanics

E. NELSON, Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079 (1966)

FORWARD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS (FBSDE)

$$\begin{aligned} dx(t) &= \big[v(t, x(t)) + u(t, x(t)) \big] dt + \sigma dW(t) , \quad x(t_0) = x_0 \\ dx(t) &= \big[v(t, x(t)) - u(t, x(t)) \big] dt + \sigma dW_*(t) , \quad x(T) = x_T \end{aligned}$$

Nelson: particles subjected to conservative Brownian motion (diffusion process) where **interaction with the environment** can not be neglected

diffusion coefficient
$$\sigma^2 = \frac{\hbar}{m}$$
 $\mathbb{E}[ma] = -\partial_X V(x, t)$

• equivalent to Schrödinger equation, if wavefunction has the form

$$\psi(x, t) = \exp\left\{R(x, t) + i S(x, t)\right\}$$

NELSON'S STOCHASTIC MECHANICS

E. NELSON, Derivation of the Schrödinger equation from Newtonian mechanics. PHys. Rev. 150, 1079 (1966)

FORWARD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS (FBSDE)

$$dx(t) = [v(t, x(t)) + u(t, x(t))]dt + \sigma dW(t) , \quad x(t_0) = x_0 dx(t) = [v(t, x(t)) - u(t, x(t))]dt + \sigma dW_*(t) , \quad x(T) = x_T$$

Nelson: particles subjected to conservative Brownian motion (diffusion process) where **interaction with the environment** can not be neglected

diffusion coefficient
$$\sigma^2 = \frac{\hbar}{m}$$
 $\mathbb{E}[ma] = -\partial_x V(x, t)$

• equivalent to Schrödinger equation, if wavefunction has the form

$$\psi(x, t) = \exp\left\{R(x, t) + i S(x, t)\right\}$$

Nelson's stochastic mechanics

E. NELSON, Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079 (1966)

FORWARD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS (FBSDE)

$$dx(t) = [v(t, x(t)) + u(t, x(t))]dt + \sigma dW(t) , \quad x(t_0) = x_0$$

$$dx(t) = [v(t, x(t)) - u(t, x(t))]dt + \sigma dW_*(t) , \quad x(T) = x_T$$

Nelson: particles subjected to conservative Brownian motion (diffusion process) where **interaction with the environment** can not be neglected

diffusion coefficient
$$\sigma^2 = \frac{\hbar}{m}$$
 $\mathbb{E}[ma] = -\partial_x V(x, t)$

• equivalent to Schrödinger equation, if wavefunction has the form

$$\psi(x, t) = \exp\left\{R(x, t) + iS(x, t)\right\}$$

EXAMPLE: DOUBLE SLIT (ELECTRONS)

with known v and $u \rightarrow$ create realizations of quantum point particles N=1

EXAMPLE: DOUBLE SLIT (ELECTRONS)

with known v and $u \rightarrow$ create realizations of quantum point particles N=20

Example: DOUBLE SLIT (ELECTRONS)

with known v and $u \rightarrow$ create realizations of quantum point particles N = 400

EXAMPLE: DOUBLE SLIT (ELECTRONS)

with known *v* and $u \rightarrow$ create realizations of quantum point particles

problem: solution of Schrödinger equation is needed to get the velocities v, u

EXAMPLE: DOUBLE SLIT (ELECTRONS)

with known *v* and $u \rightarrow$ create realizations of quantum point particles

problem: solution of Schrödinger equation is needed to get the velocities v, u

STOCHASTIC OPTIMAL CONTROL PROBLEM

Hamilton's principle: extremize action functional w.r.t. x

$$J[x] = \int_0^T \mathcal{L}(t, x(t), \dot{x}(t)) dt \qquad \text{Lagrangian } \mathcal{L} = T - V$$

Quantum Hamilton principle as stoch. optimal control problem [3, 1]: maximization of cost function J with \mathcal{L} as (stochastic) Lagrange function

$$J[\mathbf{v}_q] = \mathbb{E}\left[\int_0^T \mathcal{L}(t, \mathbf{x}(t), \mathbf{v}_q(t, \mathbf{x}(t))) \mathrm{d}t + \Phi(\mathbf{x}_0)\right]$$

subject to the constraint (controlled equation)

$$dx(t) = v_q(t, x(t))dt + \frac{1}{2}\sigma((1+i)dW(t) + (1-i)W_*(t)), \quad x(0) = x_0$$

• v_q is the quantum velocity $v_q = v - iu$ and the optimal feedback control to x(t) $v_q = v_q(t, x(t))$

STOCHASTIC OPTIMAL CONTROL PROBLEM

Hamilton's principle: extremize action functional w.r.t. x $J[x] = \int_0^T \mathcal{L}(t, x(t), \dot{x}(t)) dt \qquad \text{Lagrangian } \mathcal{L} = T - V$

Quantum Hamilton principle as stoch. optimal control problem [3, 1]: maximization of cost function J with \mathcal{L} as (stochastic) Lagrange function

$$J[\mathbf{v}_{q}] = \mathbb{E}\left[\int_{0}^{T} \mathcal{L}(t, \mathbf{x}(t), \mathbf{v}_{q}(t, \mathbf{x}(t))) dt + \Phi(\mathbf{x}_{0})\right]$$

subject to the constraint (controlled equation)

$$dx(t) = v_q(t, x(t))dt + \frac{1}{2}\sigma((1+i)dW(t) + (1-i)W_*(t)), \quad x(0) = x_0$$

• v_q is the quantum velocity $v_q = v - iu$ and the optimal feedback control to x(t)

$$v_q = v_q(t, x(t))$$

QUANTUM HAMILTON EQUATIONS

J. KOEPPE et. al, Derivation and application of quantum Hamilton equations of motion. Annalen der Physik 529, 1600251 (2017)

COUPLED FORWARD BACKWARD SDEs [1]

$$dx(t) = [v(t, x) + u(t, x)]dt + \sigma dW(t)$$
$$dx(t) = [v(t, x) - u(t, x)]dt + \sigma dW_*(t)$$
$$m d[v(t, x) + u(t, x)] = \partial_x V(x, t)dt + q(t) dW_*(t)$$

• taking the classical limit $(u, \hbar/m \rightarrow 0)$

$$dx(t) = v(x, t)dt$$
, $mdv = -\partial_x V(x, t)dt$

• taking the expectation value one recovers Ehrenfest's theorem

 $d\mathbb{E}[x(t)] = \mathbb{E}[v(x, t)]dt$, $md\mathbb{E}[v(t)] = -\mathbb{E}[\partial_{\times}V(x, t)]dt$

QUANTUM HAMILTON EQUATIONS

J. KOEPPE et. al, Derivation and application of quantum Hamilton equations of motion. Annalen der Physik 529, 1600251 (2017)

COUPLED FORWARD BACKWARD SDEs [1]

$$dx(t) = [v(t, x) + u(t, x)]dt + \sigma dW(t)$$

$$dx(t) = [v(t, x) - u(t, x)]dt + \sigma dW_*(t)$$

$$m d[v(t, x) + u(t, x)] = \partial_X V(x, t)dt + q(t) dW_*(t)$$

• taking the classical limit $(u, \hbar/m \rightarrow 0)$

$$dx(t) = v(x, t)dt$$
, $mdv = -\partial_x V(x, t)dt$

taking the expectation value one recovers Ehrenfest's theorem

 $d\mathbb{E}[x(t)] = \mathbb{E}[v(x, t)]dt , \ md\mathbb{E}[v(t)] = -\mathbb{E}[\partial_x V(x, t)]dt$

TOWARDS A NUMERICAL SOLUTION

 \rightarrow problem: four unknown stochastic processes *x*, *v*, *u*, *q*

• consider stationary case $v \equiv 0$, all information is stored in u, e.g.

$$\rho(x) = \exp\left[\frac{2}{\sigma^2} \int_{\mathcal{C}} u(x') \cdot dx'\right]$$

• discretize time axis, e.g. using Euler-Mayurama Scheme

$$\begin{aligned} x^{\pi}(t_{i+1}) &= x^{\pi}(t_i) + u^{\pi}(x^{\pi}(t_i))\Delta t + \sigma \Delta W(t_i) \\ u^{\pi}(x^{\pi}(t_i)) &= u(x^{\pi}(t_{i+1})) - \partial_x V(x^{\pi}(t_i))\Delta t - q^{\pi}(t_i)\Delta W_*(t_i) \end{aligned}$$

• due to Markov property the backward equation can be calculated with the help of conditional expectation

$$u^{\pi}(x^{\pi}(t_{i})) = \mathbb{E}[u^{\pi}(x^{\pi}(t_{i+1}))|x^{\pi}(t_{i})] - \partial_{x}V(x^{\pi}(t_{i}))\Delta t$$

 this is usually the crucial point of a numerical approach when solving coupled FBSDE or BSDE, because the numerical calculation is not trivial

TOWARDS A NUMERICAL SOLUTION

 \rightarrow problem: four unknown stochastic processes x, v, u, q

• consider stationary case $v \equiv 0$, all information is stored in u, e.g.

$$\rho(x) = \exp\left[\frac{2}{\sigma^2}\int_{\mathcal{C}}u(x')\cdot \mathrm{d}x'\right]$$

• discretize time axis, e.g. using Euler-Mayurama Scheme

$$x^{\pi}(t_{i+1}) = x^{\pi}(t_i) + u^{\pi}(x^{\pi}(t_i))\Delta t + \sigma\Delta W(t_i)$$

$$u^{\pi}(x^{\pi}(t_i)) = u(x^{\pi}(t_{i+1})) - \partial_x V(x^{\pi}(t_i))\Delta t - q^{\pi}(t_i)\Delta W_*(t_i)$$

• due to Markov property the backward equation can be calculated with the help of **conditional expectation**

$$u^{\pi}(x^{\pi}(t_i)) = \mathbb{E}[u^{\pi}(x^{\pi}(t_{i+1}))|x^{\pi}(t_i)] - \partial_{\times}V(x^{\pi}(t_i))\Delta t$$

 this is usually the crucial point of a numerical approach when solving coupled FBSDE or BSDE, because the numerical calculation is not trivial

TOWARDS A NUMERICAL SOLUTION

 \rightarrow problem: four unknown stochastic processes x, v, u, q

• consider stationary case $v \equiv 0$, all information is stored in u, e.g.

$$\rho(x) = \exp\left[\frac{2}{\sigma^2}\int_{\mathcal{C}}u(x')\cdot \mathrm{d}x'\right]$$

• discretize time axis, e.g. using Euler-Mayurama Scheme

$$x^{\pi}(t_{i+1}) = x^{\pi}(t_i) + u^{\pi}(x^{\pi}(t_i))\Delta t + \sigma \Delta W(t_i)$$

$$u^{\pi}(x^{\pi}(t_i)) = u(x^{\pi}(t_{i+1})) - \partial_x V(x^{\pi}(t_i))\Delta t - q^{\pi}(t_i)\Delta W_*(t_i)$$

• due to Markov property the backward equation can be calculated with the help of conditional expectation

$$u^{\pi}(x^{\pi}(t_{i})) = \mathbb{E}[u^{\pi}(x^{\pi}(t_{i+1}))|x^{\pi}(t_{i})] - \partial_{x}V(x^{\pi}(t_{i}))\Delta t$$

• this is usually the crucial point of a numerical approach when solving coupled FBSDE or BSDE, because the numerical calculation is not trivial

ITERATION SCHEME FOR U

- o choose starting value $u(x) \equiv 0$
- 1 use u to generate N paths with n_t steps
- 2 integrate *u* backward in time
- 3 average $u(x(t_i))$ over intervals $\rightarrow u(x) = \langle u(x(t_i)) \rangle_{\text{cube}}$

4 go to 1

ITERATION SCHEME FOR U

- choose starting value $u(x) \equiv 0$
- 1 use u to generate N paths with n_t steps
- 2 integrate *u* backward in time
- 3 average $u(x(t_i))$ over intervals $\rightarrow u(x) = \langle u(x(t_i)) \rangle_{\text{cube}}$

4 go to 1

ITERATION SCHEME FOR U

- choose starting value $u(x) \equiv 0$
- 1 use u to generate N paths with n_t steps
- 2 integrate *u* backward in time
- 3 average $u(x(t_i))$ over intervals $\rightarrow u(x) = \langle u(x(t_i)) \rangle_{\text{cube}}$
- 4 go to 1

 $u^{\pi}(x^{\pi}(t_i)) = \mathbb{E}[u^{\pi}(x^{\pi}(t_{i+1}))|x^{\pi}(t_i)] - \partial_x V(x^{\pi}(t_i))\Delta t$

ITERATION SCHEME FOR U

- choose starting value $u(x) \equiv 0$
- 1 use u to generate N paths with n_t steps
- 2 integrate *u* backward in time
- 3 average $u(x(t_i))$ over intervals $\rightarrow u(x) = \langle u(x(t_i)) \rangle_{\text{cube}}$
- 4 go to 1

ITERATION SCHEME FOR U

- choose starting value $u(x) \equiv 0$
- 1 use u to generate N paths with n_t steps
- 2 integrate *u* backward in time
- 3 average $u(x(t_i))$ over intervals $\rightarrow u(x) = \langle u(x(t_i)) \rangle_{\text{cube}}$
- 4 go to 1

ITERATION SCHEME FOR U

- choose starting value $u(x) \equiv 0$
- 1 use u to generate N paths with n_t steps
- 2 integrate *u* backward in time
- 3 average $u(x(t_i))$ over intervals $\rightarrow u(x) = \langle u(x(t_i)) \rangle_{\text{cube}}$

4 go to 1

ITERATION SCHEME FOR U

- choose starting value $u(x) \equiv 0$
- 1 use u to generate N paths with n_t steps
- 2 integrate *u* backward in time
- 3 average $u(x(t_i))$ over intervals $\rightarrow u(x) = \langle u(x(t_i)) \rangle_{\text{cube}}$
- 4 go to 1

ITERATION SCHEME FOR U

- choose starting value $u(x) \equiv 0$
- 1 use u to generate N paths with n_t steps
- 2 integrate *u* backward in time
- 3 average $u(x(t_i))$ over intervals $\rightarrow u(x) = \langle u(x(t_i)) \rangle_{\text{cube}}$

4 go to 1

ITERATION SCHEME FOR U

- choose starting value $u(x) \equiv 0$
- 1 use u to generate N paths with n_t steps
- 2 integrate *u* backward in time
- 3 average $u(x(t_i))$ over intervals $\rightarrow u(x) = \langle u(x(t_i)) \rangle_{\text{cube}}$

4 go to 1

ITERATION SCHEME FOR U

- choose starting value $u(x) \equiv 0$
- 1 use u to generate N paths with n_t steps
- 2 integrate *u* backward in time
- 3 average $u(x(t_i))$ over intervals $\rightarrow u(x) = \langle u(x(t_i)) \rangle_{\text{cube}}$
- 4 go to 1

ITERATION SCHEME FOR U

- choose starting value $u(x) \equiv 0$
- 1 use u to generate N paths with n_t steps
- 2 integrate *u* backward in time
- 3 average $u(x(t_i))$ over intervals $\rightarrow u(x) = \langle u(x(t_i)) \rangle_{\text{cube}}$
- 4 go to 1

u(x) after 50 iterations

1D harmonic oscillator

$$V(x) = \frac{1}{2}m\omega^2 x^2$$

 $\begin{aligned} x^{\pi}(t_{i+1}) &= x^{\pi}(t_i) + u^{\pi}(x^{\pi}(t_i))\Delta t + \sigma\Delta W(t_i) \\ u^{\pi}(x^{\pi}(t_i)) &= \mathbb{E}[u^{\pi}(x^{\pi}(t_{i+1}))|x^{\pi}(t_i)] - \partial_x V(x^{\pi}(t_i))\Delta t \end{aligned}$

DOUBLE WELL: GROUND STATE

SUSY IN STOCHASTIC MECHANICS

e.g. for the Hamiltonian \mathcal{H}_i in cartesian coordinates

$$\boldsymbol{Q}_i^{\pm}=\mp\nabla-\boldsymbol{u}_i$$

DOUBLE WELL: EXCITED STATES

$$V(x) = \frac{V_0}{a^4} (x^2 - a^2)^2$$
 $V_0 = 1, a = 1.5$

Perturbation theory prediction for the splitting is not correct

MICHAEL BEYER (MLU)

30TH Nov 2017 12 / 15

DOUBLE WELL: EXCITED STATES

$$V(x) = \frac{V_0}{a^4} (x^2 - a^2)^2$$
 $V_0 = 1, a = 1.5$

Perturbation theory prediction for the splitting is not correct

MICHAEL BEYER (MLU)

30TH Nov 2017 12 / 15

Poster

HIGHER DIMENSIONAL SYSTEMS

SPHERICAL PROBLEMS

$$dr = \left(u_r + \frac{\sigma^2}{r}\right)dt + \sigma dW$$
$$\mu du_r = \frac{1}{r^2} \left(\hbar u_r + \partial_r V(r)\right)dt + (q d\boldsymbol{W}_*)_r$$

hydrogen atom

- Derivation of kinematic and dynamic equations for non-relativistic quantum system → quantum Hamilton equations
- Numerical algorithm to solve these stochastic equations in the stationary case without using the Schrödinger equation
- Solution to (simple) problems in higher dimensions
- Determination of all excited eigenstates of the Schrödinger equation

<u>Future work</u>

- > Solving non-stationary problems numerically
- > Extending to relativistic particles and spin

LITERATURE |

J. Köppe, W. Grecksch, and W. Paul.

Derivation and application of quantum hamilton equations of motion. *Annalen der Physik*, 529(3):1600251–n/a, 2017. 1600251.

100025

Edward Nelson.

Derivation of the schrödinger equation from newtonian mechanics. *Physical Review*, 150(4):1079, 1966.

Michele Pavon.

Hamilton's principle in stochastic mechanics. *Journal of Mathematical Physics*, 36(12):6774–6800, 1995.

Thank you for your attention!

NELSON'S STOCHASTIC MECHANICS

E. NELSON, Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079 (1966)

FORWARD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS (FBSDE)

$$dx(t) = [v(t, x(t)) + u(t, x(t))]dt + \sigma dW(t) , \quad x(t_0) = x_0 dx(t) = [v(t, x(t)) - u(t, x(t))]dt + \sigma dW_*(t) , \quad x(T) = x_T$$

where:

- $x(t) = x(t, \omega)$ is a stochastic process in $\mathbb{R}^{n \cdot d}$
- x(t) is connected to a probability distribution ρ satisfying a forward and backward Fokker-Planck equation
- W(t) is a $n \cdot d$ dimensional Wiener processes
- current velocity $v = \sigma^2 \nabla S(t, x(t))$
- $\mathbb{E}[v] = \langle \hat{p} \rangle_{\Psi}$
- osmotic velocity $u = \sigma^2 \nabla R(t, x(t)) = \sigma^2 \nabla \ln \rho(t, x(t))$
- $\mathbb{E}[u] = 0$ and $\mathbb{E}[v^2 + u^2] = \langle (\Delta \hat{p}/m)^2 \rangle_{\Psi}$