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IntroductionAnalogy between classical and quantum mechanics
Classical mechanics
Hamilton principle

S [x ] = ∫ T
0
{ 1

2 mv (t)− V (x , t)}dt

Hamilton-Jacobi equation

∂t S(x , t)− V (x , t)− 1
2m (∇x S(x , t))2 = 0

Newton’s equations

ẋ (t) = v (t) , m a(t) = F = −∇x V (x , t)
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Newton’s equations

ẋ (t) = v (t) , m a(t) = F = −∇x V (x , t)
Quantum mechanics

Schrödinger equation

i~ ∂tΨ(x , t) = [− ~2
2m ∆ + V (x , t)]Ψ(x , t)

Kinematic equations

dx (t) = [v (x , t) + u(x , t)]dt +√ ~
m dWf (t) , E[ma(t)] = Fdx (t) = [v (x , t)− u(x , t)]dt +√ ~
m dWb (t)

E. Nelson, Phys. Rev., 150: 1079-1085, 1966

v (x , t) = ∇x Im[ln Ψ]
m , u(x , t) = ~

m∇x Re [ln Ψ]

Quantum Hamilton principle
J [x ] = E

[∫ T
0
{ 1

2 m(v − iu)2 − V (x , t)}dt + Φ0(x0)]
M. Pavon, J. Math. Phys., 36: 6774-6800, 1995

Michael Beyer (MLU) QHE 30th Nov 2017 3 / 15



IntroductionAnalogy between classical and quantum mechanics
Classical mechanics
Hamilton principle

S [x ] = ∫ T
0
{ 1

2 mv (t)− V (x , t)}dt

Hamilton-Jacobi equation

∂t S(x , t)− V (x , t)− 1
2m (∇x S(x , t))2 = 0

Newton’s equations

ẋ (t) = v (t) , m a(t) = F = −∇x V (x , t)
Quantum mechanics

Schrödinger equation

i~ ∂tΨ(x , t) = [− ~2
2m ∆ + V (x , t)]Ψ(x , t)

Kinematic equations

dx (t) = [v (x , t) + u(x , t)]dt +√ ~
m dWf (t) , E[ma(t)] = Fdx (t) = [v (x , t)− u(x , t)]dt +√ ~
m dWb (t)

E. Nelson, Phys. Rev., 150: 1079-1085, 1966

v (x , t) = ∇x Im[ln Ψ]
m , u(x , t) = ~

m∇x Re [ln Ψ]

Quantum Hamilton principle
J [x ] = E

[∫ T
0
{ 1

2 m(v − iu)2 − V (x , t)}dt + Φ0(x0)]
M. Pavon, J. Math. Phys., 36: 6774-6800, 1995

Michael Beyer (MLU) QHE 30th Nov 2017 3 / 15



IntroductionAnalogy between classical and quantum mechanics
Classical mechanics
Hamilton principle

S [x ] = ∫ T
0
{ 1

2 mv (t)− V (x , t)}dt

Hamilton-Jacobi equation

∂t S(x , t)− V (x , t)− 1
2m (∇x S(x , t))2 = 0

Newton’s equations
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Brief Introduction to the formalism Nelson’s stochastic mechanicsNelson’s stochastic mechanics
E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079 (1966)

forward backward stochastic differential equations (FBSDE)dx (t) = [v (t, x (t)) + u(t, x (t))]dt + σdW (t) , x (t0) = x0dx (t) = [v (t, x (t))− u(t, x (t))]dt + σdW∗(t) , x (T ) = xT

Nelson: particles subjected to conservative Brownian motion (diffusionprocess) where interaction with the environment can not be neglecteddiffusion coefficient σ2 = ~
m E[ma] = −∂xV (x , t)

equivalent to Schrödinger equation, if wavefunction has the form
ψ(x , t) = exp{R(x , t) + i S(x , t)}
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Brief Introduction to the formalism Nelson’s stochastic mechanicsExample: double slit (electrons)
with known v and u → create realizations of quantum point particles

N = 1
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Brief Introduction to the formalism Quantum Hamilton principle as control problemStochastic optimal control problem
Hamilton’s principle: extremize action functional w. r. t. x

J [x ] = ∫ T

0
L(t, x (t), ẋ (t)) dt Lagrangian L = T − V

Quantum Hamilton principle as stoch. optimal control problem [3, 1]:maximization of cost function J with L as (stochastic) Lagrange function
J [vq ] = E

[∫ T

0
L(t, x (t), vq(t, x (t)))dt + Φ(x0)]

subject to the constraint (controlled equation)
dx (t) = vq(t, x (t))dt + 1

2σ
((1 + i)dW (t) + (1− i)W∗(t)) , x (0) = x0

vq is the quantum velocity vq = v − iu and the optimal feedback control to x (t)
vq = vq(t, x (t))
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Brief Introduction to the formalism Quantum Hamilton principle as control problemQuantum Hamilton equations
J. Koeppe et. al, Derivation and application of quantum Hamilton equations of motion. Annalen der Physik 529, 1600251 (2017)

coupled forward backward SDEs [1]
dx (t) = [v (t, x ) + u(t, x )]dt + σdW (t)dx (t) = [v (t, x )− u(t, x )]dt + σdW∗(t)

m d[v (t, x ) + u(t, x )] = ∂xV (x , t)dt + q(t) dW∗(t)
taking the classical limit (u, ~/m→ 0)dx (t) = v (x , t)dt , mdv = −∂x V (x , t)dttaking the expectation value one recovers Ehrenfest’s theoremdE[x (t)] = E[v (x , t)]dt , mdE[v (t)] = −E[∂x V (x , t)]dt
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Numerical approachTowards a numerical solution
→ problem: four unknown stochastic processes x , v , u, qconsider stationary case v ≡ 0, all information is stored in u, e. g.

ρ(x ) = exp [ 2
σ2

∫
C

u(x ′) · dx ′
]

discretize time axis, e. g. using Euler-Mayurama Scheme
xπ (ti+1) = xπ (ti ) + uπ (xπ (ti ))∆t + σ∆W (ti )

uπ (xπ (ti )) = u(xπ (ti+1))− ∂x V (xπ (ti ))∆t − qπ (ti )∆W∗(ti )
due to Markov property the backward equation can be calculated withthe help of conditional expectation

uπ (xπ (ti )) = E[uπ (xπ (ti+1))|xπ (ti )]− ∂x V (xπ (ti ))∆t

this is usually the crucial point of a numerical approach when solvingcoupled FBSDE or BSDE, because the numerical calculation is not trivial
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Numerical approachIteration scheme
iteration scheme for u0 choose starting value u (x ) ≡ 01 use u to generate N paths with nt steps2 integrate u backward in time3 average u(x (ti )) over intervals → u (x ) = 〈u(x (ti ))〉cube4 go to 1

1D harmonic oscillator
V (x ) = 1

2 mω2x2

xπ (ti+1) = xπ (ti ) + uπ (xπ (ti ))∆t + σ∆W (ti )
uπ (xπ (ti )) = E[uπ (xπ (ti+1))|xπ (ti )]− ∂x V (xπ (ti ))∆t

x (a.u.)
4− 2− 0 2 4
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Numerical resultsDouble well: ground state V (x ) = V0
a4 (x2 − a2)2 V0 = 2, a = 1.5

 0

 0.1

 0.2

 0.3

 0.4

-4 -3 -2 -1  0  1  2  3  4

 P
ro

ba
bi

lit
y 

de
ns

ity
 p

(x
)

Position x

Numerov
Opt. Cont.

 0

 1

 2

 3

 4

-2  0  2

V(x)

Michael Beyer (MLU) QHE 30th Nov 2017 10 / 15



Numerical results Excited states with SUSYSUSY in stochastic mechanics
H0 = Q+

0 ·Q−0 + E0 → H1 = Q−0 ◦Q+
0

e. g. for the Hamiltonian Hi in cartesian coordinates
Q±i = ∓∇− u i
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Numerical results Excited states with SUSYDouble well: excited states V (x ) = V0
a4 (x2 − a2)2 V0 = 1, a = 1.5

Tunnel splitting is given by the mean first passage timePerturbation theory prediction for the splitting is not correct
}
→ Poster
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Numerical results Multidimensional systemsHigher dimensional systems
2D isotropic harmonic oscillator
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Summary
Derivation of kinematic and dynamic equations for non-relativisticquantum system → quantum Hamilton equationsNumerical algorithm to solve these stochastic equations in the stationarycase without using the Schrödinger equationSolution to (simple) problems in higher dimensionsDetermination of all excited eigenstates of the Schrödinger equation

Future work
> Solving non-stationary problems numerically> Extending to relativistic particles and spin
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Thank you for your attention!
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Nelson’s stochastic mechanics
E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079 (1966)

forward backward stochastic differential equations (FBSDE)dx (t) = [v (t, x (t)) + u(t, x (t))]dt + σdW (t) , x (t0) = x0dx (t) = [v (t, x (t))− u(t, x (t))]dt + σdW∗(t) , x (T ) = xTwhere:- x (t) = x (t, ω) is a stochastic process in Rn·d- x (t) is connected to a probability distribution ρ satisfying a forward andbackward Fokker-Planck equation- W (t) is a n · d dimensional Wiener processes- current velocity v = σ2∇S(t, x (t))- E[v ] = 〈p̂〉Ψ- osmotic velocity u = σ2∇R(t, x (t)) = σ2∇ln ρ(t, x (t))- E[u] = 0 and E
[
v2 + u2] = 〈 (∆p̂/m)2 〉Ψ

Michael Beyer (MLU) QHE 30th Nov 2017 15 / 15


	Introduction
	Brief Introduction to the formalism
	Nelson's stochastic mechanics
	Quantum Hamilton principle as control problem

	Numerical approach
	Numerical results
	Excited states with SUSY
	Multidimensional systems

	 
	Literature
	 

