Application of quantum Hamilton equations

Michael Beyer ${ }^{1}$, Jeanette Köppe ${ }^{1}$, Markus Patzold ${ }^{1}$, Wilfried Grecksch ${ }^{2}$, Wolfgang Paul ${ }^{1}$
${ }^{1}$ Institute for physics
Martin-Luther-Universität Halle-Wittenberg
${ }^{2}$ Institute for mathematics
Martin-Luther-Universität Halle-Wittenberg
$30^{\text {th }}$ Nov 2017

Outline

- Nelson's stochastic mechanics
- Stochastic Mechanics as an optimal control problem (Derivation of quantum Hamilton equations)
- Numerical algorithm
- Results for stationary problems
$>$ Double-well potential
$>$ Excited states
$>$ Simple multidimensional systems

ANALOGY BETWEEN CLASSICAL AND QUANTUM MECHANICS

Classical mechanics

Analogy between classical and quantum mechanics

Classical mechanics

Quantum mechanics

| Quanturn Hamilton principle |
| :--- | :--- |
| $J[x]=\mathbb{E}\left[\int_{0}^{T}\left\{\frac{1}{2} m(v-i u)^{2}-V(x, t)\right\} d t+\phi_{0}\left(x_{0}\right)\right]$ |
| M. Pavan. J. Math. Phys. 36: $6774-6800,1995$ |\quad| Schrödinger equation |
| :--- |
| $\mathrm{i} \hbar \partial_{t} \Psi(x, t)=\left[-\frac{\hbar^{2}}{2 m} \Delta+V(x, t)\right] \Psi(x, t)$ |

Analogy between classical and quantum mechanics

Classical mechanics

Quantum mechanics

$$
\begin{aligned}
& \text { Schrödinger equation } \\
& \text { i } \hbar \partial_{t} \Psi(x, t)=\left[-\frac{\hbar^{2}}{2 m} \Delta+V(x, t)\right] \Psi(x, t)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Kinematic equations } \\
& \mathrm{d} x(t)=[v(x, t)+u(x, t)] \mathrm{d} t+\sqrt{\frac{\hbar}{m}} \mathrm{~d} W_{f}(t), \quad \mathbb{E}[m a(t)]=F \\
& \mathrm{~d} x(t)=[v(x, t)-u(x, t)] \mathrm{d} t+\sqrt{\frac{\hbar}{m}} \mathrm{~d} W_{b}(t) \\
& \text { E. Nelson, Phys. Rev., 150: 1079-1085, 1966 }
\end{aligned}
$$

Analogy between classical and quantum mechanics

Classical mechanics

Quantum mechanics

$$
\begin{aligned}
& \text { Quantum Hamilton principle } \\
& J[x]=\mathbb{E}\left[\int_{0}^{T}\left\{\frac{1}{2} m(v-\mathrm{i} u)^{2}-V(x, t)\right\} \mathrm{d} t+\Phi_{0}\left(x_{0}\right)\right] \\
& \text { M. Pavon, J. Math. Phys., 36: 6774-6800, } 1995
\end{aligned} \quad \begin{aligned}
& \text { Kinematic equations } \\
& \mathrm{d} x(t)=[v(x, t)+u(x, t)] \mathrm{d} t+\sqrt{\frac{\hbar}{m}} \mathrm{~d} W_{f}(t), \quad \mathbb{E}[m a(t)]=F \\
& \mathrm{~d} x(t)=[v(x, t)-u(x, t)] \mathrm{d} t+\sqrt{\frac{\hbar}{m}} \mathrm{~d} W_{b}(t) \\
& \text { E. Nelson, Phys. Rev., 150: 1079-1085, 1966 }
\end{aligned}
$$

Schrödinger equation

$\mathrm{i} \hbar \partial_{t} \Psi(x, t)=\left[-\frac{\hbar^{2}}{2 m} \Delta+V(x, t)\right] \Psi(x, t)$

Nelson's stochastic mechanics

E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079 (1966)

FORWARD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS (FBSDE)

$$
\begin{array}{ll}
\mathrm{d} x(t)=[v(t, x(t))+u(t, x(t))] \mathrm{d} t+\sigma \mathrm{d} W(t), & x\left(t_{0}\right)=x_{0} \\
\mathrm{~d} x(t)=[v(t, x(t))-u(t, x(t))] \mathrm{d} t+\sigma \mathrm{d} W_{*}(t), & x(T)=x_{T}
\end{array}
$$

Nelson: particles subjected to conservative Brownian motion (diffusion process) where interaction with the environment can not be neglected

$$
\text { diffusion coefficient } \quad \sigma^{2}=\frac{\hbar}{m} \quad \mathbb{W}[m a]=-\partial \quad V(x, t)
$$

- equivalent to Schrödinger equation, if wavefunction has the form

$$
w(x, t)=\operatorname{exn}\{R(x, t)+i S(x, t)\}
$$

NELSON'S STOCHASTIC MECHANICS

E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079 (1966)

FORWARD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS (FBSDE)

$$
\begin{array}{ll}
\mathrm{d} x(t)=[v(t, x(t))+u(t, x(t))] \mathrm{d} t+\sigma \mathrm{d} W(t), & x\left(t_{0}\right)=x_{0} \\
\mathrm{~d} x(t)=[v(t, x(t))-u(t, x(t))] \mathrm{d} t+\sigma \mathrm{d} W_{*}(t), & x(T)=x_{T}
\end{array}
$$

Nelson: particles subjected to conservative Brownian motion (diffusion process) where interaction with the environment can not be neglected

$$
\text { diffusion coefficient } \quad \sigma^{2}=\frac{\hbar}{m} \quad \mathbb{E}[m a]=-\partial_{x} V(x, t)
$$

- equivalent to Schrödinger equation, if wavefunction has the form

Nelson's stochastic mechanics

E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079 (1966)

FORWARD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS (FBSDE)

$$
\begin{array}{ll}
\mathrm{d} x(t)=[v(t, x(t))+u(t, x(t))] \mathrm{d} t+\sigma \mathrm{d} W(t), & x\left(t_{0}\right)=x_{0} \\
\mathrm{~d} x(t)=[v(t, x(t))-u(t, x(t))] \mathrm{d} t+\sigma \mathrm{d} W_{*}(t), & x(T)=x_{T}
\end{array}
$$

Nelson: particles subjected to conservative Brownian motion (diffusion process) where interaction with the environment can not be neglected

$$
\text { diffusion coefficient } \quad \sigma^{2}=\frac{\hbar}{m} \quad \mathbb{E}[m a]=-\partial_{x} V(x, t)
$$

- equivalent to Schrödinger equation, if wavefunction has the form

$$
\psi(x, t)=\exp \{R(x, t)+i S(x, t)\}
$$

Example: double slit (ELECTRONS)

with known v and $u \rightarrow$ create realizations of quantum point particles

$$
N=1
$$

Example: double slit (electrons)

with known v and $u \rightarrow$ create realizations of quantum point particles

$$
N=20
$$

Example: double slit (electrons)

with known v and $u \rightarrow$ create realizations of quantum point particles

$$
N=400
$$

Example: double slit (electrons)

with known v and $u \rightarrow$ create realizations of quantum point particles

$$
N=800
$$

problem: solution of Schrödinger equation is needed to get the velocities v, u

Example: double slit (ELECTRONS)

with known v and $u \rightarrow$ create realizations of quantum point particles

$$
N=800
$$

detectorposition (a.u.)

problem: solution of Schrödinger equation is needed to get the velocities v, u

Stochastic optimal control problem

Hamilton's principle: extremize action functional w. r.t. x

$$
J[x]=\int_{0}^{T} \mathcal{L}(t, x(t), \dot{x}(t)) d t \quad \text { Lagrangian } \quad \mathcal{L}=T-V
$$

Quantum Hamilton principle as stoch. optimal control problem [3, 1]:

- maximization of cost function J with \mathcal{L} as (stochastic) Lagrange function

$$
J\left[v_{q}\right]=\mathbb{E}\left[\int_{0}^{T} \mathcal{L}\left(t, x(t), v_{q}(t, x(t))\right) d t+\Phi\left(x_{0}\right)\right]
$$

- subject to the constraint (controlled equation)

$$
\left.d x^{\prime}(t)=v_{q}(t, x(t)) d t+\frac{1}{2} \sigma^{\prime}(1+i) d W(t)+(1-i) W_{\&}(t)\right) \quad x(0)=x_{0}
$$

- v_{q} is the quantum velocity $v_{q}=v-i u$ and the optimal feedback control to $x(t)$

$$
v_{q}=v_{q}(t, x(t))
$$

Stochastic optimal control problem

Hamilton's principle: extremize action functional w. r.t. x

$$
J[x]=\int_{0}^{T} \mathcal{L}(t, x(t), \dot{x}(t)) d t \quad \text { Lagrangian } \quad \mathcal{L}=T-V
$$

Quantum Hamilton principle as stoch. optimal control problem [3, 1]:

- maximization of cost function J with \mathcal{L} as (stochastic) Lagrange function

$$
J\left[v_{q}\right]=\mathbb{E}\left[\int_{0}^{T} \mathcal{L}\left(t, x(t), v_{q}(t, x(t))\right) \mathrm{d} t+\Phi\left(x_{0}\right)\right]
$$

- subject to the constraint (controlled equation)

$$
\mathrm{d} x(t)=v_{q}(t, x(t)) \mathrm{d} t+\frac{1}{2} \sigma\left((1+\mathrm{i}) \mathrm{d} W(t)+(1-\mathrm{i}) W_{*}(t)\right), \quad x(0)=x_{0}
$$

- v_{q} is the quantum velocity $v_{q}=v-i u$ and the optimal feedback control to $x(t)$

$$
v_{q}=v_{q}(t, x(t))
$$

Quantum Hamilton equations

J. Koeppe et. al, Derivation and application of quantum Hamilton equations of motion. Annalen der Physik 529, 1600251 (2017)

COUPLED FORWARD BACKWARD SDEs [1]

$$
\begin{gathered}
\mathrm{d} x(t)=[v(t, x)+u(t, x)] \mathrm{d} t+\sigma \mathrm{d} W(t) \\
\mathrm{d} x(t)=[v(t, x)-u(t, x)] \mathrm{d} t+\sigma \mathrm{d} W_{*}(t) \\
m \mathrm{~d}[v(t, x)+u(t, x)]=\partial_{x} V(x, t) \mathrm{d} t+q(t) \mathrm{d} W_{*}(t)
\end{gathered}
$$

- taking the classical limit $(u, \hbar / m \rightarrow 0)$

$$
d x(t)=v(x, t) d t, \quad m d v=-\partial_{x} V(x, t) d t
$$

- taking the expectation value one recovers Ehrenfest's theorem

$$
d \mathbb{T}[x(t)]=\mathbb{Q}[v(x, t)] d t, \quad \operatorname{md} \mathbb{T}[v(t)]=-\mathbb{E}\left[\partial_{x} v(x, t)\right] d t
$$

Quantum Hamilton equations

J. Koeppe et. al, Derivation and application of quantum Hamilton equations of motion. Annalen der Physik 529, 1600251 (2017)

COUPLED FORWARD BACKWARD SDES [1]

$$
\begin{aligned}
& \mathrm{d} x(t)=[v(t, x)+u(t, x)] \mathrm{d} t+\sigma \mathrm{d} W(t) \\
& \mathrm{d} x(t)=[v(t, x)-u(t, x)] \mathrm{d} t+\sigma \mathrm{d} W_{*}(t) \\
& m \mathrm{~d}[v(t, x)+u(t, x)]=\partial_{x} V(x, t) \mathrm{d} t+q(t) \mathrm{d} W_{*}(t)
\end{aligned}
$$

- taking the classical limit $(u, \hbar / m \rightarrow 0)$

$$
\mathrm{d} x(t)=v(x, t) \mathrm{d} t, \quad m \mathrm{~d} v=-\partial_{x} V(x, t) \mathrm{d} t
$$

- taking the expectation value one recovers Ehrenfest's theorem

$$
\mathrm{d} \mathbb{E}[x(t)]=\mathbb{E}[v(x, t)] \mathrm{d} t, \quad m \mathrm{~d} \mathbb{E}[v(t)]=-\mathbb{E}\left[\partial_{x} V(x, t)\right] \mathrm{d} t
$$

Towards a numerical solution

\rightarrow problem: four unknown stochastic processes x, v, u, q

- consider stationary case $v \equiv 0$, all information is stored in u, e.g.

$$
\rho(x)=\exp \left[\frac{2}{\sigma^{2}} \int_{\mathcal{C}} u\left(x^{\prime}\right) \cdot \mathrm{d} x^{\prime}\right]
$$

- discretize time axis, e.g. using Euler-Mayurama Scheme

$$
\begin{aligned}
x^{\pi}\left(t_{i+1}\right) & =x^{\pi}\left(t_{i}\right)+u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right) \Delta t+\sigma \Delta W\left(t_{i}\right) \\
u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right) & =u\left(x^{\pi}\left(t_{i+1}\right)\right)-\partial_{x} V\left(x^{\pi}\left(t_{i}\right)\right) \Delta t-q^{\pi}\left(t_{i}\right) \Delta W_{*}\left(t_{i}\right)
\end{aligned}
$$

- due to Markov property the backward equation can be calculated with the help of conditional expectation

$$
u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right)=\mathbb{E}\left[u^{\pi}\left(x^{\pi}\left(t_{i+1}\right)\right) \mid x^{\pi}\left(t_{i}\right)\right]-\partial_{x} V\left(x^{\pi}\left(t_{i}\right)\right) \Delta t
$$

- this is usually the crucial point of a numerical approach when solving coupled FBSDE or BSDE, because the numerical calculation is not trivial

Towards a numerical solution

\rightarrow problem: four unknown stochastic processes x, v, u, q

- consider stationary case $v \equiv 0$, all information is stored in u, e.g.

$$
\rho(x)=\exp \left[\frac{2}{\sigma^{2}} \int_{\mathcal{C}} u\left(x^{\prime}\right) \cdot \mathrm{d} x^{\prime}\right]
$$

- discretize time axis, e.g. using Euler-Mayurama Scheme

$$
\begin{aligned}
x^{\pi}\left(t_{i+1}\right) & =x^{\pi}\left(t_{i}\right)+u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right) \Delta t+\sigma \Delta W\left(t_{i}\right) \\
u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right) & =u\left(x^{\pi}\left(t_{i+1}\right)\right)-\partial_{x} V\left(x^{\pi}\left(t_{i}\right)\right) \Delta t-q^{\pi}\left(t_{i}\right) \Delta W_{*}\left(t_{i}\right)
\end{aligned}
$$

- due to Markov property the backward equation can be calculated with the help of conditional expectation
- this is usually the crucial point of a numerical approach when solving coupled FBSDE or BSDE, because the numerical calculation is not trivial

TOWARDS A NUMERICAL SOLUTION

\rightarrow problem: four unknown stochastic processes x, v, u, q

- consider stationary case $v \equiv 0$, all information is stored in u, e.g.

$$
\rho(x)=\exp \left[\frac{2}{\sigma^{2}} \int_{\mathcal{C}} u\left(x^{\prime}\right) \cdot \mathrm{d} x^{\prime}\right]
$$

- discretize time axis, e.g. using Euler-Mayurama Scheme

$$
\begin{aligned}
x^{\pi}\left(t_{i+1}\right) & =x^{\pi}\left(t_{i}\right)+u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right) \Delta t+\sigma \Delta W\left(t_{i}\right) \\
u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right) & =u\left(x^{\pi}\left(t_{i+1}\right)\right)-\partial_{x} V\left(x^{\pi}\left(t_{i}\right)\right) \Delta t-q^{\pi}\left(t_{i}\right) \Delta W_{*}\left(t_{i}\right)
\end{aligned}
$$

- due to Markov property the backward equation can be calculated with the help of conditional expectation

$$
u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right)=\mathbb{E}\left[u^{\pi}\left(x^{\pi}\left(t_{i+1}\right)\right) \mid x^{\pi}\left(t_{i}\right)\right]-\partial_{x} V\left(x^{\pi}\left(t_{i}\right)\right) \Delta t
$$

- this is usually the crucial point of a numerical approach when solving coupled FBSDE or BSDE, because the numerical calculation is not trivial

Iteration scheme

ITERATION SCHEME FOR u

0 choose starting value $u(x) \equiv 0$
1 use u to generate N paths with n_{t} steps
2 integrate u backward in time
3 average $u\left(x\left(t_{i}\right)\right)$ over intervals $\rightarrow u(x)=\left\langle u\left(x\left(t_{i}\right)\right)\right\rangle_{\text {cube }}$
4 go to 1

1D harmonic oscillator

$$
V(x)=\frac{1}{2} m \omega^{2} x^{2}
$$

$x^{\pi}\left(t_{i+1}\right)=x^{\pi}\left(t_{i}\right)+u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right) \Delta t+\sigma \Delta W\left(t_{i}\right)$
$u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right)=\mathbb{E}\left[u^{\pi}\left(x^{\pi}\left(t_{i+1}\right)\right) \mid x^{\pi}\left(t_{i}\right)\right]-\partial_{x} V\left(x^{\pi}\left(t_{i}\right)\right) \Delta t$

Iteration scheme

ITERATION SCHEME FOR u

o choose starting value $u(x) \equiv 0$
1 use u to generate N paths with n_{t} steps
2 integrate u backward in time
3 average $u\left(x\left(t_{i}\right)\right)$ over intervals $\rightarrow u(x)=\left\langle u\left(x\left(t_{i}\right)\right)\right\rangle_{\text {cube }}$
4 go to 1

1D harmonic oscillator

$$
V(x)=\frac{1}{2} m \omega^{2} x^{2}
$$

$x^{\pi}\left(t_{i+1}\right)=x^{\pi}\left(t_{i}\right)+u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right) \Delta t+\sigma \Delta W\left(t_{i}\right)$
$u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right)=\mathbb{E}\left[u^{\pi}\left(x^{\pi}\left(t_{i+1}\right)\right) \mid x^{\pi}\left(t_{i}\right)\right]-\partial_{x} V\left(x^{\pi}\left(t_{i}\right)\right) \Delta t$

Iteration scheme

ITERATION SCHEME FOR u

o choose starting value $u(x) \equiv 0$
1 use u to generate N paths with n_{t} steps
2 integrate u backward in time
3 average $u\left(x\left(t_{i}\right)\right)$ over intervals $\rightarrow u(x)=\left\langle u\left(x\left(t_{i}\right)\right)\right\rangle_{\text {cube }}$
4 go to 1

1D harmonic oscillator

$$
V(x)=\frac{1}{2} m \omega^{2} x^{2}
$$

$x^{\pi}\left(t_{i+1}\right)=x^{\pi}\left(t_{i}\right)+u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right) \Delta t+\sigma \Delta W\left(t_{i}\right)$ $u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right)=\mathbb{E}\left[u^{\pi}\left(x^{\pi}\left(t_{i+1}\right)\right) \mid x^{\pi}\left(t_{i}\right)\right]-\partial_{x} V\left(x^{\pi}\left(t_{i}\right)\right) \Delta t$

Iteration scheme

ITERATION SCHEME FOR u

o choose starting value $u(x) \equiv 0$
1 use u to generate N paths with n_{t} steps
2 integrate u backward in time
3 average $u\left(x\left(t_{i}\right)\right)$ over intervals $\rightarrow u(x)=\left\langle u\left(x\left(t_{i}\right)\right)\right\rangle_{\text {cube }}$
4 go to 1

1D harmonic oscillator

$$
V(x)=\frac{1}{2} m \omega^{2} x^{2}
$$

$x^{\pi}\left(t_{i+1}\right)=x^{\pi}\left(t_{i}\right)+u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right) \Delta t+\sigma \Delta W\left(t_{i}\right)$
$u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right)=\mathbb{E}\left[u^{\pi}\left(x^{\pi}\left(t_{i+1}\right)\right) \mid x^{\pi}\left(t_{i}\right)\right]-\partial_{x} V\left(x^{\pi}\left(t_{i}\right)\right) \Delta t$

Iteration scheme

ITERATION SCHEME FOR u

o choose starting value $u(x) \equiv 0$
1 use u to generate N paths with n_{t} steps
2 integrate u backward in time
3 average $u\left(x\left(t_{i}\right)\right)$ over intervals $\rightarrow u(x)=\left\langle u\left(x\left(t_{i}\right)\right)\right\rangle_{\text {cube }}$
4 go to 1

1D harmonic oscillator

$$
V(x)=\frac{1}{2} m \omega^{2} x^{2}
$$

$x^{\pi}\left(t_{i+1}\right)=x^{\pi}\left(t_{i}\right)+u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right) \Delta t+\sigma \Delta W\left(t_{i}\right)$
$u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right)=\mathbb{E}\left[u^{\pi}\left(x^{\pi}\left(t_{i+1}\right)\right) \mid x^{\pi}\left(t_{i}\right)\right]-\partial_{x} V\left(x^{\pi}\left(t_{i}\right)\right) \Delta t$

Iteration scheme

ITERATION SCHEME FOR u

0 choose starting value $u(x) \equiv 0$
1 use u to generate N paths with n_{t} steps
2 integrate u backward in time
3 average $u\left(x\left(t_{i}\right)\right)$ over intervals $\rightarrow u(x)=\left\langle u\left(x\left(t_{i}\right)\right)\right\rangle_{\text {cube }}$
4 go to 1

1D harmonic oscillator

$$
V(x)=\frac{1}{2} m \omega^{2} x^{2}
$$

$x^{\pi}\left(t_{i+1}\right)=x^{\pi}\left(t_{i}\right)+u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right) \Delta t+\sigma \Delta W\left(t_{i}\right)$
$u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right)=\mathbb{E}\left[u^{\pi}\left(x^{\pi}\left(t_{i+1}\right)\right) \mid x^{\pi}\left(t_{i}\right)\right]-\partial_{x} V\left(x^{\pi}\left(t_{i}\right)\right) \Delta t$

Iteration scheme

ITERATION SCHEME FOR u

o choose starting value $u(x) \equiv 0$
1 use u to generate N paths with n_{t} steps
2 integrate u backward in time
3 average $u\left(x\left(t_{i}\right)\right)$ over intervals $\rightarrow u(x)=\left\langle u\left(x\left(t_{i}\right)\right)\right\rangle_{\text {cube }}$
4 go to 1

1D harmonic oscillator

$$
V(x)=\frac{1}{2} m \omega^{2} x^{2}
$$

$x^{\pi}\left(t_{i+1}\right)=x^{\pi}\left(t_{i}\right)+u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right) \Delta t+\sigma \Delta W\left(t_{i}\right)$
$u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right)=\mathbb{E}\left[u^{\pi}\left(x^{\pi}\left(t_{i+1}\right)\right) \mid x^{\pi}\left(t_{i}\right)\right]-\partial_{x} V\left(x^{\pi}\left(t_{i}\right)\right) \Delta t$

Iteration scheme

ITERATION SCHEME FOR u

o choose starting value $u(x) \equiv 0$
1 use u to generate N paths with n_{t} steps
2 integrate u backward in time
3 average $u\left(x\left(t_{i}\right)\right)$ over intervals $\rightarrow u(x)=\left\langle u\left(x\left(t_{i}\right)\right)\right\rangle_{\text {cube }}$
4 go to 1

1D harmonic oscillator

$$
V(x)=\frac{1}{2} m \omega^{2} x^{2}
$$

$x^{\pi}\left(t_{i+1}\right)=x^{\pi}\left(t_{i}\right)+u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right) \Delta t+\sigma \Delta W\left(t_{i}\right)$
$u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right)=\mathbb{E}\left[u^{\pi}\left(x^{\pi}\left(t_{i+1}\right)\right) \mid x^{\pi}\left(t_{i}\right)\right]-\partial_{x} V\left(x^{\pi}\left(t_{i}\right)\right) \Delta t$

Iteration scheme

ITERATION SCHEME FOR u

0 choose starting value $u(x) \equiv 0$
1 use u to generate N paths with n_{t} steps
2 integrate u backward in time
3 average $u\left(x\left(t_{i}\right)\right)$ over intervals $\rightarrow u(x)=\left\langle u\left(x\left(t_{i}\right)\right)\right\rangle_{\text {cube }}$
4 go to 1

1D harmonic oscillator

$$
V(x)=\frac{1}{2} m \omega^{2} x^{2}
$$

$x^{\pi}\left(t_{i+1}\right)=x^{\pi}\left(t_{i}\right)+u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right) \Delta t+\sigma \Delta W\left(t_{i}\right)$
$u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right)=\mathbb{E}\left[u^{\pi}\left(x^{\pi}\left(t_{i+1}\right)\right) \mid x^{\pi}\left(t_{i}\right)\right]-\partial_{x} V\left(x^{\pi}\left(t_{i}\right)\right) \Delta t$

Iteration scheme

ITERATION SCHEME FOR u

o choose starting value $u(x) \equiv 0$
1 use u to generate N paths with n_{t} steps
2 integrate u backward in time
3 average $u\left(x\left(t_{i}\right)\right)$ over intervals $\rightarrow u(x)=\left\langle u\left(x\left(t_{i}\right)\right)\right\rangle_{\text {cube }}$
4 go to 1

1D harmonic oscillator

$$
V(x)=\frac{1}{2} m \omega^{2} x^{2}
$$

$x^{\pi}\left(t_{i+1}\right)=x^{\pi}\left(t_{i}\right)+u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right) \Delta t+\sigma \Delta W\left(t_{i}\right)$
$u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right)=\mathbb{E}\left[u^{\pi}\left(x^{\pi}\left(t_{i+1}\right)\right) \mid x^{\pi}\left(t_{i}\right)\right]-\partial_{x} V\left(x^{\pi}\left(t_{i}\right)\right) \Delta t$

Iteration scheme

ITERATION SCHEME FOR u

o choose starting value $u(x) \equiv 0$
1 use u to generate N paths with n_{t} steps
2 integrate u backward in time
3 average $u\left(x\left(t_{i}\right)\right)$ over intervals $\rightarrow u(x)=\left\langle u\left(x\left(t_{i}\right)\right)\right\rangle_{\text {cube }}$
4 go to 1
$u(x)$ after 50 iterations

1D harmonic oscillator

$$
V(x)=\frac{1}{2} m \omega^{2} x^{2}
$$

$x^{\pi}\left(t_{i+1}\right)=x^{\pi}\left(t_{i}\right)+u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right) \Delta t+\sigma \Delta W\left(t_{i}\right)$
$u^{\pi}\left(x^{\pi}\left(t_{i}\right)\right)=\mathbb{E}\left[u^{\pi}\left(x^{\pi}\left(t_{i+1}\right)\right) \mid x^{\pi}\left(t_{i}\right)\right]-\partial_{x} V\left(x^{\pi}\left(t_{i}\right)\right) \Delta t$

Double well: ground state
 $$
V(x)=\frac{V_{0}}{a^{4}}\left(x^{2}-a^{2}\right)^{2} \quad V_{0}=2, a=1.5
$$

SUSY IN STOCHASTIC MECHANICS

e. g. for the Hamiltonian \mathcal{H}_{i} in cartesian coordinates

$$
\boldsymbol{Q}_{i}^{ \pm}=\mp \nabla-\boldsymbol{u}_{i}
$$

Double well: excited states
 $$
V(x)=\frac{V_{0}}{a^{4}}\left(x^{2}-a^{2}\right)^{2} \quad V_{0}=1, a=1.5
$$

third excited state

first excited state

fourth excited state

second excited state

- Tunnel splitting is given by the mean first passage time

Double well: excited states $\quad V(x)=\frac{V_{0}}{a^{4}}\left(x^{2}-a^{2}\right)^{2} \quad V_{0}=1, a=1.5$

third excited state

first excited state

fourth excited state

second excited state

Energy

- Tunnel splitting is given by the mean first passage time
- Perturbation theory prediction for the splitting is not correct

Higher dimensional systems

3D hydrogen atom

Summary

- Derivation of kinematic and dynamic equations for non-relativistic quantum system \rightarrow quantum Hamilton equations
- Numerical algorithm to solve these stochastic equations in the stationary case without using the Schrödinger equation
- Solution to (simple) problems in higher dimensions
- Determination of all excited eigenstates of the Schrödinger equation

Future work
$>$ Solving non-stationary problems numerically
$>$ Extending to relativistic particles and spin

Literature I

J. Köppe, W. Grecksch, and W. Paul.

Derivation and application of quantum hamilton equations of motion.
Annalen der Physik, 529(3):1600251-n/a, 2017.
1600251.

Edward Nelson.
Derivation of the schrödinger equation from newtonian mechanics.
Physical Review, 150(4):1079, 1966.
Michele Pavon.
Hamilton's principle in stochastic mechanics.
Journal of Mathematical Physics, 36(12):6774-6800, 1995.

Thank you for your attention!

NELSON'S STOCHASTIC MECHANICS

E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150, 1079 (1966)

FORWARD BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS (FBSDE)

$$
\begin{array}{ll}
\mathrm{d} x(t)=[v(t, x(t))+u(t, x(t))] \mathrm{d} t+\sigma \mathrm{d} W(t), & x\left(t_{0}\right)=x_{0} \\
\mathrm{~d} x(t)=[v(t, x(t))-u(t, x(t))] \mathrm{d} t+\sigma \mathrm{d} W_{*}(t), & x(T)=x_{T}
\end{array}
$$

where:

- $x(t)=x(t, \omega)$ is a stochastic process in $\mathbb{R}^{n \cdot d}$
- $x(t)$ is connected to a probability distribution ρ satisfying a forward and backward Fokker-Planck equation
- $W(t)$ is a $n \cdot d$ dimensional Wiener processes
- current velocity $v=\sigma^{2} \nabla S(t, x(t))$
- $\mathbb{E}[v]=\langle\hat{p}\rangle_{\psi}$
- osmotic velocity $u=\sigma^{2} \nabla R(t, x(t))=\sigma^{2} \nabla \ln \rho(t, x(t))$
$-\mathbb{E}[u]=0$ and $\mathbb{E}\left[v^{2}+u^{2}\right]=\left\langle(\Delta \hat{p} / m)^{2}\right\rangle_{\psi}$

