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Motivation and Contents

e Simulation of complex systems in non-equilibrium steady state
e Explore relation between equilibrium and non-equilibrium
systems
e Markov State Modelling (MSM): Construct long trajectories
e Maximum Caliber (MaxCal) provides microscopic relations
beyond detailed balance
e MSM construction protocol in off-equilibrium
e Ensemble reweighting in off- eqU|I|br|um
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Toy Model

1d ring potential

Single Particle

Driven by external force

Overdamped Dynamics

0= 8%—5:()—75(4-\/2’%3 TR(t)+fext

R(t) - Gaussian noise
fext - Nonconservative external force
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Jayne's Maximum Caliber

e Off-equilibrium extension of Gibbs'" Maximum Entropy

Maximum Entropy

Microstate / with p;

S =—>_;pilogpi

Impose constraints in form
of averages (Ax)
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Jayne's Maximum Caliber

e Off-equilibrium extension of Gibbs'" Maximum Entropy

Maximum Entropy Maximum Caliber

Microstate i with p; Microtrajectories I" with pr
S=-—>pilogp; C=—>rprlogpr
Impose constraints in form Impose constraints in form
of averages (Ax) of averages (Ak)
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Jayne's Maximum Caliber

e Off-equilibrium extension of Gibbs'" Maximum Entropy

Maximum Entropy

Microstate i with p;

= —>_;pilogpi
Impose constraints in form
of averages (Ax)

Maximum Caliber

Microtrajectories ' with pr

— > rprlogpr
Impose constraints in form
of averages (Ak)

Tlp()] = Jo p(x)log (23 ) dx + v ( fgp(x)dx—l)w(fgp(x)A(x) (A)

57000 _ g

op(x) = p(x)=2

Lq(x) exp (—BA(x))
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Markov Chain Maximum Caliber

p(x) = Z71q(x) exp (—BE(x))
Following Assumptions

e define x =T € Q as space of all trajectories
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Markov Chain Maximum Caliber

p(x) = Z71q(x) exp (—BE(x))
Following Assumptions

e define x =T € Q as space of all trajectories

Steady state solutions with distrution 7

first-order Markov process pr = i, Pig—i; ---Piny_1—sing

Demand global balance ), pipi—j = pj

1 if (i > )b

Choose constraint: external flux Fjj = ¢ 0 ifi=j

-1 if (i <j)b.c.

— 7T(F, q, <Fnew>) p(Fa q, <Fnew>)



Markov State Modelling

Timeseries

position

Perform:
e Space discretisation
e Time discretisation
e Dimensional reduction

s.th. Markov property is fulfilled

position

Transition Matrix

position
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Markov State Modelling

Timeseries Transition Matrix
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Markov State Modelling

Timeseries Transition Matrix

S 5
p= S
a @
g g

||

\/ position
Maximum Likelihood
Perform:

e Space discretisation
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Markov State Modelling

Timeseries Transition Matrix

S 5
p= S
a @
g g

||

\/ position
Maximum Likelihood
Perform:

. . In Equilibrium:
e Space discretisation q

) ) . e Enforce detailed balance
e Time discretisation

e Analyse form and timescale

e Dimensional reduction
of processes

s.th. Markov property is fulfilled



Results - Simulation vs Reweighting

potential

o /\& e 10 Simulations with varying (J)

. e Compare Simulation and

] Reweighted Model

] o by entropy production Sproq

j o by first passage time distribution
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Results - Simulation vs

potential
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0.009

0.006

0.003

Sprod / Kn/S

0 0.003 0.006

Reweighting

e 10 Simulations with varying (J)
e Compare Simulation and

Reweighted Model

o by entropy production Sproq
o by first passage time distribution
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Results - FPT Distribution

FPT distribution

Reweighted left

Original Simulation left
Aim Simulation left/right
Reweighted right
Original Simulation right

potential

T T T T
| |

0.02 -
0.015

0.009
0.01 -

0.006
0.005

0.003

0

0 0.003  0.006 #steps

12



Results - FPT distribution

potential
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Summary

e Trajectory Space can be controlled by Markov State Models

e Maximum Caliber connects macroscopic quantities to
microscopic trajectories
e Dynamics of system can be reweighted. It requires:

o Generating reference Markov Model
o Microscopic description of constraint(s): Fj;
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Summary

e Trajectory Space can be controlled by Markov State Models

e Maximum Caliber connects macroscopic quantities to
microscopic trajectories

e Dynamics of system can be reweighted. It requires:

o Generating reference Markov Model
o Microscopic description of constraint(s): Fj;

Next Steps:
e Extend to complex system

e Systematically deduce Fj;
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Minimisation

c= *ZP:PU'OE% +yom (ZPU *1> OB CERED <Zp.pufpj> +9 (Zp,puﬁ,%F))
ij v i j i j i ij

[ —
Relative Path Entropy (Markov) Normalisation Global Balance Flux Constraint

solved by
Wi = qij exp(—7Fj)
2 Wi®) = v

JR— J
p’./ Rz
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