Reweighting simulations in and out of equilibrium

Marius Bause, Tristan Bereau, Kurt Kremer

Max Planck Institute for Polymer Research, Mainz

March 28, 2017

Motivation and Contents

- Simulation of complex systems in non-equilibrium steady state
- Explore relation between equilibrium and non-equilibrium systems
- Markov State Modelling (MSM): Construct long trajectories
- Maximum Caliber (MaxCal) provides microscopic relations beyond detailed balance
 - MSM construction protocol in off-equilibrium
 - Ensemble reweighting in off-equilibrium

Toy Model

- 1d ring potential
- Single Particle
- Driven by external force
- Overdamped Dynamics

$$R(t)+f_{ext}$$

$$0 = \frac{\partial U(x)}{\partial x} - \gamma \dot{x} + \sqrt{2\gamma k_B T} R(t) + f_{\text{ext}}$$

R(t) - Gaussian noise f_{ext} - Nonconservative external force

Jayne's Maximum Caliber

• Off-equilibrium extension of Gibbs' Maximum Entropy

Maximum Entropy

Microstate i with p_i $S = -\sum_i p_i \log p_i$ Impose constraints in form of averages $\langle A_k \rangle$

Jayne's Maximum Caliber

Off-equilibrium extension of Gibbs' Maximum Entropy

 \leftrightarrow

Maximum Entropy

Microstate i with p_i $S = -\sum_{i} p_{i} \log p_{i}$ Impose constraints in form of averages $\langle A_k \rangle$

Microtrajectories Γ with p_{Γ} $C = -\sum_{\Gamma} p_{\Gamma} \log p_{\Gamma}$ Impose constraints in form of averages $\langle A_k \rangle$

Maximum Caliber

Jayne's Maximum Caliber

Off-equilibrium extension of Gibbs' Maximum Entropy

Maximum Entropy

Microstate i with p_i $S = -\sum_{i} p_{i} \log p_{i}$ Impose constraints in form of averages $\langle A_k \rangle$

Microtrajectories Γ with p_{Γ} $C = -\sum_{\Gamma} p_{\Gamma} \log p_{\Gamma}$ Impose constraints in form of averages $\langle A_k \rangle$

Maximum Caliber

$$\mathcal{J}[p(x)] = \int_{\Omega} p(x) \log \left(\frac{p(x)}{q(x)} \right) dx + \nu \left(\int_{\Omega} p(x) dx - 1 \right) + \beta \left(\int_{\Omega} p(x) A(x) - \langle A \rangle \right)$$
$$\frac{\delta \mathcal{J}[p(x)]}{\delta p(x)} = 0 \qquad \to p(x) = Z^{-1} q(x) \exp \left(-\beta A(x) \right)$$

 \leftrightarrow

$$p(x) = Z^{-1}q(x) \exp(-\beta E(x))$$

Following Assumptions

• define $x = \Gamma \in \Omega$ as space of all trajectories

$$p(x) = Z^{-1}q(x) \exp(-\beta E(x))$$

Following Assumptions

- define $x = \Gamma \in \Omega$ as space of all trajectories
- ullet Steady state solutions with distrution π

$$p(x) = Z^{-1}q(x) \exp(-\beta E(x))$$

Following Assumptions

- define $x = \Gamma \in \Omega$ as space of all trajectories
- Steady state solutions with distrution π
- first-order Markov process $p_\Gamma = \pi_{i_0} p_{i_0 o i_1} ... p_{i_{M-1} o i_M}$

$$p(x) = Z^{-1}q(x) \exp(-\beta E(x))$$

Following Assumptions

- define $x = \Gamma \in \Omega$ as space of all trajectories
- Steady state solutions with distrution π
- first-order Markov process $p_{\Gamma} = \pi_{i_0} p_{i_0 \to i_1} ... p_{i_{M-1} \to i_M}$
- Demand global balance $\sum_i p_i p_{i o j} = p_j$

$$p(x) = Z^{-1}q(x) \exp(-\beta E(x))$$

Following Assumptions

- define $x = \Gamma \in \Omega$ as space of all trajectories
- Steady state solutions with distrution π
- first-order Markov process $p_{\Gamma} = \pi_{i_0} p_{i_0 \to i_1} ... p_{i_{M-1} \to i_M}$
- Demand global balance $\sum_i p_i p_{i o j} = p_j$

• Choose constraint: external flux
$$F_{ij} = \begin{cases} 1 & \text{if } (i > j)_{b.c.} \\ 0 & \text{if } i = j \\ -1 & \text{if } (i < j)_{b.c.} \end{cases}$$

$$p(x) = Z^{-1}q(x) \exp(-\beta E(x))$$

Following Assumptions

- define $x = \Gamma \in \Omega$ as space of all trajectories
- Steady state solutions with distrution π
- first-order Markov process $p_{\Gamma} = \pi_{i_0} p_{i_0 \to i_1} ... p_{i_{M-1} \to i_M}$
- Demand global balance $\sum_i p_i p_{i o j} = p_j$

• Choose constraint: external flux
$$F_{ij} = \begin{cases} 1 & \text{if } (i > j)_{b.c.} \\ 0 & \text{if } i = j \\ -1 & \text{if } (i < j)_{b.c.} \end{cases}$$

$$o \pi(\mathsf{F},\mathsf{q},\langle F_{new}
angle) \qquad \mathsf{p}(\mathsf{F},\mathsf{q},\langle F_{new}
angle)$$

Perform:

- Space discretisation
- Time discretisation
- Dimensional reduction

s.th. Markov property is fulfilled

Perform:

- Space discretisation
- Time discretisation
- Dimensional reduction

s.th. Markov property is fulfilled

Perform:

- Space discretisation
- Time discretisation
- Dimensional reduction

s.th. Markov property is fulfilled

In Equilibrium:

- Enforce detailed balance
- Analyse form and timescale of processes

Results - Simulation vs Reweighting

- 10 Simulations with varying $\langle J \rangle$
 - Compare Simulation and Reweighted Model
 - ullet by entropy production S_{prod}
 - by first passage time distribution

Results - Simulation vs Reweighting

- 10 Simulations with varying $\langle J \rangle$
- Compare Simulation and Reweighted Model
 - ullet by entropy production S_{prod}
 - by first passage time distribution

Results - FPT Distribution

Results - FPT distribution

Summary

- Trajectory Space can be controlled by Markov State Models
- Maximum Caliber connects macroscopic quantities to microscopic trajectories
- Dynamics of system can be reweighted. It requires:
 - Generating reference Markov Model
 - Microscopic description of constraint(s): F_{ij}

Summary

- Trajectory Space can be controlled by Markov State Models
- Maximum Caliber connects macroscopic quantities to microscopic trajectories
- Dynamics of system can be reweighted. It requires:
 - Generating reference Markov Model
 - Microscopic description of constraint(s): F_{ij}

Next Steps:

- Extend to complex system
- Systematically deduce F_{ij}

Acknowledgments

Minimisation

$$\mathcal{C} = \underbrace{-\sum_{i,j} p_i p_{ij} \log \frac{p_{ij}}{q_{ij}}}_{\text{Relative Path Entropy (Markov)}} + \underbrace{\sum_{i} \nu_i \left(\sum_{j} p_{ij} - 1\right)}_{\text{Normalisation}} + \underbrace{\sum_{j} \mu_j \left(\sum_{i} p_i p_{ij} - p_j\right)}_{\text{Global Balance}} + \underbrace{\gamma \left(\sum_{i,j} p_i p_{ij} F_{ij} - \langle F \rangle\right)}_{\text{Flux Constraint}}$$

solved by

$$W_{ij} = q_{ij} \exp(-\gamma F_{ij})$$

$$\sum_{j} W_{ij} \Phi_{j} = \nu \Phi_{i}$$

$$p_{ij} = \frac{\Phi_{j}}{\nu * \Phi_{i}}$$