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Parallel Computing and Monte Carlo

Monte Carlo simulations

Most successful approach is importance sampling through Markov chains, an
inherently sequential process.

What to do it the era of parallel computing?

use domain decompositions

moderately parallel variants such
as parallel tempering
(Swendsen and Wang, 1986;
Geyer, 1991; Hukushima and
Nemoto, 1996)

parallel multicanonical
(Zierenberg et al., 2013)
and Wang-Landau simulations
(Vogel et al., 2013)
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and Wang-Landau simulations
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Can make use of a few dozen to a few hundred cores, but what to do with 106 cores?

M. Weigel (Coventry) Population annealing CompPhys16 4 / 43



Parallel Computing and Monte Carlo

Population annealing
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Population Annealing

Population annealing

Population annealing algorithm (Hukushima + Iba, 2003; Machta, 2010):
1 Set up an equilibrium ensemble of R independent copies of the system at inverse

temperature β0. Typically β0 = 0, where this can be easily achieved.

2 To create an approximately equilibrated sample at βi > βi−1, resample
configurations with their relative Boltzmann weight exp[−(βi − βi−1)Ej]/Q,
where Q =

∑
exp(−(βi − βi−1)Ej).

3 Update each copy (replica) by θ rounds of an MCMC algorithm at inverse
temperature βi .

4 Calculate estimates for observable quantities O as population averages∑
j Oj/R.

5 Goto step 2 until target temperature is reached.

This is a correct sequential Monte Carlo algorithm, but it is not very e�icient.
To improve it, all configurations undergo evolution with a standard Markov chain
Monte Carlo (MCMC) algorithm (‘single spin flips’).
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Population Annealing

Benchmark: the 2D Ising model

Check results for the fruit fly of statistical mechanics, the 2D Ising model.

Hamiltonian

H = −J
∑
〈i,j〉

sisj, si = ±1
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Population Annealing

Benchmark: the 2D Ising model

Check results for the fruit fly of statistical mechanics, the 2D Ising model.

Hamiltonian

H = −J
∑
〈i,j〉

sisj, si = ±1

T � Tc T ≈ Tc T � Tc
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Population Annealing

Population annealing

A sequential annealing of the population from infinite temperature, β = 0, down to
β = 1.
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Population Annealing

Correct results?

Exact results are available for finite la�ices for the internal energy, specific heat and
free energy (Ferdinand + Fisher, 1969).
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Population Annealing

Not always
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Need to understand dependence on parameters, R, θ, ∆β.
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Bias and statistical error

Population annealing and MCMC

The general behavior of Markov chain Monte Carlo is well understood: if balance and
ergodicity are fulfilled, it relaxes into equilibrium exponentially,

At ∼ 〈A〉(1 + ae−t/trelax ).

In equilibrium, the Markov property results in correlations of successive measurements (in
contrast to simple sampling):

C∆t = 〈AtAt+∆t〉 − 〈At〉〈At+∆t〉 ∼ e−∆t/τexp .

Hence, while for N independent measurements the standard deviation σ(Ā) of the mean
Ā =
∑

t At (“error bar”) is given by

σ2
uncorr(Ā) =

σ2(A)
N

,

in the presence of correlations we find instead

σ2(Ā) =
σ2(A)
Ne�

, Ne� = N/2τint,

where

τint =
1
2

+
N−1∑
∆t=1

C∆t

C0

(
1− ∆t

N

)
.
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σ2(A)
N

,

in the presence of correlations we find instead

σ2(Ā) =
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Bias and statistical error

Bias and statistical errors

For MCMC we know that the bias decays exponentially e−t/trelax , while the statistical
errors fall o� proportional to 1/

√
N .

What about population annealing? This is not MCMC, but sequential MC. On the
other hand, the spin flips (“equilibrating subroutine”) are again MCMC, so the total
method is a hybrid of MCMC and sequential MC.

Statistical errors
Population at each temperature forms generation of an ancestor tree. Members of
di�erent families are statistically independent.

One might study the family statistics to understand correlations (Wang, Machta +
Katzgraber, 2014/15):

Number of families: f

E�ective number of independent configurations: Ne�,t =
[∑

i n
2
i

]−1
.

Independence from family entropy: Ne�,s = exp
(
−
∑

i ni ln ni
)
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Bias and statistical error

Families
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But statistical errors behave di�erently. Families do not take spin flips into account!
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Bias and statistical error

Correlations and tree distances

Correlations in population
annealing are through the
resampling, configurations
with common ancestors
are correlated. The closer
the lowest common
ancestor (LCA), the
stronger the correlation.

T1

T2

T3

T4

M. Weigel (Coventry) Population annealing CompPhys16 18 / 43



Bias and statistical error

Correlations and tree distances

Correlations in population
annealing are through the
resampling, configurations
with common ancestors
are correlated. The closer
the lowest common
ancestor (LCA), the
stronger the correlation.

M. Weigel (Coventry) Population annealing CompPhys16 18 / 43



Bias and statistical error

Correlations and tree distances

Correlations in population
annealing are through the
resampling, configurations
with common ancestors
are correlated. The closer
the lowest common
ancestor (LCA), the
stronger the correlation.

Resampling correlates
replicas, spin flips
decorrelate them again.

M. Weigel (Coventry) Population annealing CompPhys16 18 / 43



Bias and statistical error

Families
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Bias and statistical error

Error analysis

Correlations decay with the distance in replica space |i − j|, so we can use methods of time
series analysis (binning) to extract the e�ective number of independent samples.
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Bias and statistical error

Population annealing and MCMC

The general behavior of Markov chain Monte Carlo is well understood: if balance and
ergodicity are fulfilled, it relaxes into equilibrium exponentially,

At ∼ 〈A〉(1 + ae−t/trelax ).

In equilibrium, the Markov property results in correlations of successive measurements (in
contrast to simple sampling):

C∆t = 〈AtAt+∆t〉 − 〈At〉〈At+∆t〉 ∼ e−∆t/τexp .

Hence, while for N independent measurements the standard deviation σ(Ā) of the mean
Ā =
∑

t At (“error bar”) is given by

σ2
uncorr(Ā) =

σ2(A)
N

,

in the presence of correlations we find instead

σ2(Ā) =
σ2(A)
Ne�

, Ne� = N/2τint,

where

τint =
1
2

+
N−1∑
∆t=1

C∆t

C0

(
1− ∆t

N

)
.
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Bias and statistical error

Error analysis

Correlations decay with the distance in replica space |i − j|, so we can use methods of time
series analysis (binning) to extract the e�ective number of independent samples.
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Bias and statistical error

An aside: MCMC and ergodicity

Autocorrelation times for variants of Metropolis and heatbath dynamics.
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Sequential Metropolis update is not ergodic for β → 0!
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Bias and statistical error

Statistical errors

Statistical errors decrease ∝ 1/
√
R.

Also, we can show that the e�ective population size Re� = R[1− exp(−θ/τ )] and Re� ∼ 1/∆β.
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Bias and statistical error

Bias: no resampling

Consider a situation without resampling.

If the population is in equilibrium at β, a�er a step to
β + ∆β it relaxes as

E(t) = 〈E〉β+∆β − [〈E〉β+∆β − 〈E〉β]e−t/τexp

and

〈E〉β+∆β − 〈E〉β ≈
∂〈E〉
∂β

∆β = E ′∆β = −β2VCV∆β,

Hence the remaining bias a�er θ rounds of spin flips is

∆E = E(θ)− 〈E〉β+∆β ≈ β2VCV∆βe−θ/τexp .

Taking biases from previous steps into account, one finds

∆E(β) ≈
n(β)∑
j=1

E ′(β0 + j∆β)∆β exp

[
−θ

n(β)∑
k=j

1/τk

]
.

For the simple case where all τi = τ are equal and E ′ is independent of β, one finds

∆E(β) ≈ E ′∆β
e−θ/τ

1− e−θ/τ

[
1− e−

θβ
τ∆β

]
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Bias and statistical error

Bias: no resampling (cont’d)

This is borne out very well by actual simulations.
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Bias and statistical error

Bias: with resampling

When turning on resampling, the dependence on θ is essentially unchanged.
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Bias is strongly reduced by resampling as soon as ∆β is such that the histogram
overlap is & 0.1.

We can show analytically that additional resampling bias is ∝ ∆β.
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Bias and statistical error

Bias

Bias in population size R was argued to be ∼ 1/R (Machta + Ellis, 2011; Wang,
Machta + Katzgraber, 2015). But consider

Decay is slower than 1/R and, in fact, compatible with a logarithmically slow
convergence. The relevant decay is proportional to 1/Re� , and this is only
proportional to R for θ & τ .

M. Weigel (Coventry) Population annealing CompPhys16 28 / 43



Bias and statistical error

Bias

Bias in population size R was argued to be ∼ 1/R (Machta + Ellis, 2011; Wang,
Machta + Katzgraber, 2015). But consider

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ = 1

|(E
−
E

ex
a
ct
)/
E

ex
a
ct
|

β

R = 1000
R = 5000
R = 10000
R = 20000
R = 50000
R = 75000
R = 100000
R = 200000
R = 500000
R = 1000000

Decay is slower than 1/R and, in fact, compatible with a logarithmically slow
convergence. The relevant decay is proportional to 1/Re� , and this is only
proportional to R for θ & τ .

M. Weigel (Coventry) Population annealing CompPhys16 28 / 43



Bias and statistical error

Bias

Bias in population size R was argued to be ∼ 1/R (Machta + Ellis, 2011; Wang,
Machta + Katzgraber, 2015). But consider

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ = 1

|(E
−
E

ex
a
ct
)/
E

ex
a
ct
|

β

R = 1000
R = 5000
R = 10000
R = 20000
R = 50000
R = 75000
R = 100000
R = 200000
R = 500000
R = 1000000

Decay is slower than 1/R and, in fact, compatible with a logarithmically slow
convergence. The relevant decay is proportional to 1/Re� , and this is only
proportional to R for θ & τ .

M. Weigel (Coventry) Population annealing CompPhys16 28 / 43



Bias and statistical error

Bias

Bias in population size R was argued to be ∼ 1/R (Machta + Ellis, 2011; Wang,
Machta + Katzgraber, 2015). But consider

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ = 10

|(E
−
E

ex
a
ct
)/
E

ex
a
ct
|

β

R = 1000
R = 5000
R = 10000
R = 20000
R = 50000
R = 75000
R = 100000
R = 200000
R = 500000
R = 1000000

Decay is slower than 1/R and, in fact, compatible with a logarithmically slow
convergence. The relevant decay is proportional to 1/Re� , and this is only
proportional to R for θ & τ .

M. Weigel (Coventry) Population annealing CompPhys16 28 / 43



Bias and statistical error

Bias

Bias in population size R was argued to be ∼ 1/R (Machta + Ellis, 2011; Wang,
Machta + Katzgraber, 2015). But consider

100

1000

10000

100000

1× 106

1× 107

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ = 1

R
eff

β

R = 1000
R = 5000
R = 10000
R = 20000
R = 50000
R = 75000
R = 100000
R = 200000
R = 500000
R = 1000000

Decay is slower than 1/R and, in fact, compatible with a logarithmically slow
convergence. The relevant decay is proportional to 1/Re� , and this is only
proportional to R for θ & τ .

M. Weigel (Coventry) Population annealing CompPhys16 28 / 43



Bias and statistical error

Bias

Bias in population size R was argued to be ∼ 1/R (Machta + Ellis, 2011; Wang,
Machta + Katzgraber, 2015). But consider

100

1000

10000

100000

1× 106

1× 107

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ = 10

R
eff

β

R = 1000
R = 5000
R = 10000
R = 20000
R = 50000
R = 75000
R = 100000
R = 200000
R = 500000
R = 1000000

Decay is slower than 1/R and, in fact, compatible with a logarithmically slow
convergence. The relevant decay is proportional to 1/Re� , and this is only
proportional to R for θ & τ .

M. Weigel (Coventry) Population annealing CompPhys16 28 / 43



Bias and statistical error

Bias

Bias in population size R was argued to be ∼ 1/R (Machta + Ellis, 2011; Wang,
Machta + Katzgraber, 2015). But consider

100

1000

10000

100000

1× 106

1× 107

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ = 50

R
eff

β

R = 1000
R = 5000
R = 10000
R = 20000
R = 50000
R = 75000
R = 100000
R = 200000
R = 500000
R = 1000000

Decay is slower than 1/R and, in fact, compatible with a logarithmically slow
convergence. The relevant decay is proportional to 1/Re� , and this is only
proportional to R for θ & τ .

M. Weigel (Coventry) Population annealing CompPhys16 28 / 43



How good is it?
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How good is it?

Computational e�iciency

The actual computational overhead of population annealing over the underlying
spin-flip dynamics is negligible.
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How good is it?

Massively parallel approach

The approach is naturally suitable for an implementation on massively parallel
hardware such as GPUs.
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How good is it?

Performance

Compare variance of averages measured in PA vs. those in an MCMC temperature
sweep.

How about parallel tempering?
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Compare variance of averages measured in PA vs. those in an MCMC temperature
sweep.
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Let’s make it even be�er

Improvements

Three natural extensions that improve the algorithm significantly:

1 Adaptive temperature steps: E�iciency and bias of the resampling depends
on histogram overlap.

⇒ choose temperature step adaptively on the fly to ensure fixed overlap of
neighboring energy histograms (as estimated from populations).
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Let’s make it even be�er

Improvements

2 Adaptive time steps: Number of independent replicas Re� crucially
determines bias as well as statistical errors.

⇒ choose θ ∝ R/Re� to e�ectively decorrelate configurations.
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Let’s make it even be�er

Improvements

3 Multi-histogram analysis: Information from neighboring temperatures is also
relevant.

This also allows to estimate the density of states. Iterations as in the
Ferrenberg/Swendsen scheme are not required.
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Let’s make it even be�er

Comparison

Adaptive scheme performs significantly be�er than original one.
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Applications?

Sampling the density of states

Something that we normally think can only be done with multicanonical or
Wang-Landau simulations.

L = 64
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Applications?

Spin glasses

Population annealing has already been used quite successfully to simulate the 3D
Edwards-Anderson model (Wang, Machta + Katzgraber, 2014; 2015).

With the adaptive scheme, this should even work significantly be�er: tailored for systems with
a wide distribution of hardness of instances.
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Applications?

O�-la�ice systems and polymers
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Applications?

Conclusions

Main points:

naturally suited for massively parallel architectures

can estimate free energies and density of states with high precision

can be easily turned into a fully self-adaptive algorithm

Technical insights:

raw family numbers are not so useful

can calculate statistical errors from one simulation

bias is asymptotically

∆A ∝ ∆β
Re�

exp(−θ/τe� )

hence bias decays more slowly with computational e�ort R than for MCMC, but
this does not ma�er in most cases as statistical errors ∝ 1/

√
R dominate

advantage over PT: ballistic movement through temperature space
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