Local energy minima of the 3d Edwards-Anderson model

Stefan Schnabel and Wolfhard Janke

CompPhys 16

greedy MC

• Hamiltonian : $\mathcal{H}(S_1, \cdots, S_N) = -\sum_{\langle ij \rangle} J_{ij} S_i S_j, \quad S \in \{-1, 1\}$

• Gaussian disorder :
$$P(J) = rac{1}{\sqrt{2\pi}} e^{-rac{J}{2}}$$

- Overlap of two configurations $Q(\mathbf{S}^{\alpha}, \mathbf{S}^{\beta}) = \frac{1}{N} \sum_{i} S_{i}^{\alpha} S_{i}^{\beta}$
- 3d simple cubic lattice

- Hamiltonian : $\mathcal{H}(S_1, \cdots, S_N) = -\sum_{\langle ij \rangle} J_{ij} S_i S_j, \quad S \in \{-1, 1\}$
- Gaussian disorder : $P(J) = \frac{1}{\sqrt{2\pi}} e^{-\frac{J^2}{2}}$
- Overlap of two configurations $Q(\mathbf{S}^{\alpha}, \mathbf{S}^{\beta}) = \frac{1}{N} \sum_{i} S_{i}^{\alpha} S_{i}^{\beta}$
- 3d simple cubic lattice

・ロン・日本・ ・ ほと・ ・ ほとう

- Hamiltonian : $\mathcal{H}(S_1, \cdots, S_N) = -\sum_{\langle ij \rangle} J_{ij} S_i S_j, \quad S \in \{-1, 1\}$
- Gaussian disorder : $P(J) = \frac{1}{\sqrt{2\pi}} e^{-\frac{J^2}{2}}$
- Overlap of two configurations $Q(\mathbf{S}^{\alpha}, \mathbf{S}^{\beta}) = \frac{1}{N} \sum_{i} S_{i}^{\alpha} S_{i}^{\beta}$
- 3d simple cubic lattice

<ロ> <同> <同> < 回> < 回> < 回> = 三

- Hamiltonian : $\mathcal{H}(S_1, \cdots, S_N) = -\sum_{\langle ij \rangle} J_{ij} S_i S_j, \quad S \in \{-1, 1\}$
- Gaussian disorder : $P(J) = \frac{1}{\sqrt{2\pi}} e^{-\frac{J^2}{2}}$
- Overlap of two configurations $Q(\mathbf{S}^{\alpha}, \mathbf{S}^{\beta}) = \frac{1}{N} \sum_{i} S_{i}^{\alpha} S_{j}^{\beta}$
- 3d simple cubic lattice

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

• Reduces *E* by **locally** optimal steps.

- Find spin with the highest positive energy e_i, flip it and repeat until all e_i < 0.
- "Traditional" application : Randomize many configurations and minimize with greedy algorithm.
- Does not find the global minimum.

Constitutes basins of attraction:

$$B(\mathbf{S}_{\min}) \coloneqq \{\mathbf{S}_B : G(\mathbf{S}_B) = \mathbf{S}_{\min}\}$$

- Reduces *E* by **locally** optimal steps.
- Find spin with the highest positive energy *e_i*, flip it and repeat until all *e_i* < 0.
- "Traditional" application : Randomize many configurations and minimize with greedy algorithm.
- Does not find the global minimum.
- Constitutes basins of attraction:

$$B(\mathbf{S}_{\min}) \coloneqq \{\mathbf{S}_B : G(\mathbf{S}_B) = \mathbf{S}_{\min}\}$$

- Reduces *E* by **locally** optimal steps.
- Find spin with the highest positive energy *e_i*, flip it and repeat until all *e_i* < 0.
- "Traditional" application : Randomize many configurations and minimize with greedy algorithm.
- Does not find the global minimum.
- Constitutes basins of attraction:

$$B(\mathbf{S}_{\min}) \coloneqq \{\mathbf{S}_B : G(\mathbf{S}_B) = \mathbf{S}_{\min}\}$$

- Reduces *E* by **locally** optimal steps.
- Find spin with the highest positive energy *e_i*, flip it and repeat until all *e_i* < 0.
- "Traditional" application : Randomize many configurations and minimize with greedy algorithm.
- Does not find the global minimum.

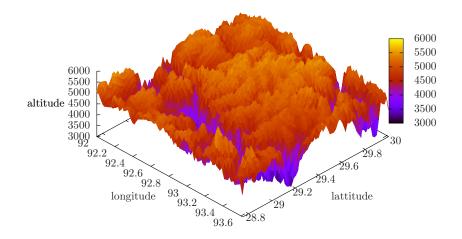
Constitutes basins of attraction:

 $B(\mathbf{S}_{\min}) \coloneqq \{\mathbf{S}_B : G(\mathbf{S}_B) = \mathbf{S}_{\min}\}$

<<p>(日)

- Reduces *E* by **locally** optimal steps.
- Find spin with the highest positive energy *e_i*, flip it and repeat until all *e_i* < 0.
- "Traditional" application : Randomize many configurations and minimize with greedy algorithm.
- Does not find the global minimum.
- Constitutes basins of attraction:

$$B(\mathbf{S}_{\min}) \coloneqq \{\mathbf{S}_B : G(\mathbf{S}_B) = \mathbf{S}_{\min}\}$$



イロン イロン イヨン イヨン

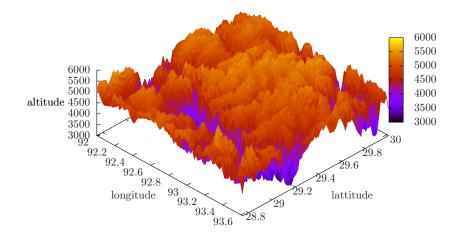
æ

$$E_{\mathrm{red}}(\mathbf{S}) \coloneqq E(\mathbf{S}_{\min}) \equiv E(G(\mathbf{S}))$$
.

くロン 人間と 人造と 人造とい

æ

Reduced Landscape

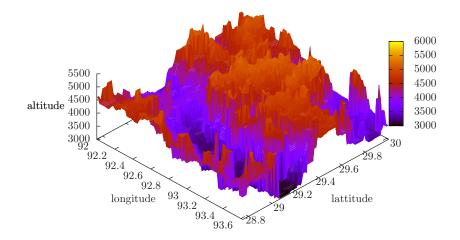


greedy MC

イロト イポト イヨト イヨト

æ

Reduced Landscape



3

イロト イヨト イヨト イ

dynamical greedy algorithm

- Stores relevant information of a (standard) greedy optimization S_{min} = G(S)
- Allows changes of the starting configuration S → S' and efficiently determines S'_{min} = G(S').

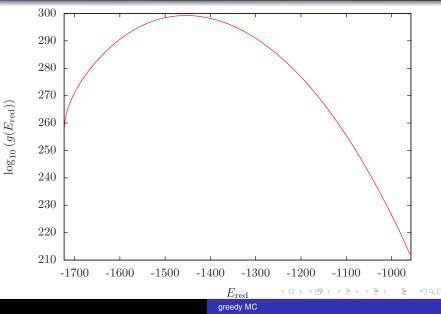
・ロト ・日下・ ・ ヨト・

dynamical greedy algorithm

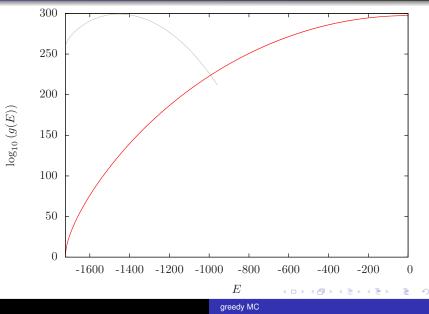
- Stores relevant information of a (standard) greedy optimization S_{min} = G(S)
- Allows changes of the starting configuration S → S' and efficiently determines S'_{min} = G(S').

< □ > < 同 > < 回 > <

Density of States as function of $E_{\rm red}$ (one sample, L = 10)



Density of States as function of *E* (one sample, L = 10)



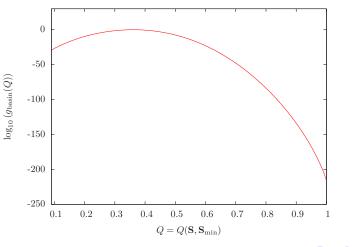
- Perform a MC simulation within the basin. (Reject all MC moves that change the result of the greedy optimization.)
- Relate the weight of the entire basin to the weight of the minimum configuration.
- E.g., flat-histogram over the overlap *Q* between current configuration **S** and local minimum **S**_{red}.

- Perform a MC simulation within the basin. (Reject all MC moves that change the result of the greedy optimization.)
- Relate the weight of the entire basin to the weight of the minimum configuration.
- E.g., flat-histogram over the overlap *Q* between current configuration **S** and local minimum **S**_{red}.

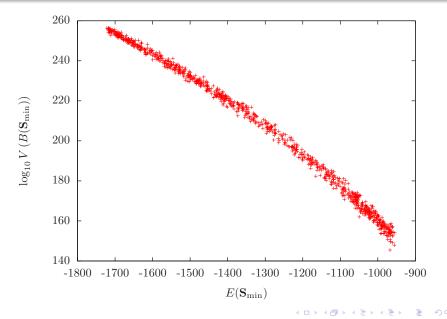
- Perform a MC simulation within the basin. (Reject all MC moves that change the result of the greedy optimization.)
- Relate the weight of the entire basin to the weight of the minimum configuration.
- E.g., flat-histogram over the overlap *Q* between current configuration **S** and local minimum **S**_{red}.

Size of basin of attraction

 flat-histogram over the overlap Q between current configuration S and local minimum S_{min}



greedy MC



greedy MC

• define logarithmic size : $s = \ln V$

- the sampled distribution P^s(s) is biased towards large basins
- true distribution: $P_{\text{true}}^{s}(s) \propto \frac{1}{V}P^{s}(s) = e^{-s}P^{s}(s)$
- true distribution of sizes: $P_{\text{true}}^V(V) \propto \frac{1}{V^2} P^s(\ln V) = e^{-2s} P^s(s)$

•
$$\langle V \rangle = \frac{\int_{-\infty}^{\infty} P^s(s) \mathrm{d}s}{\int_{-\infty}^{\infty} e^{-s} P^s(s) \mathrm{d}s}$$

• if $P^s(s) \propto e^{-(s-s_0)^2/2\sigma^2}$ then $\langle V
angle = rac{e^{S_0}}{\sigma^2}$

- define logarithmic size : $s = \ln V$
- the sampled distribution P^s(s) is biased towards large basins
- true distribution: $P_{\text{true}}^{s}(s) \propto \frac{1}{V}P^{s}(s) = e^{-s}P^{s}(s)$
- true distribution of sizes:

$$P_{\mathrm{true}}^V(V) \propto \frac{1}{V^2} P^s(\ln V) = e^{-2s} P^s(s)$$

•
$$\langle V \rangle = \frac{\int_{-\infty}^{\infty} P^s(s) \mathrm{d}s}{\int_{-\infty}^{\infty} e^{-s} P^s(s) \mathrm{d}s}$$

• if $P^s(s) \propto e^{-(s-s_0)^2/2\sigma^2}$ then $\langle V \rangle = rac{e^{S_0}}{\sigma^2}$

- define logarithmic size : $s = \ln V$
- the sampled distribution P^s(s) is biased towards large basins
- true distribution: $P_{\text{true}}^{s}(s) \propto \frac{1}{V}P^{s}(s) = e^{-s}P^{s}(s)$
- true distribution of sizes: $P_{\text{true}}^V(V) \propto \frac{1}{V^2} P^s(\ln V) = e^{-2s} P^s(s)$ • $\int_{-\infty}^{\infty} P^s(s) ds$

$$\langle V \rangle = \frac{1}{\int_{-\infty}^{\infty} e^{-s} P^{s}(s) \mathrm{d}s}$$

• if $P^s(s) \propto e^{-(s-s_0)^2/2\sigma^2}$ then $\langle V
angle = rac{e^{S_0}}{\sigma^2}$

- define logarithmic size : $s = \ln V$
- the sampled distribution P^s(s) is biased towards large basins
- true distribution: $P_{\text{true}}^{s}(s) \propto \frac{1}{V}P^{s}(s) = e^{-s}P^{s}(s)$
- true distribution of sizes: $P_{\text{true}}^V(V) \propto \frac{1}{V^2} P^s(\ln V) = e^{-2s} P^s(s)$
- $\langle V \rangle = \frac{\int_{-\infty}^{\infty} P^s(s) \mathrm{d}s}{\int_{-\infty}^{\infty} e^{-s} P^s(s) \mathrm{d}s}$
- if $P^s(s) \propto e^{-(s-s_0)^2/2\sigma^2}$ then $\langle V \rangle = \frac{e^{S_0}}{\sigma^2}$

◆□▶ ◆圖▶ ◆恵▶ ◆恵▶ → 恵 → のへの

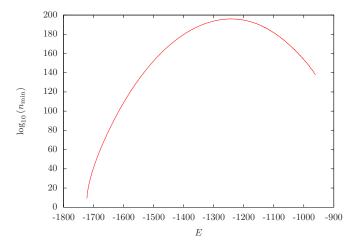
- define logarithmic size : $s = \ln V$
- the sampled distribution P^s(s) is biased towards large basins
- true distribution: $P_{\text{true}}^{s}(s) \propto \frac{1}{V}P^{s}(s) = e^{-s}P^{s}(s)$
- true distribution of sizes: $P_{\text{true}}^V(V) \propto \frac{1}{V^2} P^s(\ln V) = e^{-2s} P^s(s)$ • $\langle V \rangle = \frac{\int_{-\infty}^{\infty} P^s(s) ds}{\int_{-\infty}^{\infty} e^{-s} P^s(s) ds}$
- if $P^s(s) \propto e^{-(s-s_0)^2/2\sigma^2}$ then $\langle V \rangle = \frac{e^{S_0}}{\sigma^2}$

◆□▶ ◆圖▶ ◆恵▶ ◆恵▶ → 恵 → のへの

- define logarithmic size : $s = \ln V$
- the sampled distribution P^s(s) is biased towards large basins
- true distribution: $P_{\text{true}}^{s}(s) \propto \frac{1}{V}P^{s}(s) = e^{-s}P^{s}(s)$
- true distribution of sizes: $P_{\text{true}}^{V}(V) \propto \frac{1}{V^2} P^s(\ln V) = e^{-2s} P^s(s)$ • $\langle V \rangle = \frac{\int_{-\infty}^{\infty} P^s(s) ds}{\int_{-\infty}^{\infty} e^{-s} P^s(s) ds}$ • if $P^s(s) \propto e^{-(s-s_0)^2/2\sigma^2}$ then $\langle V \rangle = \frac{e^{S_0}}{2}$

《曰》《圖》《臣》《臣》 三臣

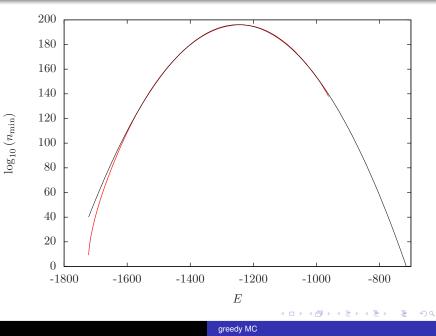
Number of local minima $n_{\min} = g(E_{\text{red}})/\langle V \rangle(E_{\text{red}})$



æ

イロト イ団ト イヨト イヨト

Number of local minima



Number and distribution of local minima can be determined.

- Distribution might be Gaussian for large systems.
- More data needed.

イロト イポト イヨト イヨト

э

- Number and distribution of local minima can be determined.
- Distribution might be Gaussian for large systems.
- More data needed.

イロト イポト イヨト イヨト

3

- Number and distribution of local minima can be determined.
- Distribution might be Gaussian for large systems.
- More data needed.

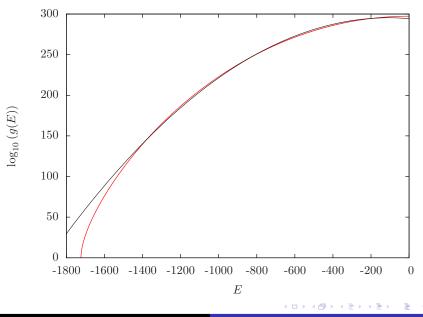
A D > A P > A

э

- Number and distribution of local minima can be determined.
- Distribution might be Gaussian for large systems.
- More data needed.

Thanks for your attention

Density of states fit



greedy MC