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Edwards-Anderson model

Hamiltonian : H(S1, · · · ,SN) = −
∑

〈ij〉
JijSiSj , S ∈ {−1, 1}

Gaussian disorder : P(J) = 1√
2π

e− J2

2

Overlap of two configurations Q(Sα,Sβ) = 1
N

∑

i

Sα
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β
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3d – simple cubic lattice
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Energy reduction

Greedy algorithm

Reduces E by locally optimal steps.

Find spin with the highest positive energy ei , flip it and

repeat until all ei < 0.

“Traditional” application : Randomize many configurations

and minimize with greedy algorithm.

Does not find the global minimum.

Constitutes basins of attraction:

B(Smin) := {SB : G(SB) = Smin}
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Landscape
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Reduced Landscape

Ered(S) := E(Smin) ≡ E (G(S)) .
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Enable walk in reduced energy landscape

dynamical greedy algorithm

Stores relevant information of a (standard) greedy

optimization Smin = G(S)

Allows changes of the starting configuration S → S′ and

efficiently determines S′
min = G(S′).
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Density of States as function of Ered (one sample,

L = 10)
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Density of States as function of E (one sample,

L = 10)
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Size of basin of attraction

Perform a MC simulation within the basin.

(Reject all MC moves that change the result of the greedy

optimization.)

Relate the weight of the entire basin to the weight of the

minimum configuration.

E.g., flat-histogram over the overlap Q between current

configuration S and local minimum Sred .
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Size of basin of attraction

flat-histogram over the overlap Q between current

configuration S and local minimum Smin
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Sizes of various basins
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Sizes of various basins

define logarithmic size : s = ln V

the sampled distribution Ps(s) is biased towards large

basins

true distribution: Ps
true(s) ∝

1
V Ps(s) = e−sPs(s)

true distribution of sizes:

PV
true(V ) ∝ 1

V 2 Ps(ln V ) = e−2sPs(s)

〈V 〉 =
∫
∞

−∞
Ps(s)ds

∫
∞

−∞
e−sPs(s)ds

if Ps(s) ∝ e−(s−s0)
2/2σ2

then 〈V 〉 = eS0

σ2
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Number of local minima nmin = g(Ered)/〈V 〉(Ered)
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Number of local minima
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Concluding remarks

Number and distribution of local minima can be

determined.

Distribution might be Gaussian for large systems.

More data needed.
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Concluding remarks

Number and distribution of local minima can be

determined.

Distribution might be Gaussian for large systems.

More data needed.

Thanks for your attention
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Density of states fit
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