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Phase coexistence

Sampling problem:

Phase coexistence

Exponential critical slowing
down

Recover NVT behavior with
reweighting:

〈O〉NVT =
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Figure : Potential-energy histogram at equal height for
pseudo first-order phase coexistence and alternative

sampling.

4 / 15



Introduction NVE and NVT barrier Ensemble tailoring Summary

Phase coexistence

Sampling problem:

Phase coexistence

Exponential critical slowing
down

Recover NVT behavior with
reweighting:

〈O〉NVT =

〈
O

exp(−βEp)
W (Ep)samp

〉
samp〈

exp(−βEp)
W (Ep)samp

〉
samp

0

0.01

0.02

0.03

0.04

0.05

−2 −1.5 −1 −0.5 0
H
(E

p
)

Ep/N

NVT
Altn. sampling

Figure : Potential-energy histogram at equal height for
pseudo first-order phase coexistence and alternative

sampling.

4 / 15



Introduction NVE and NVT barrier Ensemble tailoring Summary

Phase coexistence

Sampling problem:

Phase coexistence

Exponential critical slowing
down

Recover NVT behavior with
reweighting:

〈O〉NVT =

〈
O

exp(−βEp)
W (Ep)samp

〉
samp〈

exp(−βEp)
W (Ep)samp

〉
samp

0

0.01

0.02

0.03

0.04

0.05

−2 −1.5 −1 −0.5 0
H
(E

p
)

Ep/N

NVT
Altn. sampling

Figure : Potential-energy histogram at equal height for
pseudo first-order phase coexistence and alternative

sampling.

4 / 15



Introduction NVE and NVT barrier Ensemble tailoring Summary

Barrier definition

Example: Droplet condensation of the N = 2048

particle Lennard-Jones system.

Figure : Example configurations for the droplet
(left) and gaseous phase (right).

What is the barrier?

B = ln

Peqh
(
Emax
p

)
Peqh

(
Emin
p

)


Indicates how unlikely it is to observe the
transition between the coexisting phases
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Figure : Canonical equal-height histogram in
non-logarithmic and logarithmic display for the

N = 2048 Lennard-Jones particle system.
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Correspondences in the NVT and NVE ensemble

Canonical ensemble Microcanoical ensemble

Full phase space Z̃(β) =
∫

X

∫
P
dRdP e−βE , Γ̃(E) =

∫
X

∫
P
dRdP δ (E − (Ek + Ep))

partition function

Configurational Z(β) =
∫

X
dR e−βEp Γ(E) =

∫
X
dR (E − Ep)

3N−2
2 Θ(E − Ep)

partition function

Configuration weight W (R, β) = e−βEp W (R, E) = (E − Ep)
3N−2

2 Θ(E − Ep)

The expressions for the configuration weights allow for an easy adaptation of
canonical simulation methods and simplify analytical considerations.

M. Mayor, Phy. Rev. Let. 98 (2007) 137207
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Sampling phase transitions:

Equal height histograms
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The energy-driven phase transition in the NVE ensemble shows a much smaller
barrier than the equivalent temperature-driven transition in the NVT ensemble.

P. Schierz, J. Zierenberg and W. Janke, Phys. Rev. E 94 (2016) 021301
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Equal-area Framework:

Aim: Generalize the barrier dif-
ference for all temperature-driven
phase transitions.

We derive the system dependent K(Ep):

K(Ep) =
∂ ln Ω(Ep)

∂Ep

We derive the ensemble dependent
D(Ep):

D(Ep) = −∂ lnW (Ep)

∂Ep

It can be shown that the amount of en-
closed area between K(Ep) and D(Ep)
equals the barrier B of the ensemble.
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system and D(Ep) at the equal-area point.

t

For the NVT ensemble we obtain:

DNVT(Ep) = −
∂

∂Ep
ln(e−βEp ) = β

and choose β = βeqh.
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In general:
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K(Ep) has always an S-shape [1] if a system shows canonical phase coexistence
at the phase transition (first-order transitions).

For such general first-order transitions it can be shown that the NVE barrier
always has to be smaller or may even vanish [2].

BNVE < BNVT

[1] A. Hüller, Z. Phys. B 93 (1994) 401
[2] P. Schierz, J. Zierenberg and W. Janke, Phys. Rev. E 94 (2016) 021301
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Applications:

Simulations in the NVE ensemble allow quite fast simulations of the
displayed phase transitions.

The smaller microcanonical barrier should be observed in experiments as
well.

Possible applications for industrial processes where phase transitions are
crucial (steel production, glass production, ...)?
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Ensemble Tailoring:
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The sampled ensemble and hence the transition barrier is determined by the
function D(Ep).

How to tailor an ensemble with a specific or even vanishing barrier?
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Ensemble Tailoring:

Multicanonical method (MUCA) [1,2]:

WMUCA(Ep) =
1

Ω(Ep)
, DMUCA(Ep) = K (Ep) =

∂ ln Ω(Ep)

∂Ep

No enclosed area and hence no transition barrier.
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[1] B. A. Berg and T. Neuhaus, Phys. Lett. B 267 (1991), Phys. Rev. Lett. 68 (1992)
[2] J. Zierenberg, M. Marenz, W. Janke, Comput. Phys. Comm. 184 (2013)
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Introduction NVE and NVT barrier Ensemble tailoring Summary

Ensemble Tailoring:

Gaussian modified ensemble (GME):

WGME(Ep) = e−(A/2)E 2
p−BEp , DGME(Ep) = AEp + B

Barrier vanishes with a large enough slope parameter A.
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Ensemble Tailoring:

Artificial polynomial ensemble:

D(Ep) = A(Ep − E 0
p )13 + B(Ep − E 0

p ) + C ,

W (Ep) = e−A/14(Ep−E 0
p )14−B/2(Ep−E 0

p )2−CEp

Artificial ensemble with a large histogram width and a small barrier.
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Summary

Take-home messages

The transition barrier of the NVE ensemble is always lower than in the
corresponding first-order NVT transition.

A lower barrier leads to fast simulations for phase transitions.

The proposed analytical framework may be used to tailor artificial
ensembles for computational purposes by an educated guess of D(Ep).

15 / 15



Introduction NVE and NVT barrier Ensemble tailoring Summary

Summary

Take-home messages

The transition barrier of the NVE ensemble is always lower than in the
corresponding first-order NVT transition.

A lower barrier leads to fast simulations for phase transitions.

The proposed analytical framework may be used to tailor artificial
ensembles for computational purposes by an educated guess of D(Ep).

15 / 15



Introduction NVE and NVT barrier Ensemble tailoring Summary

Summary

Take-home messages

The transition barrier of the NVE ensemble is always lower than in the
corresponding first-order NVT transition.

A lower barrier leads to fast simulations for phase transitions.

The proposed analytical framework may be used to tailor artificial
ensembles for computational purposes by an educated guess of D(Ep).

15 / 15



Introduction NVE and NVT barrier Ensemble tailoring Summary

Summary

Take-home messages

The transition barrier of the NVE ensemble is always lower than in the
corresponding first-order NVT transition.

A lower barrier leads to fast simulations for phase transitions.

The proposed analytical framework may be used to tailor artificial
ensembles for computational purposes by an educated guess of D(Ep).

15 / 15


	Introduction
	NVE and NVT barrier
	Ensemble tailoring
	Summary

