The microcanonical barrier and the ensemble tailoring framework

Philipp Schierz, Johannes Zierenberg, Prof. Wolfhard Janke

November 24, 2016

Contents

1 Introduction

- 2 NVE and NVT barrier
- 3 Ensemble tailoring

Examples for first order phase transition

Magnetization

Examples for first order phase transition

Magnetization

Condensation/Evaporation

Examples for first order phase transition

Condensation/Evaporation

Phase coexistence

Sampling problem:

- Phase coexistence
- Exponential critical slowing down

Figure : Potential-energy histogram at equal height for pseudo first-order phase coexistence and alternative sampling.

Phase coexistence

Sampling problem:

- Phase coexistence
- Exponential critical slowing down

Figure : Potential-energy histogram at equal height for pseudo first-order phase coexistence and alternative sampling.

Phase coexistence

Sampling problem:

- Phase coexistence
- Exponential critical slowing down

Recover NVT behavior with reweighting:

$$\langle O
angle_{
m NVT} = rac{\left\langle O rac{\exp(-eta E_{
ho})}{W(E_{
ho})_{
m samp}}
ight
angle_{
m samp}}{\left\langle rac{\exp(-eta E_{
ho})}{W(E_{
ho})_{
m samp}}
ight
angle_{
m samp}}$$

Figure : Potential-energy histogram at equal height for pseudo first-order phase coexistence and alternative sampling.

Barrier definition

Example: Droplet condensation of the N = 2048 particle Lennard-Jones system.

Figure : Example configurations for the droplet (left) and gaseous phase (right).

Barrier definition

Example: Droplet condensation of the N = 2048 particle Lennard-Jones system.

Figure : Example configurations for the droplet (left) and gaseous phase (right).

Figure : Canonical equal-height histogram in non-logarithmic and logarithmic display for the N = 2048 Lennard-Jones particle system.

Barrier definition

Example: Droplet condensation of the N = 2048 particle Lennard-Jones system.

Figure : Example configurations for the droplet (left) and gaseous phase (right).

What is the barrier?

$$B = \ln \left[\frac{P^{\mathrm{eqh}}\left(E_{\rho}^{\mathrm{max}}\right)}{P^{\mathrm{eqh}}\left(E_{\rho}^{\mathrm{min}}\right)} \right]$$

 Indicates how unlikely it is to observe the transition between the coexisting phases

Figure : Canonical equal-height histogram in non-logarithmic and logarithmic display for the N = 2048 Lennard-Jones particle system.

Canonical ensemble

Microcanoical ensemble

Full phase space partition function $\tilde{Z}(\beta) = \int_{\mathbf{X}} \int_{\mathbf{P}} dR dP \ e^{-\beta E}, \qquad \tilde{\Gamma}(E) = \int_{\mathbf{X}} \int_{\mathbf{P}} dR dP \ \delta \left(E - (E_k + E_p) \right)$

	Canonical ensemble	Microcanoical ensemble
Full phase space partition function	$\tilde{Z}(\beta) = \int_{\mathbf{X}} \int_{\mathbf{P}} dR dP \ e^{-\beta E},$	$\tilde{\Gamma}(E) = \int_{\mathbf{X}} \int_{\mathbf{P}} dR dP \ \delta \left(E - (E_k + E_p) \right)$
Configurational partition function	$Z(eta) = \int_{\mathbf{X}} dR \ e^{-eta E_p}$	$\Gamma(E) = \int_{\mathbf{X}} dR \ (E - E_p)^{\frac{3N-2}{2}} \Theta(E - E_p)$

	Canonical ensemble	Microcanoical ensemble
Full phase space partition function	$ ilde{Z}(eta) = \int_{\mathbf{X}} \int_{\mathbf{P}} dR dP \; \mathrm{e}^{-\beta E},$	$\tilde{\Gamma}(E) = \int_{\mathbf{X}} \int_{\mathbf{P}} dR dP \ \delta \left(E - (E_k + E_p) \right)$
Configurational partition function	$Z(eta) = \int_{\mathbf{X}} dR \ e^{-eta E_p}$	$\Gamma(E) = \int_{\mathbf{X}} dR \ (E - E_p)^{\frac{3N-2}{2}} \Theta(E - E_p)$
Configuration weight	$W(R,\beta)=e^{-\beta E_p}$	$W(R,E) = (E - E_p)^{\frac{3N-2}{2}} \Theta(E - E_p)$

	Canonical ensemble	Microcanoical ensemble
Full phase space partition function	$\tilde{Z}(\beta) = \int_{\mathbf{X}} \int_{\mathbf{P}} dR dP \ e^{-\beta E},$	$\tilde{\Gamma}(E) = \int_{\mathbf{X}} \int_{\mathbf{P}} dR dP \ \delta \left(E - (E_k + E_p) \right)$
Configurational partition function	$Z(eta) = \int_{\mathbf{X}} dR \ e^{-eta E_p}$	$\Gamma(E) = \int_{\mathbf{X}} dR \ (E - E_p)^{\frac{3N-2}{2}} \Theta(E - E_p)$
Configuration weight	$W(R,\beta) = e^{-\beta E_p}$	$W(R,E) = (E - E_p)^{\frac{3N-2}{2}} \Theta(E - E_p)$

The expressions for the configuration weights allow for an easy adaptation of canonical simulation methods and simplify analytical considerations.

Sampling phase transitions:

Equal height histograms

P. Schierz, J. Zierenberg and W. Janke, Phys. Rev. E 94 (2016) 021301

Sampling phase transitions:

Equal height histograms

P. Schierz, J. Zierenberg and W. Janke, Phys. Rev. E 94 (2016) 021301

Sampling phase transitions:

Equal height histograms

 $B_{\rm NVE} < B_{
m NVT}$

The energy-driven phase transition in the NVE ensemble shows a much smaller barrier than the equivalent temperature-driven transition in the NVT ensemble.

P. Schierz, J. Zierenberg and W. Janke, Phys. Rev. E 94 (2016) 021301

Aim: Generalize the barrier difference for all temperature-driven phase transitions.

Aim: Generalize the barrier difference for all temperature-driven phase transitions.

We derive the system dependent $K(E_p)$:

$$K(E_p) = rac{\partial \ln \Omega(E_p)}{\partial E_p}$$

Figure : $K(E_p)$ from the N = 2048 Lennard-Jones system and $D(E_p)$ at the equal-area point.

Aim: Generalize the barrier difference for all temperature-driven phase transitions.

We derive the system dependent $K(E_p)$:

$$K(E_p) = \frac{\partial \ln \Omega(E_p)}{\partial E_p}$$

We derive the ensemble dependent $D(E_p)$:

$$D(E_p) = -\frac{\partial \ln W(E_p)}{\partial E_p}$$

Figure : $K(E_p)$ from the N = 2048 Lennard-Jones system and $D(E_p)$ at the equal-area point.

Aim: Generalize the barrier difference for all temperature-driven phase transitions.

We derive the system dependent $K(E_p)$:

$$K(E_p) = \frac{\partial \ln \Omega(E_p)}{\partial E_p}$$

We derive the ensemble dependent $D(E_p)$:

$$D(E_p) = -\frac{\partial \ln W(E_p)}{\partial E_p}$$

Figure : $K(E_p)$ from the N = 2048 Lennard-Jones system and $D(E_p)$ at the equal-area point.

For the NVT ensemble we obtain: $D_{\text{NVT}}(E_p) = -\frac{\partial}{\partial E_p} \ln(e^{-\beta E_p}) = \beta$ and choose $\beta = \beta_{\text{eqh.}}$

Aim: Generalize the barrier difference for all temperature-driven phase transitions.

We derive the system dependent $K(E_p)$:

$$K(E_p) = \frac{\partial \ln \Omega(E_p)}{\partial E_p}$$

We derive the ensemble dependent $D(E_p)$:

$$D(E_p) = -\frac{\partial \ln W(E_p)}{\partial E_p}$$

It can be shown that the amount of enclosed area between $K(E_p)$ and $D(E_p)$ equals the barrier *B* of the ensemble.

Figure : $K(E_p)$ from the N = 2048 Lennard-Jones system and $D(E_p)$ at the equal-area point.

For the NVT ensemble we obtain:

$$D_{\mathrm{NVT}}(E_p) = -rac{\partial}{\partial E_p} \ln(e^{-\beta E_p}) = \beta$$

and choose
$$\beta = \beta_{eqh}$$
.

Aim: Generalize the barrier difference for all temperature-driven phase transitions.

We derive the system dependent $K(E_p)$:

$$K(E_p) = \frac{\partial \ln \Omega(E_p)}{\partial E_p}$$

We derive the ensemble dependent $D(E_p)$:

$$D(E_p) = -\frac{\partial \ln W(E_p)}{\partial E_p}$$

It can be shown that the amount of enclosed area between $K(E_p)$ and $D(E_p)$ equals the barrier *B* of the ensemble.

Figure : $K(E_p)$ from the N = 2048 Lennard-Jones system and $D(E_p)$ at the equal-area point.

For the NVE ensemble we obtain:

$$D_{\text{NVE}}(E_p) = \frac{3N-2}{2} \frac{1}{E-E_p}$$

and choose $E = E_{\text{eqh}}$.

Aim: Generalize the barrier difference for all temperature-driven phase transitions.

We derive the system dependent $K(E_p)$:

$$K(E_p) = \frac{\partial \ln \Omega(E_p)}{\partial E_p}$$

We derive the ensemble dependent $D(E_p)$:

$$D(E_{\rho}) = -\frac{\partial \ln W(E_{\rho})}{\partial E_{\rho}}$$

It can be shown that the amount of enclosed area between $K(E_p)$ and $D(E_p)$ equals the barrier *B* of the ensemble.

Figure : $K(E_p)$ from the N = 2048 Lennard-Jones system and $D(E_p)$ at the equal-area point.

For the NVE ensemble we obtain: $D_{\text{NVE}}(E_p) = \frac{3N-2}{2} \frac{1}{E-E_p}$ and choose $E = E_{\text{reph}}$.

In general:

- [1] A. Hüller, Z. Phys. B 93 (1994) 401
- [2] P. Schierz, J. Zierenberg and W. Janke, Phys. Rev. E 94 (2016) 021301

In general:

• $K(E_{\rho})$ has always an S-shape [1] if a system shows canonical phase coexistence at the phase transition (first-order transitions).

^[1] A. Hüller, Z. Phys. B 93 (1994) 401

^[2] P. Schierz, J. Zierenberg and W. Janke, Phys. Rev. E 94 (2016) 021301

In general:

- K(E_p) has always an S-shape [1] if a system shows canonical phase coexistence at the phase transition (first-order transitions).
- For such general first-order transitions it can be shown that the NVE barrier always has to be smaller or may even vanish [2].

$$B_{\rm NVE} < B_{
m NVT}$$

[1] A. Hüller, Z. Phys. B 93 (1994) 401

[2] P. Schierz, J. Zierenberg and W. Janke, Phys. Rev. E 94 (2016) 021301

	NVE and NVT barrier	
Applications:		

 Simulations in the NVE ensemble allow quite fast simulations of the displayed phase transitions.

- Simulations in the NVE ensemble allow quite fast simulations of the displayed phase transitions.
- The smaller microcanonical barrier should be observed in experiments as well.

- Simulations in the NVE ensemble allow quite fast simulations of the displayed phase transitions.
- The smaller microcanonical barrier should be observed in experiments as well.
- Possible applications for industrial processes where phase transitions are crucial (steel production, glass production, ...)?

The sampled ensemble and hence the transition barrier is determined by the function $D(E_p)$.

The sampled ensemble and hence the transition barrier is determined by the function $D(E_p)$.

How to tailor an ensemble with a specific or even vanishing barrier?

Multicanonical method (MUCA) [1,2]:

$$W_{
m MUCA}(E_{
ho}) = rac{1}{\Omega(E_{
ho})}$$

B. A. Berg and T. Neuhaus, *Phys. Lett. B* 267 (1991), *Phys. Rev. Lett.* 68 (1992)
 J. Zierenberg, M. Marenz, W. Janke, *Comput. Phys. Comm.* 184 (2013)

Multicanonical method (MUCA) [1,2]:

$$W_{\mathrm{MUCA}}(E_{\rho}) = rac{1}{\Omega(E_{\rho})}, \ D_{\mathrm{MUCA}}(E_{\rho}) = \mathcal{K}(E_{\rho}) = rac{\partial \ln \Omega(E_{\rho})}{\partial E_{\rho}}$$

B. A. Berg and T. Neuhaus, *Phys. Lett. B* 267 (1991), *Phys. Rev. Lett.* 68 (1992)
 J. Zierenberg, M. Marenz, W. Janke, *Comput. Phys. Comm.* 184 (2013)

Multicanonical method (MUCA) [1,2]:

$$W_{\mathrm{MUCA}}(E_{p}) = rac{1}{\Omega(E_{p})}, \ D_{\mathrm{MUCA}}(E_{p}) = \mathcal{K}(E_{p}) = rac{\partial \ln \Omega(E_{p})}{\partial E_{p}}$$

No enclosed area and hence no transition barrier.

B. A. Berg and T. Neuhaus, *Phys. Lett. B* 267 (1991), *Phys. Rev. Lett.* 68 (1992)
 J. Zierenberg, M. Marenz, W. Janke, *Comput. Phys. Comm.* 184 (2013)

Gaussian modified ensemble (GME):

$$W_{\mathrm{GME}}(E_p)=e^{-(A/2)E_p^2-BE_p},\ D_{\mathrm{GME}}(E_p)=AE_p+B_p$$

T. Neuhaus and J. S. Hager, Phys. Rev. E 74 (2006)

Gaussian modified ensemble (GME):

$$\mathcal{W}_{\mathrm{GME}}(E_p)=e^{-(A/2)E_p^2-BE_p},\ D_{\mathrm{GME}}(E_p)=AE_p+B_p$$

Barrier vanishes with a large enough slope parameter A.

T. Neuhaus and J. S. Hager, Phys. Rev. E 74 (2006)

Artificial polynomial ensemble:

$$\begin{split} D(E_p) &= A(E_p - E_p^0)^{13} + B(E_p - E_p^0) + C, \\ W(E_p) &= e^{-A/14(E_p - E_p^0)^{14} - B/2(E_p - E_p^0)^2 - CE_p} \end{split}$$

Artificial polynomial ensemble:

$$\begin{split} D(E_p) &= A(E_p - E_p^0)^{13} + B(E_p - E_p^0) + C, \\ W(E_p) &= e^{-A/14(E_p - E_p^0)^{14} - B/2(E_p - E_p^0)^2 - CE_p} \end{split}$$

Artificial ensemble with a large histogram width and a small barrier.

Take-home messages

Take-home messages

The transition barrier of the NVE ensemble is always lower than in the corresponding first-order NVT transition.

Take-home messages

- The transition barrier of the NVE ensemble is always lower than in the corresponding first-order NVT transition.
- A lower barrier leads to fast simulations for phase transitions.

Take-home messages

- The transition barrier of the NVE ensemble is always lower than in the corresponding first-order NVT transition.
- A lower barrier leads to fast simulations for phase transitions.
- The proposed analytical framework may be used to tailor artificial ensembles for computational purposes by an educated guess of D(E_p).