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Exact solutions to plaquette Ising models with free and periodic boundaries



Motivation

I your first Monte Carlo simulation of spin-lattices was (is) erroneous almost surely
I compare to enumeration, exact solutions for finite lattices

Exact solutions:
I 1d Ising model: {free, fixed, (anti)periodic}-boundary conditions
I 2d Ising model: {(anti)periodic, Brascamp-Kunz,. . . }-boundary conditions, no solution

for free boundaries
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Spin-Bond transformation: solving the 1d Ising chain

I for free boundary conditions:

H = −
L−1∑
i=1

σiσi+1, σi ∈ {+1,−1},

Z1d, free =
∑
{σ}

exp

(
β

L−1∑
i=1

σiσi+1

)

I spin-bond transformation:

{σ1, σ2, . . . σL} → {τ1, τ2, . . . τL}

where τ1 = σ1σ2, τ2 = σ2σ3, . . . , τL−1 = σL−1σL and setting
τL = σL, the mapping {σ} → {τ} with an inverse relation of the
form σi = τL τL−1 τL−2 · · · τi is one-to-one

I partition function factorises:

Z1d, free =
∑
{τ}

exp

(
β

L−1∑
i=1

τi

)
= 2

L−1∏
i=1

∑
τi=±1

exp (βτi) = 2L ch(β)L−1

τ

σ1

σ2

σ3

σ4
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Spin-Bond transformation: solving the 1d Ising chain (again)

I for periodic boundary conditions:

H = −
L∑

i=1

σiσi+1, σi ∈ {+1,−1}
τσ

σσ

σ

σ σ

σ

I spin-bond transformation:

{σ1, σ2, . . . σL} → {τ1, τ2, . . . τL}

τ1 = σ1σ2, τ2 = σ2σ3, . . . , τL = σLσL+1 = σLσ1, with an inverse relation of the form
σi = σ1 × τ1 τ2 τ3 · · · τi−1, mapping is two-to-one and we have the constraint

L∏
i=1

τi =
L∏

i=1

σ2
i = 1
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Spin-Bond transformation: solving the 1d Ising chain (again), cont’d

I partition function:

Z1d, periodic =
∑
{σ}

exp

(
β

L∑
i=1

σiσi+1

)

= 2
∑
{τ}

exp

(
β

L∑
i=1

τi

)
δ

(
L∏

i=1

τi , 1

)

=
∑
{τ}

exp

(
β

L∑
i=1

τi

)(
1 +

L∏
i=1

τi

)

=

 L∏
i=1

∑
τi=±1

exp (βτi) +
L∏

i=1

∑
τi=±1

τi exp (βτi)


= 2L ch(β)L

[
1 + th(β)L

]
.

τσ

σσ

σ

σ σ

σ
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β
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(
β
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Spin-Bond transformation: solving the 1d Ising chain (again), cont’d

I partition function:
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∑
{σ}

exp

(
β
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i=1

σiσi+1

)

= 2
∑
{τ}

exp

(
β

L∑
i=1

τi

)
δ

(
L∏

i=1

τi , 1

)

=
∑
{τ}

exp

(
β
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i=1

τi
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1 +

L∏
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τσ

σσ

σ

σ σ

σ
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Spin-Bond transformation, highlights

solving the 1d Ising chain

free periodic

τ

σ1 σ2 σ3 σ4

τσ

σσ

σ

σ σ

σ

last spin, σL remains untransformed is transformed
cause of “2” summing over σL two-to-one transformation

additional constraint

Z 2L ch(β)L−1 2L ch(β)L
[
1 + th(β)L

]
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Plaquette model (in 3d)

H = −
∑

[i,j,k,l]

σiσjσkσl

I particular limit of 3d model of the gonihedric string

H = −2κ
∑
〈i,j〉

σiσj +
κ

2

∑
〈〈i,j〉〉

σiσj −
1− κ

2

∑
[i,j,k,l]

σiσjσkσl

D. A. Johnston, A. Lipowski, and R. P. K. C. Malmini, in Rugged Free Energy Landscape,s, Vol. 736 of Lecture Notes in Physics, Berlin Springer
Verlag, edited by W. Janke (2008), pp. 173–199.
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Anisotropic plaquette model

Haniso({σ}) = −Jx
∑
�yz

σσσσ −Jy
∑
�zx

σσσσ −Jz
∑
�xy

σσσσ

H
Jx=Jy=0
aniso ({σ}) = −Jz

Lz∑
z=1

[ ∑
2d �

σσσσ

]

Z
Jx=Jy=0
aniso =

∑
{σ}

exp
(
−βH

Jx=Jy=0
aniso ({σ})

)

=
(
Z2d, gonihedric

)Lz
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Two dimensional plaquette model: free boundaries in y -direction

I Spin-bond-transformation in y -direction, τx,y = σx,yσx,y+1, with the condition
τx,Ly = σx,Ly

I partition function factorises:

Z2d, gonihedric, free

=
∑
{σ}

exp

β Lx−1∑
x=1

Ly−1∑
y=1

σx,yσx,y+1σx+1,yσx+1,y+1


=
∑
{τ}

exp

β Lx−1∑
x=1

Ly−1∑
y=1

τx,yτx+1,y


= 2Lx

(
Z1d, Ising

)Ly−1

τ

I the factor 2Lx comes from the Lx sums over τx,Ly = σx,Lx = ±1 which do not appear
in the exponent
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Two dimensional plaquette model: mixed boundary conditions

2Lx Ly ch (β)(Lx−1)(Ly−1)

τ

2Lx Ly ch (β)Lx (Ly−1)
(

1 + th (β)Lx
)Ly−1
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Two dimensional plaquette model: periodic boundaries

I Consider periodic boundary conditions in y -direction: σx,Ly+1 = σx,1, here also in
x-direction σLx+1,y = σ1,y

I Spin-bond-transformation in y -direction, τx,y = σx,yσx,y+1 is two-to-one and imposes
Lx constraints

∏
y τx,y = 1

Z2d, gonihedric, periodic = 2Lx
∑
{τ}

exp

β Lx∑
x=1

Ly∑
y=1

τx,yτx+1,y

 Lx∏
x=1

δ

 Ly∏
y=1

τx,y , 1



I the funny “trick” of rewriting the δ-constraints leads to complicated products→ we go
straight to the high-temperature representation
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Two dimensional plaquette model: periodic boundaries

I high-temperature representation

Z2d, gonihedric, periodic

= 2Lx
∑
{τ}

exp

β Lx∑
x=1

Ly∑
y=1

τx,yτx+1,y

 Lx∏
x=1

δ

 Ly∏
y=1

τx,y , 1



= 2Lx ch(β)Lx Ly
∑
{τ}

 Ly∏
y=1

Lx∏
x=1

(
1 + th (β) τx,yτx+1,y

) Lx∏
x=1

δ

 Ly∏
y=1

τx,y , 1


I similar to counting loops in the 2d Ising model, but simpler: only coupling in x-direction
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Two dimensional plaquette model: periodic boundaries

2Lx ch(β)Lx Ly
∑
{τ}

 Ly∏
y=1

Lx∏
x=1

(
1 + th (β) τx,yτx+1,y

) Lx∏
x=1

δ

 Ly∏
y=1

τx,y , 1



(
1
2

)
2Lx Ly ch(β)Lx Ly

Lx∑
v=0

(Lx

v

)(
th(β)v + th(β)Lx−v

)Ly
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Two dimensional plaquette model: periodic boundaries

2Lx ch(β)Lx Ly
∑
{τ}

 Ly∏
y=1

Lx∏
x=1

(
1 + th (β) τx,yτx+1,y

) Lx∏
x=1

δ

 Ly∏
y=1

τx,y , 1



(
1
2

)
2Lx Ly ch(β)Lx Ly

Lx∑
v=0

(Lx

v

)(
th(β)v + th(β)Lx−v

)Ly
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Two dimensional plaquette model
solving the 2d plaquette model

free-free periodic-free periodic-periodic

τ

top line, σx,Ly not transformed transformed
cause of “2Lx ” summing over top row two-to-one

additional constraint

Z2d, gonihedric, free = 2Lx Ly ch (β)(Lx−1)(Ly−1)

Z2d, gonihedric, mixed = 2Lx Ly ch (β)Lx (Ly−1)
(

1 + th (β)Lx
)Ly−1

Z2d, gonihedric, periodic =

(
1
2

)
2Lx Ly ch(β)Lx Ly

Lx∑
v=0

(Lx

v

)(
th(β)v + th(β)Lx−v

)Ly
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Anisotropic plaquette model (again) - “fuki-nuke”

Hfuki-nuke({σ}) = −Jx
∑
�yz

σσσσ −Jy
∑
�zx

σσσσ

Exact solutions to plaquette Ising models with free and periodic boundaries



Three dimensional plaquette model: free boundaries in z-direction
I Spin-bond-transformation in z-direction τx,y,z = σx,y,zσx,y,z+1 in a cuboidal

L× L× Lz , for one-to-one correspondence: equality on one plane τx,y,Lz = σx,y,Lz

I partition function factorises:

Hfuki-nuke({τ}) = −
L∑

x=1

L∑
y=1

Lz−1∑
z=1

(
τx,y,zτx+1,y,z + τx,y,zτx,y+1,z

)

Zfuki-nuke =
∑
{τ}

exp (−βHfuki-nuke({τ}))

= 2L2 (
Z2d Ising

)Lz−1

I the factor 2L2
comes from the L× L sums over τx,y,Lz = σx,y,Lz = ±1 which do not

appear in the exponent
I free energy contributions

βffuki-nuke ≡ − lim
L→∞

1
L2Lz

ln Zfuki-nuke = βf2d Ising −
ln 2 + βf2d Ising

Lz
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Interlude: topology
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Interlude: topology
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Three dimensional plaquette model: periodic boundaries in z-direction

I Spin-bond-transformation in z-direction τx,y,z = σx,y,zσx,y,z+1 is two-to-one and
imposes L× L constraints

∏
z τx,y,z = 1

Hfuki-nuke({τ}) = −
L∑

x=1

L∑
y=1

Lz∑
z=1

(
τx,y,zτx+1,y,z + τx,y,zτx,y+1,z

)
,

Zfuki-nuke = 2L2 ∑
{τ}

exp (−βHfuki-nuke({τ}))
L∏

x=1

L∏
y=1

δ

 Lz∏
z=1

τx,y,z , 1


=

∑
{τ}

exp (−βHfuki-nuke({τ}))
L∏

x=1

L∏
y=1

1 +

Lz∏
z=1

τx,y,z
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Three dimensional plaquette model: periodic boundaries in z-direction

Zfuki-nuke

=
∑
{τ}

exp (−βHfuki-nuke({τ}))

1 +
L∑

x=1

L∑
y=1

Lz∏
z=1

τx,y,z +O (ττ)


=
(
Z2d Ising

)Lz

1 +
L∑

x=1

L∑
y=1

(
〈τx,y 〉Z2d Ising

)Lz
+O(ττ)


⊕

I assuming translational invariance in each layer (2d periodic Ising model)

Zfuki-nuke =
(
Z2d, Ising

)Lz
(

1 + L2CLz
1 +O (ττ)

)
I C1 = 〈τ1,1〉Z2d, Ising is the normalized one-point function (magnetization)

I O (ττ) =

1
2

(∑L
x1=1

∑L
y1=1

∑L
x2=1

∑L
y2=1

(
〈τx1,y1τx2,y2 〉Z2d Ising

)Lz
− 1
)

+O (τττ)
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Three dimensional plaquette model: periodic boundaries in z-direction

Zfuki-nuke

=
∑
{τ}

exp (−βHfuki-nuke({τ}))

1 +
L∑

x=1

L∑
y=1

Lz∏
z=1

τx,y,z +O (ττ)


=
(
Z2d Ising

)Lz

1 +
L∑

x=1

L∑
y=1

(
〈τx,y 〉Z2d Ising

)Lz
+O(ττ)


I assuming translational invariance in each layer (2d periodic Ising model)

Zfuki-nuke =
(
Z2d, Ising

)Lz
(

1 + L2CLz
1 +O (ττ)

)
I C1 = 〈τ1,1〉Z2d, Ising is the normalized one-point function (magnetization)

I O (ττ) =

1
2

(∑L
x1=1

∑L
y1=1

∑L
x2=1

∑L
y2=1

(
〈τx1,y1τx2,y2 〉Z2d Ising

)Lz
− 1
)

+O (τττ)
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Fuki-Nuke: full-periodic

(
Z2d Ising

)Lz

1 +
L∑

x=1

L∑
y=1

(
〈τx,y 〉Z2d Ising

)Lz
+O(ττ)
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Fuki-Nuke: full-periodic

(
Z2d Ising

)Lz

1 +
L∑

x=1

L∑
y=1

(
〈τx,y 〉Z2d Ising

)Lz
+O(ττ)



I without the power Lz in O(ττ) →
(high-temperature) susceptibility of the 2d Ising
model, no closed-form expression

I too late, discovered in loop-matrix calculations
already
T. Jonsson and G. K. Savvidy, Phys. Lett. B 449 (1999) 253;
T. Jonsson and G. K. Savvidy, Nucl. Phys. B 575 (2000) 661;
G. K. Savvidy, J. High Energy Phys. 09 (2000) 44;
G. K. Savvidy, Mod. Phys. Lett. B 29 (2015) 1550203.
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Conclusion

I identical spin-bond transformation can be treated explicitly for the 1d Ising and 2d
plaquette models

τ

σ1 σ2 σ3 σ4

τσ

σσ

σ

σ σ

σ

τ

I the 3d fuki-nuke model: explicit closed-form solution, as long as one boundary is free
and 2d Ising model boundary is known

I the 3d fuki-nuke model: fully-periodic lattice creates sum over non-trivial n-point
correlation functions

I the (full) 3d plaquette model: to be investigated (or maybe not)
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