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Thermal	&	quantum	fluctua-ons	

LiHoF4	dipol-bonded		
quantum	Ising	ferromagnet	
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LiHoxY1-xF4	dipol-bonded	diluted	
	quantum	Ising	ferromagnet	
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FIG. 35: (Color online) Incomplete mode softening on passing through QPT in LiHoF4. Figure shows pseudocolor representation
of the inelastic neutron scattering intensity of LiHoF4 at T = 0.31 K observed along the reciprocal space trace (2, 0, 0) →
(1, 0, 0) → (1, 0, 1) → (1.15, 0, 1). (After Ronnow et al., 2005).

FIG. 36: Dilution of the dipolar-coupled, Ising ferromagnet LiHoxY1−xF4. Left panel: magnetic phases in the x − T plane.
Arrow denotes spin liquid “antiglass” phase. Right panel: Magnetic phases in x − Ht plane where Ht is the field applied
transverse to the Ising axis. Open circle shows the peak in susceptibility for the antiglass. (After Ancona-Torres et al, 2008)

.

We note parenthetically that there has been some controversy [636] surrounding this spin glass state, but this has
died away in view of the agreement between the two groups [53, 635, 637] which probed it using low fields and low
frequencies; the seemingly different results were obtained under the very different experimental circumstances of dc
SQUID magnetometry performed with rapid sweep rates to high fields.
For x < 0.1, there are reports of both continued spin glass behavior [637, 638] as well as a novel antiglass state [639],

so named because a reduction in the temperature lead to a reduction of the width of the distribution of barriers to
relaxation rather than the conventional increase. The antiglass state is marked by strongly entangled spins, analogous
to the Bhatt-Lee state [640] found below the insulator-metal transition in doped silicon, and indeed, a decimation
calculation [345] which ignores nuclear spin degrees of freedom but takes into account both the diagonal and off-
diagonal dipolar couplings between Ho3+ ions (the latter providing the necessary quantum mixing), gives a remarkably
good description of the magnetic susceptibility in the limit of small frequencies. An additional astonishing effect
(Fig. 37) is spectral hole burning [641], the acoustic frequency analog to optical experiments where the frequency(f)-
dependent small signal response χ(f) is measured in the presence of a large pump signal at fixed frequency fo. Very
sharp minima at fo are induced in χ(f), indicating the decoupling of low frequency magnetic excitations from each
other; these experiments motivated a successful search for similar behavior in the classic geometrically frustrated
system Gadolinium Gallium Garnet (Gd3Ga5O12 or GGG) [642].

(ABer	Ancona-Torres	et	al,	2008)	
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3D Anderson localization of cold atoms

Urbana (De Marco group)
Palaiseau (Aspect group)
Florence (Inguscio/Modugno group)

Palaiseau experiment

. – p.10/35

Quantum	&	disorder	fluctua-ons	
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Palaiseau	(Aspect	group)	
3D	Anderson	localisa-on	with	cold	atoms	
	



Magnetic-field dependenceMagnetic-field dependence

2D	superconductor-insulator	transi-on	
width	 magne-c	field	

insulator	

superconductor	

(Haviland,	Liu	and	Goldman)	

Quantum	&	disorder	fluctua-ons	
	

(Shahar)	



Random	quantum	Ising	model	–	
short-range	interac-ons		
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random	variables	Jij , hi

(ij) nearest	neighbours	

Griffiths phase 

Dynamics :          exp(-Ld)    exp(-Lψ)     L-z(δ)      O(1)  
(energy gap) 

O(1)          L-x   exp(-Ld) 

Statics: magnetization [m]av 

In a finite system of linear size L : 

ordered	phase	cri-cal	point	disordered	phase	

Theoretical studies 
expansion	does	not	work	✏�

quantum	MC	-	possible	
Stong	disorder	RG	
recommended	

[ln(h)]av � [ln(J)]av

✓



 

Strong	Disorder	RG	
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Local	renormalisa-on:	quantum	and	disorder	
fluctua-ons	are	treated	at	the	same	-me	

D.	S.	Fisher	(1994):	analy-cal	solu-on	in	1D	at	the	cri-cal	point	
Infinite	disorder	fixed	point:	

•  the	ra-o	of	two	effec-ve	couplings	tends	to	infinity	
•  the	renormaliza-on	steps	are	asympto-cally	exact	

What	does	happen	in	higher	dimension?	

2J 

Rules: chain → chain 



	J	is	the	strongest	

J 
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Renormalisa-on	in	higher	dimensions	
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J	is	the	strongest	

Renormalisa-on	in	higher	dimensions	



h 
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h	is	the	strongest	

Renormalisa-on	in	higher	dimensions	



If there was a coupling 
      maximum rule 

 

In each step the number of spins is reduced,  
but the number of couplings could strongly increase! 
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h	is	the	strongest	

Renormalisa-on	in	higher	dimensions	



Efficient	RG	algorithm	

„Tradi-onal” „Novel”	

13 
The	number	of	couplings	
							does	not	increase	(Kovács	&	Iglói,	2011a,b)	



Structure	of	clusters	

L=64 

L=512 14 



n  Fractal dimension,  
q  Magnetization 
 
n   Extension of clusters 
q  Correlation length 

n   energy of clusters 
q  Energy gap 

Physical	quan--es	

L=512 15 (Kovács	&	Iglói,	2010)	



Long-range forces 
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Numerical	strong	disorder	RG	study	with	the	maximum	rule	
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	Juhász,		Kovács	&	Iglói:	



Numerical SDRG study of the long-range model

• Finite-size critical points - qc(S,L)

– two-copies of the same sample (S
and S0) are coupled together

S S’

– continuously increase q and monitor

the clusters, which are built of iden-

tical sites in the copies

– at qc(S,L) the last correlated cluster

disappears, thus for q > qc(S,L) we

are in the paramagnetic phase

• Distribution of pseudocritical points
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• Finite-size scaling

– shift of the mean: (conv. scaling)
��
qc �qc(L)

��⇠ 1/ lnL (L�1/ns)

– width of the distribution:

Dqc(L)⇠ 1/ lnL (L�1/nw)

– KT-like scaling of the correlation
length

x ⇠ exp(const/|q �qc|) x ⇠ |q �qc|�n

7

Numerical SDRG study of the long-range model

• Finite-size critical points - qc(S,L)

– two-copies of the same sample (S
and S0) are coupled together

S S’

– continuously increase q and monitor

the clusters, which are built of iden-

tical sites in the copies

– at qc(S,L) the last correlated cluster

disappears, thus for q > qc(S,L) we

are in the paramagnetic phase

• Distribution of pseudocritical points

 0.0001

 0.001

 0.01

 0.1

 0  0.5  1  1.5  2

p

θ
s

L=1024
2048
4096

 0.0001

 0.001

 0.01

 0.1

-3 -2 -1  0  1  2

p

(θs
c-θc)ln(L/L0)

• Finite-size scaling

– shift of the mean: (conv. scaling)
��
qc �qc(L)

��⇠ 1/ lnL (L�1/ns)

– width of the distribution:

Dqc(L)⇠ 1/ lnL (L�1/nw)

– KT-like scaling of the correlation
length

x ⇠ exp(const/|q �qc|) x ⇠ |q �qc|�n

7
Numerical SDRG study of the long-range model

• Finite-size critical points - qc(S,L)

– two-copies of the same sample (S
and S0) are coupled together

S S’

– continuously increase q and monitor

the clusters, which are built of iden-

tical sites in the copies

– at qc(S,L) the last correlated cluster

disappears, thus for q > qc(S,L) we

are in the paramagnetic phase

• Distribution of pseudocritical points

 0.0001

 0.001

 0.01

 0.1

 0  0.5  1  1.5  2

p

θ
s

L=1024
2048
4096

 0.0001

 0.001

 0.01

 0.1

-3 -2 -1  0  1  2

p

(θs
c-θc)ln(L/L0)

• Finite-size scaling

– shift of the mean: (conv. scaling)
��
qc �qc(L)

��⇠ 1/ lnL (L�1/ns)

– width of the distribution:

Dqc(L)⇠ 1/ lnL (L�1/nw)

– KT-like scaling of the correlation
length

x ⇠ exp(const/|q �qc|) x ⇠ |q �qc|�n

7

Numerical SDRG study of the long-range model

• Finite-size critical points - qc(S,L)

– two-copies of the same sample (S
and S0) are coupled together

S S’

– continuously increase q and monitor

the clusters, which are built of iden-

tical sites in the copies

– at qc(S,L) the last correlated cluster

disappears, thus for q > qc(S,L) we

are in the paramagnetic phase

• Distribution of pseudocritical points

 0.0001

 0.001

 0.01

 0.1

 0  0.5  1  1.5  2

p

θ
s

L=1024
2048
4096

 0.0001

 0.001

 0.01

 0.1

-3 -2 -1  0  1  2

p

(θs
c-θc)ln(L/L0)

• Finite-size scaling

– shift of the mean: (conv. scaling)
��
qc �qc(L)

��⇠ 1/ lnL (L�1/ns)

– width of the distribution:

Dqc(L)⇠ 1/ lnL (L�1/nw)

– KT-like scaling of the correlation
length

x ⇠ exp(const/|q �qc|) x ⇠ |q �qc|�n

7

Cri-cal	point	
Scaling	of	lengths	



Cri-cal		point:	numerical	SDRG	results	
ra-o	of	the	frequency	of	the	bond	and	field	

	decima-ons	at	the	cri-cal	point	

r
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structure	of	the	largest	non-decimated	cluster:		
(μ=32	and	L=8192)	

average	magne-c	moment		
of	the	last	remaining	cluster	
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1D	SR	model:	decimated	spin-ver-cal	spike	
																									fused	spins	-	horizontal		line	

1D	LR	model:	dominantly	field	decima-ons	

Cri-cal		point:	numerical	SDRG	results	
	



Largest	spin	clusters	

2D	 3D	

Sparse	and	quasi-1D	



Energy	scaling	
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Analytical derivation of the results - Primary model

• observations in the RG procedure

1. almost always transverse fields are

decimated

2. after a field decimation, the max-

imum rule leads almost always to

J̃ jk = Jjk

3. the extension wi of (non-decimated)

clusters are typically much smaller

than the distances between them

• construction of the primary model

– take bi j = b = 1, but let hi random

– according to 2) we have from the

additivity of the bond lengths:

J̃�1/a

i�1,i+1 = J�1/a

i�1,i + J�1/a

i,i+1 +wi

and wi is neglected due to 3).

– Using reduced variables

z =

✓
W
J

◆1/a

�1

b =
1
a

ln
W
h

– the RG equations reads:

z̃ = zi�1,i +zi,i+1 +1

b̃ = bi +bi+1

• equivalent to a 1d disordered O(2) quan-
tum rotor model (1d disordered bosons)
(E. Altman, Y. Kafri, A. Polkovnikov,
and G. Refael (2004)) with

– grain charging energy Ui $ J1/a

i,i+1

– Josephson coupling Ji,i+1 $ h1/a

i

• Note, that site and bond variables are
interchanged in the two problems.
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Solution of the primary model

• Let us change the log-energy-scale: G ⌘ 1
a

ln W0
W ! G+dG

• the distributions gG(b ) and fG(z ) will follow the equations:

∂gG(b )

∂G
=

∂gG(b )

∂b

+ f0(G)
Z

db

0gG(b
0)gG(b �b

0)+gG(b )[g0(G)� f0(G)]

∂ fG(z )

∂G
= (z +1)

∂ fG(z )

∂z

+g0(G)
Z

dz

0 fG(z
0)gG(z �z

0 �1)+ fG(z )[ f0(G)+1�g0(G)],

• the fixed-point solutions (G ! •) are:

gG(b ) = g0(G)e�g0(G)b ,

fG(z ) = f0(G)e� f0(G)z

• which satisfy the ordinary di↵erential
equations

dg0(G)
dG

=� f0(G)g0(G),

d f0(G)
dG

= f0(G)(1�g0(G)),

• thus f0(G) = g0(G)� lng0(G)�1+ e

e =�a+ ln(1+a)

• The boundary conditions in the G ! •
limit:

f0(G)! 0,
g0(G)! 1+a

– paramagnetic phase a > 0

– critical point a = 0

• The solutions in leading order in G:
g0(G) ' 1+acoth[(G+C)a/2],

f0(G) ' a2

2sinh2[(G+C)a/2]
,

25

d = 1



RG	flow-diagram	

r(L) =
N#

bond

(L)

N#
field

(L)

p(h) =
d

z
h�1+d/z

α/z	>	1	:	paramagne-c	phase	-	stable	

r=0:		line	of	fixed	points	

α/z	<	1	:	ferromagne-c	phase	-	unstable	

α/z	=	1	:	cri-cal	point	

Jump	in	the	magne-za-on	

Diverging	correla-on	length	
Mixed-order	transi-on	

L	increases	
along	the	flow	(f0)

(g0)



Interpretation through extreme value statistics (EVS)

• chain of length L, renormalized to a clus-
ter of µ spins

• its e↵ective field is given by:

h̃ ⇠
µ

’
i=1

hi/
µ�1

’
i=1

Ji, Ji = bir�a

i

• limit distribution of the fields

g(h)⇠ h�1+(1+a)/a

• hi is the smallest out of ri variables

• according to EVS ! hi ' kir
�a/(1+a)
i

• ki follow Fréchet statistics

P(k) = a

�1
k

1/a�1 exp(�k

1/a)

• the asymptotic behavior of h̃ is di↵erent

– lnh > lnJ (paramagnet)

– lnh < lnJ (ferromagnet)

• criticality: a = 0 and lnb = lnk

• at the critical point:

– h̃ ⇠ ’µ

i=1 ki/’µ�1
i=1 bi ⇠ exp(�cµ

1/2)
from the central limit theorem

– from energy scaling: h̃ ⇠ L�a

which implies µ ⇠ ln2 L

• in the paramagnetic phase 0 < a ⌧ 1

– x (a) is the length of the longest dec-
imated bond, rl

– Jl/hl ⇠ (blr�a

l )/(r�a/(1+a)
l kl)⇠ r�aa

l /kl > 1

– thus the smallest value: kl < x

�aa

Prob(kl < x

�aa) =
Z

x

�aa

0
P(k)dk

= 1� e�x

�a ⇠ x

�a = e�C0
= O(1)

– x ⇠ exp(C0/a)⇠ exp(const/|q �qc|)
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Interpretation through extreme value statistics (EVS)

• chain of length L, renormalized to a clus-
ter of µ spins

• its e↵ective field is given by:

h̃ ⇠
µ

’
i=1

hi/
µ�1

’
i=1

Ji, Ji = bir�a

i

• limit distribution of the fields

g(h)⇠ h�1+(1+a)/a

• hi is the smallest out of ri variables

• according to EVS ! hi ' kir
�a/(1+a)
i

• ki follow Fréchet statistics

P(k) = a

�1
k

1/a�1 exp(�k

1/a)

• the asymptotic behavior of h̃ is di↵erent

– lnh > lnJ (paramagnet)

– lnh < lnJ (ferromagnet)

• criticality: a = 0 and lnb = lnk

• at the critical point:

– h̃ ⇠ ’µ

i=1 ki/’µ�1
i=1 bi ⇠ exp(�cµ

1/2)
from the central limit theorem

– from energy scaling: h̃ ⇠ L�a

which implies µ ⇠ ln2 L
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Interpretation through extreme value statistics (EVS)

• in the ferromagnetic phase 0 <�a ⌧ 1

– there is a giant connected cluster

– x (a) is the length of the longest hole

in it, rl

– all the transverse fields are deci-

mated out in this region

– Jl/hl ⇠ (blr�a

l )/(r�a/(1+a)
l kl)⇠ r�aa

l /kl > 1

– thus the smallest value: kl < x
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– all the transverse fields are deci-
mated out in this region

– Jl/hl ⇠ (blr�a

l )/(r�a/(1�|a|)
l kl)⇠ ra|a|

l /kl < 1

– thus the smallest value: kl > x

a|a|

Prob(kl > x

a|a|) =
Z •

x

a|a|
P(k)dk

= exp
⇣
�x

|a|
⌘
= exp

⇣
�e�C0

⌘
= P

– thus x ⇠ exp(�C0/|a|).

– x has di↵erent scaling behaviours for

⇤ C0 < 0 (0 < P < 1/e), thus x ! •

⇤ C0 > 0 (1/e < P < 1), thus x ! 0
and the magnetization is of O(1)

– two possible scenarios:

⇤ second-order transition

if P < 1/e in every samples

x ⇠ exp(�C0/|a|)⇠ exp(const/|q �qc|)

⇤ mixed-order transition

if P > 1/e
the average magnetization is of
O(1)
but the correlation length is di-
vergent.
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Conclusions

• critical behaviour is controlled by a strong disorder fixed point

– dynamical exponent zc = a

– KT-like scaling: x ⇠ exp(const/|q �qc|)

– critical cluster is a logarithmic fractal: µL ⇠ (lnL)2

– Mixed-order transition

• Gri�ths region in the paramagnetic phase with z < a

• identical behaviour in models with a discrete order parameter (contact
process, Potts model, etc.)

– numerical verification for the LR random contact process
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Entanglement:	number	of	clusters	
Quan:fica:on:	von	Neumann		entropy	

Area	law:	

30 

At	the	cri-cal	point	
universal	logarithmic	

correc-ons	

The	area	law	is	sa-sfied,	but	due	to	corners	
there	is	a	universal	logarithmic	correc-on	

(Kovács	&	Iglói,	2012)	


