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Introduction

The Hamiltonian of the random-field Ising model (RFIM):

H(RFIM) = −J
∑
〈x ,y〉

SxSy −
∑
x

hxSx , ; Sx = ±1 ; J > 0.

{hx} are independent quenched random fields via P(h, σ).

At low T and for σ � J we encounter the ferromagnetic
phase, provided that D ≥ 3.

For D = 2, the tiniest σ > 0 suffices to destroy the
ferromagnetic phase.

Perturbative RG (PRG) computations suggest Du = 6 (for
D ≥ Du: mean-field exponents).
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Supersymmetry and dimensional reduction

The RFIM and the branched polymers are unique among
disordered systems: supersymmetry makes it possible to
analyze the PRG to all orders of perturbation theory.

Supersymmetry predicts dimensional reduction:
RFIM(D) → Ising(D−2). Yet, the RFIM orders in D = 3 while
the Ising ferromagnet in D = 1 does not.

The failure of the PRG begs the question: Is there an
intermediate dimension Dint < Du such that the PRG is
accurate for D > Dint?

Nikos Fytas Leipzig 24/11/2016



Supersymmetry and dimensional reduction

The RFIM and the branched polymers are unique among
disordered systems: supersymmetry makes it possible to
analyze the PRG to all orders of perturbation theory.

Supersymmetry predicts dimensional reduction:
RFIM(D) → Ising(D−2). Yet, the RFIM orders in D = 3 while
the Ising ferromagnet in D = 1 does not.

The failure of the PRG begs the question: Is there an
intermediate dimension Dint < Du such that the PRG is
accurate for D > Dint?

Nikos Fytas Leipzig 24/11/2016



Supersymmetry and dimensional reduction

The RFIM and the branched polymers are unique among
disordered systems: supersymmetry makes it possible to
analyze the PRG to all orders of perturbation theory.

Supersymmetry predicts dimensional reduction:
RFIM(D) → Ising(D−2). Yet, the RFIM orders in D = 3 while
the Ising ferromagnet in D = 1 does not.

The failure of the PRG begs the question: Is there an
intermediate dimension Dint < Du such that the PRG is
accurate for D > Dint?

Nikos Fytas Leipzig 24/11/2016



Supersymmetry and dimensional reduction

The RFIM and the branched polymers are unique among
disordered systems: supersymmetry makes it possible to
analyze the PRG to all orders of perturbation theory.

Supersymmetry predicts dimensional reduction:
RFIM(D) → Ising(D−2). Yet, the RFIM orders in D = 3 while
the Ising ferromagnet in D = 1 does not.

The failure of the PRG begs the question: Is there an
intermediate dimension Dint < Du such that the PRG is
accurate for D > Dint?

Nikos Fytas Leipzig 24/11/2016



RG fixed–point

The relevant RG fixed-point lies at T = 0 and the flow is
described by three independent critical exponents, ν, η, and η,

and two correlation functions, C
(con)
xy (connected) and C

(dis)
xy

(disconnected):

C
(con)
xy ≡ ∂〈Sx〉

∂hy
∼ 1

rD−2+η
; C

(dis)
xy ≡〈Sx〉〈Sy 〉∼

1

rD−4+η
.

The relationship between the anomalous dimensions η and η
is hotly debated for many years now and is one of the main
themes of the present work.
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Previous conjectures on the η vs. η relationship

Supersymmetry (Parisi and Sourlas, 1979): η = η.

Phenomenological scaling (Fisher, Schwartz and coworkers,
1986): η = 2η.

Functional RG (Tarjus and coworkers, 2011): rare events
spontaneously break supersymmetry at the intermediate
dimension Dint:

For D > Dint: η = η.

For D < Dint: η 6= η.

Dint ≈ 5.1.
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Latest numerical results at D = 3

2η − η = 0.0026(9) ; χ2/DOF = 10.5/17
2η − η = 0 (fixed) ; χ2/DOF = 18.3/181

0 . 0 0 0 . 0 4 0 . 0 8 0 . 1 2 0 . 1 6 0 . 2 0 0 . 2 4- 0 . 0 0 4

- 0 . 0 0 2

0 . 0 0 0

0 . 0 0 2

0 . 0 0 4

0 . 0 0 6
 

 

 G
 d G  ( σ =  1 )

 d G  ( σ =  2 )

 P

(2η
 - η

)(ef
f)

L  -  ω

1N.G. Fytas and V. Mart́ın-Mayor, PRL 110, 227201 (2013)
Nikos Fytas Leipzig 24/11/2016



Targets of the present work at D = 4

1 Provide high-accuracy estimates for the critical exponents ν,
η, and η, as well as for the corrections-to-scaling exponent ω
and of other RG-invariants.

2 Clear out the puzzle with the number of independent critical
exponents, compared to the inconclusive case of the D = 3
RFIM.

3 Examine previous claims of universality violations for the
RFIM when comparing different distributions of random fields.

4 Check the validity of dimensional reduction.
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Simulation details

We consider the RFIM on a D = 4 hyper-cubic lattice with
periodic boundary conditions and energy units J = 1. Our
random fields {hx} follow either a Gaussian or a Poissonian
distribution:

PG (h, σ) =
1√

2πσ2
e−

h2

2σ2 , PP(h, σ) =
1

2|σ|
e−

|h|
σ ,

where −∞ < h <∞. For both distributions σ is our single
control parameter.

We use a home-made version of the push-relabel algorithm of
Tarjan and Goldberg to generate the ground states of the
system.

We simulated lattice sizes from L = 4 to L = 60. For each
pair (L, σ) we computed ground states for 107 samples.
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Observables

From simulations at a given σ, we obtained σ-derivatives and
extrapolated to neighboring σ values by means of a reweighting
method.2 We computed the following observables:

χ(con) and χ(dis),

ξ(con) and ξ(dis),

U4 = 〈m4〉/〈m2〉2, and

U22 = χ(dis)/[χ(con)]2 =⇒ 2η − η.

2N.G. Fytas and V. Mart́ın-Mayor, PRE 93, 063308 (2016)
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Finite-size scaling scheme

Quotients method: We compare observables computed in pairs
(L, 2L). Scale-invariance is imposed by seeking the L-dependent
critical point: the value of σ such that ξ2L/ξL = 2. Here, we
consider both ξ(con)/L and ξ(dis)/L.

4 . 1 6 0 4 . 1 6 5 4 . 1 7 0 4 . 1 7 5 4 . 1 8 0 4 . 1 8 5 4 . 1 9 0

0 . 6 4

0 . 6 6

0 . 6 8

0 . 7 0

 

 

ξ(co
n)  / L

σ

 L  =  6        L  =  1 2
 L  =  1 6      L  =  3 2
 L  =  2 6      L  =  5 2

G a u s s i a n  R F I M
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For dimensionful quantities O, scaling in the thermodynamic
limit as ξxO/ν , we consider the quotient QO = O2L/OL at the
crossing. For dimensionless magnitudes g , we focus on gL or
g2L, whichever show less finite-size corrections. In either case,
one has:

Qcross
O = 2xO/ν +O(L−ω) , g cross

(L);(2L) = g∗ +O(L−ω) ,

where xO/ν, g∗ and the scaling-corrections exponent ω are
universal.

Dimensionless quantities: ξ(con)/L, ξ(dis)/L and U4.

Dimensionful quantities:

Derivatives of ξ(con), ξ(dis) [xξ = 1 + ν],
Derivatives of χ(con) and χ(dis) [xχ(con) = ν(2− η),
xχ(dis) = ν(4− η)],
U22 [xU22 = ν(2η − η)].
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Fitting details

1 We restrict ourselves to data with L ≥ Lmin. To determine an
acceptable Lmin we employ the standard χ2-test for goodness
of fit, where χ2 is computed using the complete covariance
matrix.

2 We fit 4 data sets:

2 random-field distributions: Gaussian and Poissonian,

2 crossing points: ξ(con)/L and ξ(dis)/L,

We denote these as: G(con), G(dis), P(con), and P(dis).
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A spectacular example of non-monotonic behavior
Possible explanation of previously reported universality violations
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Universality in the 4D RFIM
Joint fit of ξ(con)/L and η

ω = 1.30(9) ; ξ(con)/L = 0.6584(8) ; η = 0.1930(13)
χ2/DOF = 27.85/29
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Universal ratio ξ(dis)/L

ξ(dis)/L = 2.4276(36)(34)
χ2/DOF = 16/15
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Binder cumulant U4

U4 = 1.04471(32)(14)
χ2/DOF = 10/11
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Extrapolation of ν

ν = 0.8718(58)(19)
χ2/DOF = 62.9/55
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Extrapolation of 2η − η̄
2η − η = 0.0322(23)(1)
χ2/DOF = 16.0/19
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Critical fields

σc,L = σc + b1L
−(ω+ 1

ν
) + b2L

−(2ω+ 1
ν
)

σc(G ) = 4.17749(4)(2) ; χ2/DOF = 5.6/7
σc(P) = 3.62052(3)(8) ; χ2/DOF = 8.85/11
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Summary of universal ratios and exponents

QF χ2=DOF

ω 1.30(9) 1.60(14)

ξðconÞ=L 0.6584(8) 27.85=29

η 0.1930(13) 0.1922(10)

σcðGÞ 4.17749(4)(2) 5.6=7
σcðPÞ 3.62052(3)(8) 8.85=11
U4 1.04471(32)(14) 10=11

ξðdisÞ=L 2.4276(36)(34) 16=15

ν 0.8718(58)(19) 62.9=55
2η − η̄ 0.0322 (23)(1) 16.0=19

Hartmann, PRB 65, 174427 (2002): σc(G ) = 4.18(1); ν = 0.78(10)
Middleton, arXiv:cond-mat/0208182: σc(G ) = 4.179(2); ν = 0.82(6)
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Conclusions

We have been able to show universality by comparing different
field distributions. To reach this conclusion, we had to identify
and control the role of scaling corrections. In doing so, we
provided:

An original estimate of the exponent ω.
Original estimates of RG invariants: ξ(con)/L, ξ(dis)/L, and U4.

We determined with high accuracy the three independent
critical exponents ν, η, and η, that are needed to describe the
transition.

We stress the non-trivial difference 2η− η = 0.0322(24) which
is 10 times larger than its corresponding 3D value 0.0026(9).

We provided decisive evidence in favor of the three-exponent
scaling scenario and the spontaneous supersymmetry breaking
at some Dint > 4.
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Work in progress: RFIM at D = 5

ν(5D RFIM) = 0.626(15) ≈ 0.629971(4) = ν(3D IM) =⇒ Dint ≈ 5
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