

# **Coarsening and Aging of Lattice Polymers**

Henrik Christiansen, Suman Majumder, and Wolfhard Janke Institut für Theoretische Physik, Leipzig University, Postfach 100920, D-04009 Leipzig, Germany

### Abstract

The nonequilibrium properties of homopolymeric collapse were investigated using Monte Carlo simulations of the interacting self-avoiding walk (ISAW) in three dimension with short nearest neighbor (NN) and longer range next-nearest neighbor (NNN) interactions. Recently, the scaling behavior of the average cluster size as well as aging was investigated using an off-lattice polymer model by applying methods from domain coarsening phenomenons to polymers [1, 2]. We extend this work to lattice polymer models in order to be able to simulate longer polymers and define properties that are dependent on the underlying structure, like the equal-time two point correlation function.

# 1. Introduction

**b**ad solvent (high temperature)  $\rightarrow$  polymer is extended coil  $\blacksquare$  good solvent (low temperature)  $\rightarrow$  configuration globular interacting self-avoiding walk on a simple cubic lattice:

# 3. Finite-Size Scaling of the Cluster Growth

finite size scaling function:  $\ell_{0,1}^3(t) = NY_L(y)$  $y = (N/\ell_{0.1}^3)^{1/\alpha} = N^{1/\alpha}/A_N^{1/\alpha}t$ data collapse with power law decay; exponent  $-\alpha$ 



$$H = -\frac{1}{2} \sum_{\substack{i \neq j \\ i \neq j \pm 1}} w(r_{ij})$$
  
• Nearest-Neighbor (NN) interaction  

$$w(r_{ij}) \equiv \begin{cases} 1 \text{ for } r_{ij} = 1 \\ 0 \text{ for } r_{ij} \neq 1 \end{cases}$$
• Next-Nearest Neighbor (NNN) interaction  

$$\frac{r_{ij} | w(r_{ij})}{1 | 0.7} \\ \sqrt{2} | 0.48 \\ \sqrt{3} | 0.3 \end{cases}$$

interested in the kinetics of polymer collapse  $\rightarrow$  induced by a temperature quench

standard Metropolis Monte-Carlo simulation only local (physical) moves are allowed:



# 4. Aging

probed by two-time correlation

function

 $C(t, t_w) = \langle O_i(t) O_i(t_w) \rangle$  $-\langle O_i(t)\rangle\langle O_i(t_w)\rangle$ 

with order parameter:

 $\begin{cases} 1 & \text{if monomer } i \in \text{cluster} \\ 0 & \text{if monomer } i \notin \text{cluster} \end{cases}$  $O_i = \langle$ 

scaling with respect to  $t/t_w \rightarrow$ scaling with respect to cluster size?

 $C(t, t_w) \propto rac{\ell_{0.1}^3(t)}{\ell_{0.1}^3(t_w)}^{-2}$ 

with the dynamic aging exponent  $\lambda_c$ bound of expected values for  $\lambda_c$ 





 $0.762791 \le \lambda_c \le 1.525582$ 

■ in agreement with the off-lattice model,  $\lambda_c = 1.25$  was found

# 2. Cluster Growth in the Nearest Neighbor Model

equal-time two point correlation function

$$C(t,R) = \langle 
ho_i(t,R) 
angle$$
  
 $ho_i(t,R) = rac{1}{m_R} \sum \kappa(t,r_i+R)$ 

 $\blacksquare \kappa$  is unity if there is a monomer at a position and zero otherwise  $\blacksquare$  *m<sub>R</sub>* number of possible lattice points at distance R





2

0.1



# 5. Next-Nearest Neighbor Model



dynamic aging exponent  $\lambda_c = 1.25$ exponent  $\alpha = 1/3$  similar to the NN model

| References             | Acknowledgments                  |
|------------------------|----------------------------------|
| S Majumder and W Janke | The project was supported by the |

 $\Box C(t, R) \rightarrow$  characteristic length  $\ell_a$  of ordered structures:  $C_S(t) \propto \ell_a(t)^3$ 

 $\Rightarrow \alpha = 0.38$  is considerably smaller than in the off-lattice model ( $\alpha = 1$ )

EPL (Europhysics Letters) **110**, 58001 (2015).

S. Majumder and W. Janke, Physical Review E **93**, 032506 (2016).

Deutsche Forschungsgemeinschaft (DFG).

# Conclusion

We found a power-law growth of ordered structures (or clusters) during the collapse of lattice polymers. The found exponent  $\alpha(= 0.38$  in the NN model and  $\alpha = 1/3$  in the NNN model) was considerably smaller than the growth exponent previously reported ( $\alpha = 1$ ) for off-lattice models. In addition we investigated aging and found the same dynamic aging exponent as in the off-lattice model for both interaction ranges ( $\lambda_c = 1.25$ ).

**■** S.

# Gedruckt im Universitätsrechenzentrum Leipzig