Improvement of Monte Carlo estimates with covariance-optimized finite-size scaling at fixed phenomenological coupling

Francesco Parisen Toldin

Max Planck Institute for Physics of Complex Systems
Dresden

25 November 2011
Monte Carlo methods

- Powerful and flexible method to study critical phenomena
- General feature:

\[
\text{accuracy} \propto \frac{1}{\sqrt{\text{computational time}}}
\]

- In order to improve the accuracy: improved estimators
- Use of covariance analysis:
 - add control variates, whose expectation value vanish\(^1\)
 - compute the optimal weighted average of different estimates of a critical exponent\(^2\)
- Our method:
 - Optimization of a Finite-Size Scaling method
 - It allows for a significant reduction of the error bars
 - It does not require additional computational time

A system in a finite volume of linear size L

Finite-Size Scaling (FSS) works in region of parameters where $\xi \sim L$

FSS behavior of long-ranged quantities

$$O = L^x f(tL^{1/\nu}), \quad t \equiv \frac{T - T_c}{T_c}$$

E.g. Susceptibility $\chi \propto L^{2-\eta} f(tL^{1/\nu})$

Renormalization-Group invariant quantities R

$$R = F(tL^{1/\nu})$$

E.g. $R = \xi/L$, Binder ratios, etc.

Also called phenomenological couplings
We fix a phenomenological coupling R to a constant R_f

$$R(\beta, L) = R_f$$

$\Rightarrow \beta_f(L)$ such that $R(\beta_f(L), L) = R_f$

From FSS relation $R = F(tL^{1/\nu})$, $t = (T - T_c)/T_c = \beta_c/\beta - 1$:

$$\beta_f(L) - \beta_c \propto L^{-1/\nu}, \quad \text{generic } R_f$$

$$\beta_f(L) - \beta_c \propto L^{-1/\nu-\omega}, \quad R_f = R^* = F(0)$$

All the other observables $O(\beta, L)$ are calculated at $\beta = \beta_f(L)$

$$\chi(\beta_f(L), L) \propto L^{2-\eta}, \quad \text{susceptibility}$$

$$\frac{\partial R}{\partial \beta}(\beta_f(L), L) \propto L^{1/\nu}$$

Finite-Size Scaling at fixed phenomenological coupling

- It does not require a precise knowledge of β_c

- Reduced error bars by fixing ξ/L:
 - Fully frustrated XY model\(^1\)
 - Randomly Dilute Ising Universality class\(^2\)
 - Ising model in $d = 3, 4, 5$\(^3\)

- Similarities with the Phenomenological Renormalization method:
 - Two system sizes are enforced to share a common value of ξ/L
 - Reported reduction of error bars\(^4\)

\(^1\) M. Hasenbusch, A. Pelissetto, E. Vicari, JSTAT \textbf{P12002} (2005)

Finite-Size Scaling at fixed phenomenological coupling

Why there is a reduction of the error bars?

Notation:

- Simulations at $\beta = \beta_{\text{run}}$
- An observable O is calculated from a statistical estimator \hat{O}

$$\hat{O} = O + \hat{\delta}O, \quad O = E[\hat{O}]$$

- We choose to fix a phenomenological coupling R sampled using the estimator \hat{R}
- We fix $R(\beta = \beta_f(L), L) = R_f$ and calculate $O_f(L) \equiv O(\beta = \beta_f, L)$
For β close to β_{run}

$\hat{R}(\beta) \simeq \hat{R} + \hat{R}'(\beta - \beta_{\text{run}}),$ \quad $\hat{R} = \hat{R}(\beta_{\text{run}}), \quad R' = \partial R/\partial \beta.$

Solving $\hat{R} = R_f$

$\hat{\beta}_f = \beta_{\text{run}} - \frac{\hat{R} - R_f}{\hat{R}'}$

\Rightarrow we trade the fluctuations of R for the fluctuations of β_f

For a generic observable O calculated at β_f

$\hat{O}_f \simeq \hat{O} + \hat{O}'(\beta - \beta_{\text{run}}) = \hat{O} - \hat{O}' \frac{\hat{R} - R_f}{\hat{R}'}.$

The variance of \hat{O}_f is, to the lowest order in the fluctuations

$\text{VAR}[\hat{O}_f] = \text{VAR}[\hat{O}] + \left(\frac{O'}{R'} \right)^2 \text{VAR}[\hat{R}] - 2 \frac{O'}{R'} \text{COV}[\hat{O}, \hat{R}]$
Can we optimize the Finite-Size Scaling?

- Consider N phenomenological couplings R_1, \ldots, R_N
- We define the RG-invariant quantity $R(\{\lambda_i\}) \equiv \sum_i \lambda_i R_i$
- We consider FSS at fixed phenomenological coupling $R(\{\lambda_i\})$

Problem: given an observable O, what are the coefficients $\{\lambda_i\}$ that minimize the value of O_f?

Minimize: $\text{VAR}[\hat{O}_f] = \text{VAR}[\hat{O}] + \left(\frac{O'}{R'} \right)^2 \text{VAR}[\hat{R}] - 2 \frac{O'}{R'} \text{COV}[\hat{O}, \hat{R}]$

Solution: $\lambda_i = -\frac{R'^T M^{-1} N - O'}{R'^T M^{-1} R'} \left(M^{-1} R' \right)_i + \left(M^{-1} N \right)_i$, with $M_{ij} \equiv \text{COV}[\hat{R}_i, \hat{R}_j]$, $N_i \equiv \text{COV}[\hat{O}, \hat{R}_i]$, $R'_i \equiv R'_i$.
Can we optimize the Finite-Size Scaling?

- Consider N phenomenological couplings R_1, \ldots, R_N
- We define the RG-invariant quantity $R(\{\lambda_i\}) \equiv \sum_i \lambda_i R_i$
- We consider FSS at fixed phenomenological coupling $R(\{\lambda_i\})$

Problem: given an observable O, what are the coefficients $\{\lambda_i\}$ that minimize the value of O_f?

Minimize: \[\text{VAR}[\hat{O}_f] = \text{VAR}[\hat{O}] + \left(\frac{O'}{R'} \right)^2 \text{VAR}[\hat{R}] - 2 \frac{O'}{R'} \text{COV}[\hat{O}, \hat{R}] \]

Solution: \[\lambda_i = -\frac{R'^T M^{-1} N - O'}{R'^T M^{-1} R'} \left(M^{-1} R' \right)_i + \left(M^{-1} N \right)_i \]

with $M_{ij} \equiv \text{COV}[\hat{R}_i, \hat{R}_j]$, $N_i \equiv \text{COV}[\hat{O}, \hat{R}_i]$, $R'_i \equiv R'_i$.
Can we optimize the Finite-Size Scaling?

- Consider N phenomenological couplings R_1, \ldots, R_N
- We define the RG-invariant quantity $R(\{\lambda_i\}) \equiv \sum_i \lambda_i R_i$
- We consider FSS at fixed phenomenological coupling $R(\{\lambda_i\})$

Problem: given an observable O, what are the coefficients $\{\lambda_i\}$ that minimize the value of O_f?

Minimize: $\text{VAR}[\hat{O}_f] = \text{VAR}[\hat{O}] + \left(\frac{O'}{R'}\right)^2 \text{VAR}[\hat{R}] - 2 \frac{O'}{R'} \text{COV}[\hat{O}, \hat{R}]$

Solution: $\lambda_i = -\frac{R'^T M^{-1} N - O'}{R'^T M^{-1} R'} \left(M^{-1} R' \right)_i + \left(M^{-1} N \right)_i$, with $M_{ij} \equiv \text{COV}[\hat{R}_i, \hat{R}_j]$, $N_i \equiv \text{COV}[\hat{O}, \hat{R}_i]$, $R'_i \equiv R'_i$.
Some observations

- Finite-Size Scaling at fixed $R(\{\lambda_i\}) \equiv \sum_i \lambda_i R_i$, with

\[
\lambda_i = -\frac{R'^T M^{-1} N - O'}{R'^T M^{-1} R'} \left(M^{-1} R' \right)_i + \left(M^{-1} N \right)_i,
\]

\[M_{ij} \equiv COV[\hat{R}_i, \hat{R}_j], \quad N_i \equiv COV[\hat{O}, \hat{R}_i].\]

- M and N are related to the transition matrix of the Markov chain \Rightarrow they depend on the model and on the dynamics

- $\{\lambda_i\}$ can be optimized separately for every observable O

- FSS limit is correctly defined when $\{\lambda_i\}$ are the same for all sizes. The optimal $\{\lambda_i\}$ depend on the lattice size.

Possible strategy:
choose the optimal $\{\lambda_i\}$ obtained from the largest available lattice.
Test: Ising model in $d = 2, 3$

$$\mathcal{H} = -J \sum_{\langle ij \rangle} \sigma_i \sigma_j, \quad \sigma_i = \pm 1.$$

- Four RG-invariant quantities:

$$U_4 \equiv \frac{\langle M^4 \rangle}{\langle M^2 \rangle^2}, \quad U_6 \equiv \frac{\langle M^6 \rangle}{\langle M^2 \rangle^3},$$

$$R_\xi \equiv \xi / L, \quad R_Z \equiv Z_a / Z_p,$$

with $M \equiv \sum_i \sigma_i$ magnetization, ξ second-moment correlation length Z_a partition function with antiperiodic b.c. on one direction, Z_p partition function with fully periodic b.c.

- Observables

$$\chi \equiv \sum_i \sigma_i \sigma_j / V \propto L^{2-\eta}$$

$$\frac{\partial U_4}{\partial \beta}, \frac{\partial U_6}{\partial \beta}, \frac{\partial R_\xi}{\partial \beta} \propto L^{1/\nu}$$

1M. Hasenbusch, Physica A 197, 423 (1993)
Results $d = 2$

- Gain in CPU time is given by \(\left(\frac{\text{standard error bar}}{\text{error bar at fixed } R} \right)^2 \)
- CPU gain for Metropolis dynamics

 \[\chi: \text{ gain } \sim 20; \quad \text{gain at fixed } R_\xi \lesssim 4 \]

 \[\partial U_4/\partial \beta, \partial U_6/\partial \beta: \text{ gain } \sim 30 - 50; \quad \text{gain at fixed } U_4, U_6 \sim 6 - 10 \]

 \[\partial R_\xi/\partial \beta: \text{ gain } \sim 2 - 3; \quad \text{gain at fixed } U_4, U_6, R_\xi, R_Z \lesssim 1 \]

- CPU gain for Wolff single-cluster dynamics

 \[\chi: \text{ gain } \sim 6; \quad \text{gain at fixed } R_\xi \sim 3 \]

 \[\partial U_4/\partial \beta, \partial U_6/\partial \beta: \text{ gain } \sim 6 - 9; \quad \text{gain at fixed } U_4, U_6 \sim 2 - 4 \]

 \[\partial R_\xi/\partial \beta: \text{ gain } \sim 2 - 3; \quad \text{gain at fixed } U_4, U_6, R_\xi, R_Z \lesssim 1 \]

- Gain in computational time roughly independent on $L = 8 - 128$
Results $d = 3$

- Gain in CPU time is given by $\left(\frac{\text{standard error bar}}{\text{error bar at fixed } R}\right)^2$

- CPU gain for Metropolis dynamics

 χ: gain $\sim 20 - 30$; gain at fixed $R_\xi \lesssim 9$

 $\partial U_4/\partial \beta, \partial U_6/\partial \beta$: gain $\sim 20 - 30$; gain at fixed $U_4, U_6 \lesssim 3$

 $\partial R_\xi/\partial \beta$: gain $\sim 4 - 6$; gain at fixed $U_4, U_6, R_\xi, R_Z \lesssim 1$

- CPU gain for Wolff single-cluster dynamics

 χ: gain $\sim 6 - 10$; gain at fixed $R_\xi \sim 5$

 $\partial U_4/\partial \beta, \partial U_6/\partial \beta$: gain $\sim 5 - 8$; gain at fixed $U_4, U_6 \sim 1 - 2$

 $\partial R_\xi/\partial \beta$: gain ~ 3; gain at fixed $U_4, U_6, R_\xi, R_Z \lesssim 1$

- Gain in computational time roughly independent on $L = 8 - 128$
Outlook

- Substantial reduction of the error bars
- It does not require additional computational time
- Test on the Ising model
 - CPU gains are roughly independent on the lattice L
 - CPU gains are more pronounced for Metropolis update
- Other possible applications:
 - “Improved models”
 - Models with quenched disorder
 - ...

Ref: F. Parisen Toldin, Phys. Rev. E 84, 025703(R)