Cluster Monte Carlo method with a conserved order parameter

L.A. Fernandez, V. Martin-Mayor, David Yllanes

Departamento de Física Teórica I Universidad Complutense de Madrid

Leipzig, November 27th 2009

Nuclear Physics B **807**, 424-454 (2009) Physical Review E **80**, 015701(R) (2009)

Motivation

 All known Monte Carlo methods suffer critical or exponential slowing down when applied to important problems: Gauge theories, structural glasses, spin glasses, protein folding,...

э.

ヘロト 人間 ト 人臣 ト 人臣 トー

Motivation

- All known Monte Carlo methods suffer critical or exponential slowing down when applied to important problems: Gauge theories, structural glasses, spin glasses, protein folding,...
- Only for very few systems can one define an efficient cluster method that eliminates this problem.

э

→ Ξ → → Ξ →

Motivation

- All known Monte Carlo methods suffer critical or exponential slowing down when applied to important problems: Gauge theories, structural glasses, spin glasses, protein folding,...
- Only for very few systems can one define an efficient cluster method that eliminates this problem.
- On the other hand, considering global conservation laws is often useful (e.g., micromagnetical ensembles).

э

イロト 不得 トイヨト イヨト

Motivation

- All known Monte Carlo methods suffer critical or exponential slowing down when applied to important problems: Gauge theories, structural glasses, spin glasses, protein folding,...
- Only for very few systems can one define an efficient cluster method that eliminates this problem.
- On the other hand, considering global conservation laws is often useful (e.g., micromagnetical ensembles).
- Combining cluster methods with fixed-magnetisation ensembles was soon identified as a key (but probably intractable) challenge.

э

イロト 不得 トイヨト イヨト

Motivation

- All known Monte Carlo methods suffer critical or exponential slowing down when applied to important problems: Gauge theories, structural glasses, spin glasses, protein folding,...
- Only for very few systems can one define an efficient cluster method that eliminates this problem.
- On the other hand, considering global conservation laws is often useful (e.g., micromagnetical ensembles).
- Combining cluster methods with fixed-magnetisation ensembles was soon identified as a key (but probably intractable) challenge.
- We present a working cluster algorithm with a globally conserved order parameter.

э.

(日)

Motivation

- All known Monte Carlo methods suffer critical or exponential slowing down when applied to important problems: Gauge theories, structural glasses, spin glasses, protein folding,...
- Only for very few systems can one define an efficient cluster method that eliminates this problem.
- On the other hand, considering global conservation laws is often useful (e.g., micromagnetical ensembles).
- Combining cluster methods with fixed-magnetisation ensembles was soon identified as a key (but probably intractable) challenge.
- We present a working cluster algorithm with a globally conserved order parameter.
- We work in the Tethered Monte Carlo framework (introduced at CompPhys08), an (almost) fixed-magnetisation ensemble.

э.

イロト 不得 トイヨト イヨト

Main features

- Tethered Ensemble: original d.o.f. + Gaussian magnetostat:
 - Micromagnetic ensemble: fixed β and order parameter (*m*).
 - Tethered ensemble: fixed β and $\hat{m} = m + [Gaussian bath]$.
 - Related to Creutz's microcanonical demon. Main differences:
 - Continuous demons, coupled to *m* rather than to energy.

Main features

- Tethered Ensemble: original d.o.f. + Gaussian magnetostat:
 - Micromagnetic ensemble: fixed β and order parameter (*m*).
 - Tethered ensemble: fixed β and $\hat{m} = m +$ [Gaussian bath].
 - Related to Creutz's microcanonical demon. Main differences:
 - Continuous demons, coupled to *m* rather than to energy.
 - Extensive number of demons, which are eventually integrated out.
- Independent simulations at fixed \hat{m} . Later, reconstruction of *canonical* effective potential Ω_N .

Main features

- Tethered Ensemble: original d.o.f. + Gaussian magnetostat:
 - Micromagnetic ensemble: fixed β and order parameter (*m*).
 - Tethered ensemble: fixed β and $\hat{m} = m +$ [Gaussian bath].
 - Related to Creutz's microcanonical demon. Main differences:
 - Continuous demons, coupled to *m* rather than to energy.
 - Extensive number of demons, which are eventually integrated out.
- Independent simulations at fixed \hat{m} . Later, reconstruction of *canonical* effective potential Ω_N .
- Canonical averages are recovered for any value of the external field *h* without new simulations.
- Local algorithm (e.g. Metropolis) straightforward.
 - No critical slowing down for magnetic observables.
 - Other quantities have typical z = 2 behavior.

Main features

- Tethered Ensemble: original d.o.f. + Gaussian magnetostat:
 - Micromagnetic ensemble: fixed β and order parameter (*m*).
 - Tethered ensemble: fixed β and $\hat{m} = m +$ [Gaussian bath].
 - Related to Creutz's microcanonical demon. Main differences:
 - Continuous demons, coupled to *m* rather than to energy.
 - Extensive number of demons, which are eventually integrated out.
- Independent simulations at fixed \hat{m} . Later, reconstruction of *canonical* effective potential Ω_N .
- Canonical averages are recovered for any value of the external field *h* without new simulations.
- Local algorithm (e.g. Metropolis) straightforward.
 - No critical slowing down for magnetic observables.
 - Other quantities have typical z = 2 behavior.
- Here we implement a Swendsen-Wang update scheme and present our results for the D = 2, 3 Ising model.

D. Yllanes (UCM)

Tethered Monte Carlo

3/12

- Standard benchmark for MC simulation methods.
- Partition function and main observables $(N = L^D)$:

$$Z = \sum_{\{\sigma_{\mathbf{x}}\}} \exp\left[\beta \sum_{\langle \mathbf{x}, \mathbf{y} \rangle} \sigma_{\mathbf{x}} \sigma_{\mathbf{y}} + h \sum_{\mathbf{x}} \sigma_{\mathbf{x}}\right], \quad \sigma_{\mathbf{x}} = \pm 1,$$

$$E = Ne = -\sum_{\langle \mathbf{x}, \mathbf{y} \rangle} \sigma_{\mathbf{x}} \sigma_{\mathbf{y}}, \qquad M = Nm = \sum_{\mathbf{x}} \sigma_{\mathbf{x}}.$$

• We denote canonical averages by $\langle \cdots \rangle_{\beta}$:

$$C = N[\langle e^2 \rangle_{\beta} - \langle e \rangle_{\beta}^2], \qquad \chi = N[\langle m^2 \rangle_{\beta} - \langle m \rangle_{\beta}^2].$$

D. Yllanes (UCM)

• Canonical pdf for order parameter (h = 0),

$$p_1(m) = \frac{1}{Z} \sum_{\{\sigma_{\mathbf{x}}\}} \exp[-\beta E] \delta\left(m - \sum_i \sigma_i / N\right)$$

• Canonical pdf for order parameter (h = 0),

$$p_1(m) = \frac{1}{Z} \sum_{\{\sigma_x\}} \exp[-\beta E] \delta\left(m - \sum_i \sigma_i / N\right)$$

• Extend configuration space with N decoupled Gaussian demons

$$Z = \int_{-\infty}^{\infty} \prod_{i=1}^{N} \mathrm{d}\eta_i \sum_{\{\sigma_x\}} \exp\left[-\beta E - \sum_i \phi_i^2/2\right], \qquad R = Nr = \sum_i \phi_i^2/2.$$

• r (almost) Gaussian distributed, $r = \frac{1}{2} + \frac{\zeta}{\sqrt{N}}$, $|\zeta| \sim 1$.

• Canonical pdf for order parameter (h = 0),

$$p_1(m) = \frac{1}{Z} \sum_{\{\sigma_x\}} \exp[-\beta E] \delta\left(m - \sum_i \sigma_i / N\right)$$

• Extend configuration space with N decoupled Gaussian demons

$$Z = \int_{-\infty}^{\infty} \prod_{i=1}^{N} \mathrm{d}\eta_i \sum_{\{\sigma_{\mathbf{x}}\}} \exp\left[-\beta E - \sum_i \phi_i^2/2\right], \qquad R = Nr = \sum_i \phi_i^2/2.$$

- r (almost) Gaussian distributed, $r = \frac{1}{2} + \frac{\zeta}{\sqrt{N}}$, $|\zeta| \sim 1$.
- Let $\hat{m} = m + r$. Its pdf is a convolution (m and r independent) $\rightarrow p(\hat{m} = m + \frac{1}{2})$ is a *smoothing* of $p_1(m)$.

• Canonical pdf for order parameter (h = 0),

$$p_1(m) = \frac{1}{Z} \sum_{\{\sigma_x\}} \exp[-\beta E] \delta\left(m - \sum_i \sigma_i / N\right)$$

• Extend configuration space with N decoupled Gaussian demons

$$Z = \int_{-\infty}^{\infty} \prod_{i=1}^{N} \mathrm{d}\eta_i \sum_{\{\sigma_{\mathbf{x}}\}} \exp\left[-\beta E - \sum_i \phi_i^2/2\right], \qquad R = Nr = \sum_i \phi_i^2/2.$$

- r (almost) Gaussian distributed, $r = \frac{1}{2} + \frac{\zeta}{\sqrt{N}}$, $|\zeta| \sim 1$.
- Let $\hat{m} = m + r$. Its pdf is a convolution (m and r independent) $\rightarrow p(\hat{m} = m + \frac{1}{2})$ is a *smoothing* of $p_1(m)$.
- A smooth $p(\hat{m})$ has an effective potential $\Omega_N(\hat{m}, \beta)$

$$\boldsymbol{p}(\hat{\boldsymbol{m}}) = \frac{1}{Z} \int_{-\infty}^{\infty} \prod_{i=1}^{N} \mathrm{d}\eta_{i} \sum_{\{\sigma_{\boldsymbol{x}}\}} \mathrm{e}^{-\beta E - \sum_{i} \frac{\eta_{i}^{2}}{2}} \delta\left(\hat{\boldsymbol{m}} - \boldsymbol{m} - \sum_{i} \frac{\eta_{i}^{2}}{2N}\right) = \mathrm{e}^{N\Omega_{N}(\hat{\boldsymbol{m}},\beta)}$$

• Integrating demons out in the *constrained* (fixed \hat{m}) partition function \rightarrow tethered expectation values:

$$\langle O \rangle_{\hat{m},\beta} = \frac{\sum_{\{\sigma_{\mathbf{x}}\}} O(\hat{m}; \{\sigma_{\mathbf{x}}\}) \omega(\beta, \hat{m}, N; \{\sigma_{\mathbf{x}}\})}{\sum_{\{\sigma_{\mathbf{x}}\}} \omega(\beta, \hat{m}, N; \{\sigma_{\mathbf{x}}\})},$$

• Integrating demons out in the *constrained* (fixed \hat{m}) partition function \rightarrow tethered expectation values:

$$\langle O \rangle_{\hat{m},\beta} = \frac{\sum_{\{\sigma_{\mathbf{x}}\}} O(\hat{m}; \{\sigma_{\mathbf{x}}\}) \omega(\beta, \hat{m}, N; \{\sigma_{\mathbf{x}}\})}{\sum_{\{\sigma_{\mathbf{x}}\}} \omega(\beta, \hat{m}, N; \{\sigma_{\mathbf{x}}\})}, \\ \omega(\beta, \hat{m}, N; \{\sigma_{\mathbf{x}}\}) = e^{-\beta E + M - N\hat{m}} (\hat{m} - m)^{(N-2)/2} \theta(\hat{m} - m).$$

• Integrating demons out in the *constrained* (fixed \hat{m}) partition function \rightarrow tethered expectation values:

$$\begin{split} \langle O \rangle_{\hat{m},\beta} &= \frac{\sum_{\{\sigma_{\mathbf{x}}\}} O(\hat{m};\{\sigma_{\mathbf{x}}\}) \omega(\beta,\hat{m},N;\{\sigma_{\mathbf{x}}\})}{\sum_{\{\sigma_{\mathbf{x}}\}} \omega(\beta,\hat{m},N;\{\sigma_{\mathbf{x}}\})},\\ \omega(\beta,\hat{m},N;\{\sigma_{\mathbf{x}}\}) &= \mathrm{e}^{-\beta E + M - N\hat{m}} (\hat{m} - m)^{(N-2)/2} \ \theta(\hat{m} - m). \end{split}$$

• The *canonical* Ω_N follows from Fluctuation-Dissipation

$$\hat{h}(\hat{m}; \{\sigma_{\mathbf{x}}\}) = -1 + \frac{N/2 - 1}{\hat{M} - M} \implies \langle \hat{h} \rangle_{\hat{m}, \beta} = \frac{\partial \Omega_N(\hat{m}, \beta)}{\partial \hat{m}}$$

• Integrating demons out in the *constrained* (fixed \hat{m}) partition function \rightarrow tethered expectation values:

$$\begin{split} \langle O \rangle_{\hat{m},\beta} &= \frac{\sum_{\{\sigma_{\boldsymbol{x}}\}} O(\hat{m};\{\sigma_{\boldsymbol{x}}\}) \omega(\beta,\hat{m},N;\{\sigma_{\boldsymbol{x}}\})}{\sum_{\{\sigma_{\boldsymbol{x}}\}} \omega(\beta,\hat{m},N;\{\sigma_{\boldsymbol{x}}\})},\\ \omega(\beta,\hat{m},N;\{\sigma_{\boldsymbol{x}}\}) &= \mathrm{e}^{-\beta E + M - N\hat{m}} (\hat{m} - m)^{(N-2)/2} \ \theta(\hat{m} - m). \end{split}$$

• The *canonical* Ω_N follows from Fluctuation-Dissipation

$$\hat{h}(\hat{m}; \{\sigma_{\mathbf{x}}\}) = -1 + \frac{N/2 - 1}{\hat{M} - M} \implies \langle \hat{h} \rangle_{\hat{m}, \beta} = \frac{\partial \Omega_N(\hat{m}, \beta)}{\partial \hat{m}}$$

• Tethered mean values $\langle O \rangle_{\hat{m},\beta} \leftrightarrow$ canonical mean values $\langle O \rangle_{\beta}(h)$, for any external field *h*:

$$\langle O \rangle_{\beta}(h) = \int \mathrm{d}\hat{m} \, \langle O \rangle_{\hat{m},\beta} \exp[N(\Omega_N(\hat{m},\beta) + h\hat{m})].$$

L = 128, D = 3

Steps

• Select a mesh of \hat{m} values.

< □ > < 同 >

D. Yllanes (UCM)

Tethered Monte Carlo

▲ 臣 ▶ ▲ 臣 ▶ CompPhys09, Leipzig 7/12

æ

L = 128, D = 3

Steps

(1) Select a mesh of \hat{m} values.

< □ > < 同

Independent simulation for each 2 \hat{m} . Get $\langle O \rangle_{\hat{m},\beta}$.

∃ >

ж

L = 128, D = 3

Steps

- Select a mesh of \hat{m} values.
- Independent simulation for each *m̂*. Get (O)_{*m̂*,β}.
- **③** $\langle O \rangle_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).

≣⇒

L = 128, D = 3

Steps

- Select a mesh of \hat{m} values.
- Independent simulation for each *m̂*. Get (O)_{*m̂*,β}.
- **③** $\langle O \rangle_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).
- Sumerical integration of $\langle \hat{h} \rangle_{\hat{m},\beta}$ yields $\Omega_N(\hat{m},\beta)$.

Steps

- Select a mesh of *m̂* values.
- 2 Independent simulation for each \hat{m} . Get $\langle O \rangle_{\hat{m}.\beta}$.
- **3** $(O)_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).
- Numerical integration of $\langle \hat{h} \rangle_{\hat{m},\beta}$ yields $\Omega_N(\hat{m},\beta)$.

CompPhys09, Leipzig

7/12

S Reconstruct canonical $\langle O \rangle_{\beta}$ from $p(\hat{m})$ and $\langle O \rangle_{\hat{m},\beta}$.

Steps

- **(1)** Select a mesh of \hat{m} values.
- Independent simulation for each \hat{m} . Get $\langle O \rangle_{\hat{m},\beta}$.
- **3** $(O)_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).
- Numerical integration of $\langle \hat{h} \rangle_{\hat{m},\beta}$ yields $\Omega_N(\hat{m},\beta)$.
- **S** Reconstruct canonical $\langle O \rangle_{\beta}$ from $p(\hat{m})$ and $\langle O \rangle_{\hat{m},\beta}$.
- Statistical errors: jackknife.

ъ

7/12

CompPhys09, Leipzig

D. Yllanes (UCM)

L = 128, D = 3

Steps

- Select a mesh of \hat{m} values.
- Independent simulation for each m̂. Get (O)_{m̂,β}.
- **③** $\langle O \rangle_{\hat{m},\beta}$ smooth functions of \hat{m} → interpolate (e.g. spline).
- **Output** Numerical integration of $\langle \hat{h} \rangle_{\hat{m},\beta}$ yields $\Omega_N(\hat{m},\beta)$.
- S Reconstruct canonical $\langle O \rangle_{\beta}$ from $p(\hat{m})$ and $\langle O \rangle_{\hat{m},\beta}$.
- Statistical errors: jackknife.
- **Ø** Systematic errors: refine \hat{m} grid.

Tethered Monte Carlo

CompPhys09, Leipzig

ъ

7/12

- We can follow the Fortuin-Kasteleyn construction.
- Introduce bond-occupation variables n_{xy} (= 0, 1):

$$\mathbf{e}^{\beta(\sigma_{x}\sigma_{y}-1)} = \sum_{n_{xy}=0,1} [(1-p)\delta_{n_{xy},0} + p\delta_{\sigma_{x},\sigma_{y}} \delta_{n_{xy},1}], \quad p = 1 - \mathbf{e}^{-2\beta}$$

these bonds form N_C clusters.

- We can follow the Fortuin-Kasteleyn construction.
- Introduce bond-occupation variables n_{XY} (= 0, 1):

$$e^{\beta(\sigma_x \sigma_y - 1)} = \sum_{n_{xy} = 0,1} [(1 - p)\delta_{n_{xy},0} + p\delta_{\sigma_x,\sigma_y} \delta_{n_{xy},1}], \quad p = 1 - e^{-2\beta}$$

these bonds form N_C clusters.

• Combine this identity with $\omega(\beta, \hat{m}; \{\sigma_x\})$:

$$\omega(\beta, \hat{m}; \{\sigma_{\boldsymbol{x}}\}) = e^{-\beta E + M - N\hat{m}} (\hat{m} - m)^{(N-2)/2} \theta(\hat{m} - m).$$

- We can follow the Fortuin-Kasteleyn construction.
- Introduce bond-occupation variables n_{xy} (= 0, 1):

$$\mathbf{e}^{\beta(\sigma_{x}\sigma_{y}-1)} = \sum_{n_{xy}=0,1} [(1-p)\delta_{n_{xy},0} + p\delta_{\sigma_{x},\sigma_{y}} \delta_{n_{xy},1}], \quad p = 1 - \mathbf{e}^{-2\beta}$$

these bonds form N_C clusters.

• Combine this identity with $\omega(\beta, \hat{m}; \{\sigma_x\})$:

$$\omega(\beta, \hat{m}; \{\sigma_{\boldsymbol{x}}\}) = e^{-\beta E + M - N\hat{m}} (\hat{m} - m)^{(N-2)/2} \theta(\hat{m} - m).$$

- We have the following conditional probabilities:
 - Given {σ_x}, just as in the canonical case, bonds are independent and n_{xy} is 1 with probability pδ_{σ_x,σ_y}.

- We can follow the Fortuin-Kasteleyn construction.
- Introduce bond-occupation variables n_{xy} (= 0, 1):

$$\mathbf{e}^{\beta(\sigma_{x}\sigma_{y}-1)} = \sum_{n_{xy}=0,1} [(1-p)\delta_{n_{xy},0} + p\delta_{\sigma_{x},\sigma_{y}} \delta_{n_{xy},1}], \quad p = 1 - \mathbf{e}^{-2\beta}$$

these bonds form N_C clusters.

• Combine this identity with $\omega(\beta, \hat{m}; \{\sigma_x\})$:

$$\omega(\beta, \hat{m}; \{\sigma_{\boldsymbol{x}}\}) = e^{-\beta E + M - N\hat{m}} (\hat{m} - m)^{(N-2)/2} \theta(\hat{m} - m).$$

• We have the following conditional probabilities:

- Given $\{\sigma_x\}$, just as in the canonical case, bonds are independent and n_{xy} is 1 with probability $p\delta_{\sigma_x,\sigma_y}$.
- Given { n_{xy} }, the spins within cluster *i* are equal to $S_i = \pm 1$. Not all { S_i } configurations have the same probability:

$$p(\{S_i\}) \propto e^{M-\hat{M}}(\hat{M}-M)^{(N-2)/2} \theta(\hat{M}-M).$$

- a) Cluster tracing
- b) Cluster flipping:

.

- a) Cluster tracing (as in canonical SW)
- b) Cluster flipping:

- a) Cluster tracing (as in canonical SW)
- b) Cluster flipping: It is impossible to consider all 2^{N_C} cluster orientations

- a) Cluster tracing (as in canonical SW)
- b) Cluster flipping: We perform a dynamic MC

• Select $N'_C \ll N_C$ clusters (for instance $N'_C \approx 5$).

- a) Cluster tracing (as in canonical SW)
- b) Cluster flipping: We perform a dynamic MC
 - Select $N'_C \ll N_C$ clusters (for instance $N'_C \approx 5$).
 - **2** Heat bath among the $2^{N'_C}$ conf. with $N_C N'_C$ clusters fixed.

- a) Cluster tracing (as in canonical SW)
- b) Cluster flipping: We perform a dynamic MC
 - Select $N'_C \ll N_C$ clusters (for instance $N'_C \approx 5$).
 - **2** Heat bath among the $2^{N'_C}$ conf. with $N_C N'_C$ clusters fixed.
 - 3 Take measurements.

Steps 1–3 are repeated N_{REP} times, without retracing the clusters.

- a) Cluster tracing (as in canonical SW)
- b) Cluster flipping: We perform a dynamic MC
 - Select $N'_C \ll N_C$ clusters (for instance $N'_C \approx 5$).
 - 2 Heat bath among the $2^{N'_C}$ conf. with $N_C N'_C$ clusters fixed.
 - 3 Take measurements.

Steps 1–3 are repeated N_{REP} times, without retracing the clusters.

- a) Cluster tracing (as in canonical SW)
- b) Cluster flipping: We perform a dynamic MC
 - Select $N'_C \ll N_C$ clusters (for instance $N'_C \approx 5$).
 - 2 Heat bath among the $2^{N'_C}$ conf. with $N_C N'_C$ clusters fixed.
 - 3 Take measurements.

Steps 1–3 are repeated N_{REP} times, without retracing the clusters.

- Our N_{REP} : Tracing time \approx Flipping time
- Measuring ĥ at each of the N_{REP} steps reduces errors by up to a factor 25.

Integrated autocorrelation times

- The slowest observable is *E*.
- τ_{int} largest at $\hat{m} = 0.5$ ($m \simeq 0$).

∃ ▶

Integrated autocorrelation times

- The slowest observable is *E*.
- τ_{int} largest at $\hat{m} = 0.5$ ($m \simeq 0$).
- We fit to $\tau_{int} = AL^{z}$:

• $D = 2 \rightarrow z = 0.241(7)$

∃ ▶

Integrated autocorrelation times

D. Yllanes (UCM)

Tethered Monte Carlo

CompPhys09, Leipzig 10 / 12

Integrated autocorrelation times

- The slowest observable is *E*.
- τ_{int} largest at $\hat{m} = 0.5$ ($m \simeq 0$).
- We fit to $\tau_{int} = AL^z$:
 - $D = 2 \longrightarrow z = 0.241(7)$
 - $D = 3 \longrightarrow z = 0.472(8)$
- D = 3, z compatible with that of canonical Swendsen-Wang (data from Ossola and Sokal, 2001)

Integrated autocorrelation times

- The slowest observable is *E*.
- τ_{int} largest at $\hat{m} = 0.5$ ($m \simeq 0$).
- We fit to $\tau_{int} = AL^z$:
 - $D = 2 \rightarrow z = 0.241(7)$ • $D = 3 \rightarrow z = 0.472(8)$
- D = 3, z compatible with that of canonical Swendsen-Wang (data from Ossola and Sokal, 2001)

Canonical averages for L = 128, D = 3

	MCS	$-\langle e \rangle_{\beta}$	С	X	ξ
SW	$48 imes 10^6$	0.3309822(16)	22.155(18)	21193(13)	82.20(3)
ТМС	$50 imes 10^6$	0.3309831(15)	22.174(13)	21202(13)	82.20(5)

D. Yllanes (UCM)

$$\begin{array}{c|ccc} \hline L & \hat{m}_{\text{peak}} - \frac{1}{2} \\ \hline 48 & 0.18956(4) \\ 64 & 0.16341(4) \\ 96 & 0.13240(4) \\ 128 & 0.114083(24) \\ 192 & 0.09246(4) \\ 256 & 0.07959(12) \\ \hline \eta & 0.0360(7) \\ \hline \end{array}$$

•
$$p(\hat{m},\beta_{\rm c},L) = L^{\frac{\beta}{\nu}} f\left(L^{\frac{\beta}{\nu}}(\hat{m}-\frac{1}{2})\right)$$

D. Yllanes (UCM)

Tethered Monte Carlo

CompPhys09, Leipzig

2

11/12

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

•
$$p(\hat{m}, \beta_{\rm c}, L) = L^{\frac{\beta}{\nu}} f\left(L^{\frac{\beta}{\nu}}(\hat{m} - \frac{1}{2})\right) \Longrightarrow \hat{m}_{\rm peak} - \frac{1}{2} = AL^{-(\eta + D - 2)/2} + \dots$$

D. Yllanes (UCM)

Tethered Monte Carlo

CompPhys09, Leipzig

11/12

ヘロト 人間 ト 人 ヨト 人 ヨト

•
$$p(\hat{m}, \beta_{\rm C}, L) = L^{\frac{\beta}{\nu}} f\left(L^{\frac{\beta}{\nu}}(\hat{m}-\frac{1}{2})\right) \Longrightarrow \hat{m}_{\rm peak} - \frac{1}{2} = AL^{-(\eta+D-2)/2} + \dots$$

• Finding maxima numerically ill conditioned.

Tethered Monte Carlo

•
$$p(\hat{m}, \beta_{\rm c}, L) = L^{\frac{\beta}{\nu}} f\left(L^{\frac{\beta}{\nu}}(\hat{m} - \frac{1}{2})\right) \Longrightarrow \hat{m}_{\rm peak} - \frac{1}{2} = AL^{-(\eta + D - 2)/2} + \dots$$

• Finding roots is OK:
$$0 = \langle \hat{h} \rangle_{\hat{m}_{peak}, \beta_{c}}$$

D. Yllanes (UCM)

Tethered Monte Carlo

CompPhys09, Leipzig

11/12

•
$$p(\hat{m}, \beta_{\rm c}, L) = L^{\frac{\beta}{\nu}} f\left(L^{\frac{\beta}{\nu}}(\hat{m} - \frac{1}{2})\right) \Longrightarrow \hat{m}_{\rm peak} - \frac{1}{2} = AL^{-(\eta + D - 2)/2} + \dots$$

- Finding roots is OK: $0 = \langle \hat{h} \rangle_{\hat{m}_{peak}, \beta_c}$
- Previous determinations for D = 3:
 - HT-expansion: $\eta = 0.03639(15)$ (Campostrini et al., 2002).
 - MC + perfect action: $\eta = 0.0362(8)$ (Hasenbusch, 2001).

11/12

Conclusions and Outlook

• We presented Tethered Monte Carlo, a general strategy to compute the canonical effective potential.

Conclusions and Outlook

- We presented Tethered Monte Carlo, a general strategy to compute the canonical effective potential.
- Promising when suffering from large tunnelling barriers associated to the order parameter.

- We presented Tethered Monte Carlo, a general strategy to compute the canonical effective potential.
- Promising when suffering from large tunnelling barriers associated to the order parameter.
- Metropolis simulation straightforward and suffers no critical slowing down for magnetic observables.

- We presented Tethered Monte Carlo, a general strategy to compute the canonical effective potential.
- Promising when suffering from large tunnelling barriers associated to the order parameter.
- Metropolis simulation straightforward and suffers no critical slowing down for magnetic observables.
- It is possible to define a cluster update method:
 - Even for the computation of canonical averages, it is as efficient as SW in D = 3.
 - It can work in a magnetic field without new simulations.
 - New possibilities (e.g., precise computation of η from $p(\hat{m})$).

- We presented Tethered Monte Carlo, a general strategy to compute the canonical effective potential.
- Promising when suffering from large tunnelling barriers associated to the order parameter.
- Metropolis simulation straightforward and suffers no critical slowing down for magnetic observables.
- It is possible to define a cluster update method:
 - Even for the computation of canonical averages, it is as efficient as SW in D = 3.
 - It can work in a magnetic field without new simulations.
 - New possibilities (e.g., precise computation of η from $p(\hat{m})$).
- Current and future work
 - Diluted Antiferromagnet in a Field (TMC + Metropolis).
 - Condensation transition (TMC + cluster).

12/12