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Critical phenomena out-of-equilibrium

Features of aging

Experimental example

Cipelletti et al, Phys. Rev. Lett. 84, 2275 (2000)

Cq(t , s) ∼ 〈Iq(t)Iq(s)〉 6= Cq(t − s)
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Critical phenomena out-of-equilibrium

Features of aging

Autoresponse and integrated autoresponse

R(t , s) =
δ〈mi(t)〉
δhi(s)
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Fluctuation-dissipation theorem :

R(t , s) =
1

kBT
∂sC(t , s) ρTRM(t , s) =

1
kBT

(C(t , s) − C(t , 0))

Aging of the 2d FFXY



Aging of the 2d FFXY

Critical phenomena out-of-equilibrium

Features of aging

Experimental example

Hérisson & Ocio, Phys. Rev. Lett. 88, 257202 (2002)
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Critical phenomena out-of-equilibrium

Features of aging

Features of aging

Slow, non-exponential relaxation

Two-time functions depend on t and s

Two-time quantities depend on scale-invariant functions

Deviation from the fluctuation-dissipation theorem
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Critical phenomena out-of-equilibrium

Features of aging

Domain growth

t=0 t=10 t=100 t=1000

Inside the domains : reversible fluctuations
(spins equilibrated)

Domains walls : non-reversible growth
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Critical phenomena out-of-equilibrium

Features of aging

Scaling hypothesis

Only one characteristic length at each time :

ξ(t) ∼ t1/zc

t1ξ(  )r/

t2ξ(  )r/

= =
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Critical phenomena out-of-equilibrium

Scaling theory of two-time functions

The autocorrelation

At equilibrium :

C(t , s) = 〈Si(t)Si(s)〉 ∼ (t − s)−ac

where ac = 2β/(νzc) =
d=2

η/zc .

Out-of-equilibrium :

C(t , s) ∼ (t − s)−ac f (ξ(t)/ξ(s))

∼
t ,s→∞

(t − s)−ac (t/s)−φ

∼
t ,s→∞

s−ac (t/s)−λc/zc

where λc is a new exponent (φ = λc/zc − ac).
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Critical phenomena out-of-equilibrium

Scaling theory of two-time functions

The fluctuation-dissipation ratio

R(t , s) =
δ〈Si(t)〉
δhi(s)

∣

∣

∣

∣

h=0

At equilibrium :

kBTR(t , s) = ∂sC(t , s)

Out-of-equilibrium :

kBTR(t , s) = X (t , s)∂sC(t , s)

Because R(t , s) ∼ s−ac−1(t/s)−λr /zc , we get for λr = λc :

lim
t ,s→∞

X (t , s) = X∞

X∞ : universal
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Aging of the 2d Fully-Frustrated XY model

Static critical properties

The 2d fully-frustrated XY model

Hamiltonian on a square lattice (FFXY) :

HFFXY = −
∑

〈i,j〉
Jij

~Si · ~Sj

where ~Si is a planar spin and the Jij ensure
the full frustration of the lattice

Hamiltonian of an array of
Josephson junctions in a tranverse field
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Aging of the 2d Fully-Frustrated XY model

Static critical properties

Plaquette in the ground state
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J
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J

Symmetry U(1) for angles

Symmetry Z2 for chiralities
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Aging of the 2d Fully-Frustrated XY model

Static critical properties

Ground state structure
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Aging of the 2d Fully-Frustrated XY model

Static critical properties

Equilibrium properties

Two transitions at different temperatures for the angles
(TBKT ) and the chiralities (TCh) where TBKT < TCh

Angles : Berezinskiı̆-Kosterlitz-Thouless transition (BKT)
with a critical line

Low-temperature : spin-waves approximation

Chirality : second order phase transition
in the 2d Ising universality class
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Aging of the 2d Fully-Frustrated XY model

Aging of angles

Quench from T = 0 to T ≤ TBKT

Langevin equation :

∂θi(t)
∂t

= −δHSW [θ]

δθi
+ Ωi(t) ,

where

HSW [θ] =
J

2
√

2

∑

〈i,j〉

(

θi − θj
)2

,

is the FFXY hamiltonian in SW approximation.
Ω is a gaussian noise
We get the autocorrelation :

C(t , s) = 〈cos(θi(t) − θj(s))〉 ∼ (t − s)−η/2
(

t + s√
ts

)η/2

,

where η(T ) = kBT
√

2
2πJ
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Aging of the 2d Fully-Frustrated XY model

Aging of angles

Quench from T = 0 to T ≤ TBKT

C(t , s) ∼ (t − s)−η/2
(

t + s√
ts

)η/2
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This work
Luo, Zheng (1997)
Zheng, Ren, Ren (2003)
Hasenbusch, Pelissetto, Vicari (2005)
Spin waves approximation
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Aging of the 2d Fully-Frustrated XY model

Aging of angles

Quench from T = 0 to T ≤ TBKT
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Aging of the 2d Fully-Frustrated XY model

Aging of angles

Quench from T = ∞ to T = TBKT
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φ = 0.74(3) 6= XY model (φ = 0.613(4))
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Aging of the 2d Fully-Frustrated XY model

Aging of angles

Quench from T = ∞ to T = TBKT
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FFXY : X∞ = 0.385(15) 6= XY model (X∞ = 0.215(15))
Log. corrections in both cases : BKT-like transition
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Aging of the 2d Fully-Frustrated XY model

Aging of chiralities

Quench from T = ∞ to T = TCh
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λc/zc = 0.98(5) 6= Ising model (λc/zc = 0.738(21))
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Aging of the 2d Fully-Frustrated XY model

Aging of chiralities

Quench from T = ∞ to T = TCh
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X∞ = 0.410(10) 6= Ising model (X∞ = 0.328(1))

Log. corrections : influence of topological defects
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Conclusion

Aging of the FFXY

Aging of angles
Quench from the ground state to the critical line :

Estimation of η(T )
Evidences of the validity of SW approximation

Quench from HT phase to TBKT :
Universal quantities Φ = 0.74(3) and X∞ = 0.385(15).
Logarithmic corrections in the scaling variables

Aging of the chirality from HT phase to TCh

Universal quantities λc/zc = 0.98(5) and X∞ = 0.410(10)
incompatible with the Ising model. Cross-over ?
Influence of topological defects on the scaling variables.

Work available at : J. Stat. Mech. (2009) P10017
& cond-mat/0907.1474
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