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   MODEL KEY WORDS

SIR: Susceptible-Infectious-Recovered Model

SIR: Evolution of this three species

SIR: Simple tractable model capturing relevant features
           
SIR  Non-linear model

SIR  Out of equilibrium
 
SIR  Stochastic description



Infection produces further infections
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Flew versus Flu



Natural home of big 
surprises

   COMPLEX SYSTEMS

Comprise many
  components

Interacting  
non-linearly

System far from 
equilibrium

                         



Emergent behavior

Flash Mob



Scale invariance



Collective Behavior

Spreading of Diseases



DESCRIPTION
Many degrees of freedom 
Not all of them specified by deterministic forces 
Different time scales 

Stochastic descriptions

 Langevin equation
 Fokker-Planck equation
 Master equation
 Simulations (MC,MD)



Deterministic forces

Stochastic forces

DESCRIPTION



MODEL
Three state model

S-susceptibles: healthy individuals can catch

                          diseases

I-infectives:      can transmit disease provided

                          contacts

R-recovered:    immunized or removed out  



THREE STATE MODEL
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MFA              determinsitic equations

S -> I -> R     S(t)+I(t)+R(t) = N
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  STOCHASTIC MODEL
Deterministic evolution neglect fluctuations

Individuals are represented by nodes which are either of 
   the three states S I R  

Contact defined by links between nodes, minimal
   connectivity 

Each node, state variable occupation number n =  0, 1:

If node i is in the S state:                   otherwise n = 0

Mapping master equation in a quantum formulation  
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Master-Equation
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•PROCESS-DYNAMICS 
•CHANGE OF A CERTAIN CONFIGURATION
•MARKOV PROCESS, NO MEMORY
•UNIFORM IN TIME
•CONTINUOUS IN TIME

GAIN          LOST



Simple Example
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Description
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Quantum Language
OTHER LANGUAGE:  CREATION AND ANNIHILATION OPERATOR
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Mapping

∑

∑

++

+

−+−=

↓→↑−>=>
↑→↓−>=>

=><

>>=
∂
∂⇒>>=

=
∂
∂

i
iiiif

nn

n

ddddL

processd

processd

LnLn

tFLtF
t

ntnptF

tnpLtnp
t

])1()1([ˆ

0|1|

1|0|

|ˆ|'

)(|ˆ)(||),()(|

),(),(

'

λγ
γ
λ









SIR Model
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Master Eq.  for the probability density

1),( =tinS



DYNAMICS S -> I -> R
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DYNAMICS S -> I -> R



 EVOLUTION OPERATOR
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Creation of I and annihilation of S 
                                       provided lattice site i occupied with I

1,0⇒= +
iil aaA Particle number operator S state

B Particle number of I state 



Evolution Equation
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Hierarchy of Equations,     MFA decoupling: <AB>=<A><B> 



N-Point Cluster Functions
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S surrounded by I at the edges



N-Point Cluster Functions
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Coupled Equations        (Use A B = 0)



N-Point Cluster Functions
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N-Point Cluster Functions
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Recovery of infected individual I ->R with rate γ
Infection of S by the adjacent I with β

Infection of S at the left border



N-Point Cluster Functions
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Coupled equations
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Competition between growth and reduction processes
 
Coupling between H and G

                                           Nontrivial steady state
        
           
Solution for arbitrary initial condition                                



Solution uncorrelated random initial distribution 



Solution
Stationary solution

Relaxation time

 Due to fluctuations, isolated regions of susceptible
   individuals evolve
 Finite stationary distribution of the S type even for 
  large population size
 Relaxation time and stationary distribution depends on
  initial conditions 
 Highly nonergodic, far from equilbrium situation
 ns (t) strictly monotonically decreasing (no S generated)
 nI (t)   exhibit maximum, stationary state nI =0    



MFA
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MONTE CARLO SIMULATION

Initially, each site is occupied independently and randomly 
  by S with nS(0),  I with nI(0) = 1-nS(0)

  Update: Choose arbitrary site j 

  If j occupied by an I, then I decays to R with

  If not decay, then with prob ½ adjacent site (left or right) 

  Is this site occupied by S, then decay to I with
  

γβ
γ
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Numerical Results
Solid line: simulation; fixed N = 103



Numerical Results
Different N: small N                                 large N (= 104) fluctuations irrelvant  



MONTE CARLO SIMULATION



MONTE CARLO SIMULATION



Different parameters (1-D)



3-D Simulation



3-D Simulation



3-D Simulation



Phase diagram
Initial configuration
Infection rate Β
Recovery rate γ







CONCLUSION
SIMPLIFIED SIR MODEL & STOCHASTIC DYNAMICS
INCOMPLETE CONTACT   &  FLUCTUATIONS
MASTER EQUATION        &  QUANTUM FORMUL.
PAULI-OPERATORS           &  COMMUTE/ANTICOM
                            

EXACT SOLUTION

DEPENDING ON PARAMETERS -> DIFFERENT BEHAVIOR
INFECTIOUS  -> MAXIMUM <-> CONTINUOUS DECAY
SIGNIFICANT DIFFERENCE TO MFA
COMPARISON <-> MONTE CARLO SIMULATION
FLUCTUATIONS IRRELEVANT <-> LARGE POPULATION 



PROBLEMS
Hopping of individuals (in particular S)
Cluster size of I   (<BBBBBBB>)
Empty sites
Delay time for invection S -> I
After waiting time R -> S (S generated)
Immunization 
Higher Dimensions (field theoretical appraoch)
Critical Dimension
Scale free networks (higher connectivity)

                         



THE END



Key Words
Uncorrelated random initial conditions: analytical solution

I population may increase initially before decaying to zero.

Due to fluctuations, isolated regions of susceptible 
  individuals evolve

Finite stationary distribution of the S type even for 
   large population size. 

Simulations, Mean-field, Master Equation



‚Phase diagram‘



Phase diagram
Initial concentration

Infection rate

Recovery rate
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