Halle-Germany (Martin-Luther-University)

6 6

Halle 1200

EXACT SOLUTION OF A STOCHASTIC SIR-MODEL

MARIAN BRANDAU, Steffen Trimper

Institute of Physics University Halle Germany GUNTER M. SCHÜTZ

FZ Jülich, Germany

CompPhys09

MODEL KEY WORDS

- SIR: Susceptible-Infectious-Recovered Model
- >SIR: Evolution of this three species
- >SIR: Simple tractable model capturing relevant features
- SIR Non-linear model
- >SIR Out of equilibrium
- >SIR Stochastic description

Infection produces further infections

28/09/09 Newspaper Roanoke Time

REGION READY FOR FLU

Halle: ,Organized' Vaccination

Flew versus Flu

Emergent behavior

Abbildung 2.8: Ein Phasenübergang in der neugierigen Menge. (a) "Paramagnet";(b) "Ferromagnet" Flash Mob

Fig. 16.3 Scale invariance.

Collective Behavior

Spreading of Diseases

DESCRIPTION

Many degrees of freedom Not all of them specified by deterministic forces Different time scales

Stochastic descriptions

Langevin equation
Eakkon Planck equation

- Fokker-Planck equation
- Master equation
- Simulations (MC,MD)

DESCRIPTION

Three state model

S-susceptibles: healthy individuals can catch diseases I-infectives: can transmit disease provided contacts R-recovered: immunized or removed out

THREE STATE MODEL

MFA

determinsitic equations

S -> I -> R S(t)+I(t)+R(t) = N

$$\frac{\partial S(t)}{\partial t} = -\beta S(t) I(t)$$
$$\frac{\partial I(t)}{\partial t} = \beta S(t) I(t) - \gamma I(t)$$
$$\frac{\partial R(t)}{\partial t} = \gamma I(t)$$

- Deterministic evolution neglect fluctuations
- Individuals are represented by nodes which are either of the three states SIR
- Contact defined by links between nodes, minimal connectivity
- Each node, state variable occupation number n = 0, 1:

*If node i is in the S state: $n_S(i,t) = 1$ otherwise n = 0

Mapping master equation in a quantum formulation

PROCESS-DYNAMICS
CHANGE OF A CERTAIN CONFIGURATION
MARKOV PROCESS, NO MEMORY
UNIFORM IN TIME
CONTINUOUS IN TIME

Simple Example

 $RATE: \lambda(T,...)$ $RATE: \gamma(T,...)$

Description

 $p_{\uparrow}(t), \quad p_{\downarrow}(t) \quad prob \\ Markov \quad process \\ p_{\uparrow}(t + \Delta t) = p_{\downarrow}(t) \gamma \Delta t + p_{\uparrow}(t) (1 - \lambda \Delta t) \\ \frac{dp_{\uparrow}}{dt} = \gamma p_{\downarrow} - \lambda p_{\uparrow} \qquad \frac{dp_{\downarrow}}{dt} = -\gamma p_{\downarrow} + \lambda p_{\uparrow}$

General.

$$\frac{d}{dt}p_a = L_{ab}p_b$$

$$L_{ab} = \begin{pmatrix} -\lambda & \gamma \\ \lambda & -\gamma \end{pmatrix}$$

Quantum Language

OTHER LANGUAGE: CREATION AND ANNIHILATION OPERATOR

Mapping

 $\frac{\partial}{\partial t} p(n,t) = L p(n,t)$ $|F(t)\rangle = \sum \vec{p(n,t)} | \vec{n} \rangle \Longrightarrow \frac{\partial}{\partial t} | F(t)\rangle = \hat{L} | F(t) \rangle$ $< n' | \hat{L} | n > = L_{n'n}$ $d^+ | 0 > = | 1 > \lambda - process \quad \uparrow \rightarrow \downarrow$ $d |1\rangle = |0\rangle \gamma - process \downarrow \rightarrow \uparrow$ $\hat{L}_{f} = \sum [\gamma(1 - d_{i}^{+})d_{i} + \lambda(1 - d_{i})d_{i}^{+}]$

SIR Model

Master Eq. for the probability density

$$p(S,I,R,t) \equiv p(n,t); \quad \frac{\partial p(n,t)}{\partial t} = L p(n,t)$$

$$n_i = \cdot, \quad i = S,I,R \qquad \left| F(t) \right\rangle = \sum_n \vec{p(n,t)} \left| \vec{n} \right\rangle; \quad \frac{\partial}{\partial t} \left| F \right\rangle = -\hat{H} \left| F \right\rangle \qquad \hat{H} = -\hat{L}$$

$$n_{S}(i,t) = 1$$

DYNAMICS S->I->R

$$-\hat{H} = \beta \sum_{i} \left[b_{i+1}^{+} a_{i+1} + b_{i-1}^{+} a_{i-1} - A_{i+1} (1 - B_{i+1}) - A_{i-1} (1 - B_{i-1}) \right] B_{i}$$
$$+ \gamma \sum_{i} \left(b_{i} - B_{i} \right)$$

Creation of I and annihilation of S provided lattice site i occupied with I

$$A_l = a_i^+ a_i \Longrightarrow 0, 1$$

Particle number operator S state B Particle number of I state

Evolution Equation

$$\begin{aligned} \frac{d}{dt} < A_r > &= -\beta \left[< A_r B_{r-1} > + < A_r B_{r+1} > \right] \\ \frac{d}{dt} < B_r > &= -\beta \left[< A_r B_{r-1} > + < A_r B_{r+1} > \right] - \gamma < B_r > \end{aligned}$$

Hierarchy of Equations, MFA decoupling: <AB>=<A>

S surrounded by I at the edges

$$H_{r}(n) =$$

$$G_{r}(n) =$$

Coupled Equations (Use A B = 0)

 $\frac{d}{dt}H(n) = -[\gamma + \beta]H(n) + \beta[H(n+1) - G(n)]$ $\frac{d}{dt}G(n) = -2[\gamma + \beta]G(n) + 2\beta G(n+1)$

$$\frac{d}{dt}H(n) = -[\gamma + \beta]H(n) + \beta[H(n + \gamma) - G(n)]$$

$$\frac{d}{dt}G(n) = -\gamma[\gamma + \beta]G(n) + \beta G(n + \gamma)$$

$$n_{s}(i,t) = \langle A_{i}(t) \rangle \qquad n_{I}(i,t) = \langle B_{i}(t) \rangle$$

$$\frac{d}{dt}n_{s}(t) = -2\beta H(1,t) \qquad \frac{d}{dt}n_{I}(t) = 2\beta H(1,t) - \gamma n_{I}(t)$$

 $H(n) = <[n \otimes A] [1 \otimes B] >$ $G(n) = <[1 \otimes B][n \otimes A][1 \otimes B] >$

Increase by infection with $oldsymbol{eta}$

 $<[n+1] \otimes A \ 1 \otimes B > \rightarrow < [n] \otimes A \ 1 \otimes B >$

Recovery of infected individual I ->R with rate ${\cal P}$

Infection of S by the adjacent I with $oldsymbol{eta}$

 $\frac{d}{dt}H(n) = -[\gamma + \beta]H(n) + \beta[H(n+1) - G(n)]$

Infection of S at the left border

 $H(n) = <[n \otimes A] [1 \otimes B] >$ $G(n) = <[1 \otimes B][n \otimes A][1 \otimes B] >$

$$\frac{d}{dt}G(n) = -2[\gamma + \beta]G(n) + 2\beta G(n+1)$$

Coupled equations

$$\frac{d}{dt}H(n) = -[\gamma + \beta]H(n) + \beta[H(n+1) - G(n)]$$
$$\frac{d}{dt}G(n) = -2[\gamma + \beta]G(n) + 2\beta G(n+1)$$

Competition between growth and reduction processes

➤Coupling between H and G

Nontrivial steady state

Solution for arbitrary initial condition

Solution uncorrelated random initial distribution

$$n_{S}(t) = n_{S}(0) - 2\beta \pi n_{S}(0)n_{I}(0) \left\{ \left[\left(1 - \exp\left(-\frac{t}{\tau}\right) \right] \right] \\ \times [1 - \beta \pi n_{I}(0)] + \left[1 - \exp\left(-\frac{2t}{\tau}\right) \right] \frac{\beta \pi n_{I}(0)}{2} \right\}.$$

 $n_I(t) = n_I(0) [\exp(-\gamma t) + 2\beta \tau n_S(0) f(t)],$

$$\begin{split} f(t) &= \frac{\exp(-t/\tau) - \exp(-\gamma t)}{\gamma \tau - 1} [1 - \beta n_I(0)\tau] \\ &+ \frac{\beta n_I(0)\tau}{\gamma \tau - 2} [\exp(-2t/\tau) - \exp(-\gamma t)]. \end{split}$$

Solution

Stationary solution

$$\frac{n_{S}^{*}}{n_{S}(0)} = \left[\frac{\gamma + \beta[1 - n_{S}(0) - n_{I}(0)]}{\gamma + \beta[1 - n_{S}(0)]}\right]^{2},$$
$$\tau = \frac{1}{\gamma + \beta[1 - n_{S}(0)]}.$$

Relaxation time

- Due to fluctuations, isolated regions of susceptible individuals evolve
- Finite stationary distribution of the S type even for large population size
- Relaxation time and stationary distribution depends on initial conditions
- Highly nonergodic, far from equilbrium situation
- n_s (t) strictly monotonically decreasing (no S generated)
- n₁(t) exhibit maximum, stationary state n₁=0

MFA

$$\frac{\partial S(t)}{\partial t} = -\beta S(t) I(t)$$
$$\frac{\partial I(t)}{\partial t} = \beta I(t) \left(S(t) - \frac{\gamma}{\beta} \right)$$
$$\frac{\partial R(t)}{\partial t} = \gamma I(t)$$

increase or degrease Max. if $S(0) > \gamma/\beta$ $S(t') = \gamma/\beta$ $I(t')=I_{max}$ t' different

 $\frac{dR}{dt} = -\frac{dU(R)}{dR}$

$$U(R) = -\frac{S_0 \gamma^2}{\beta} \exp\left(-\frac{\beta}{\gamma}R\right) + \frac{\gamma R}{2} (R - 2N)$$

Overdamped motion in a potential

$$S(t \to \infty) \to S^* \approx S_0 \exp\left(-\frac{\beta}{\gamma}N\right)$$

MONTE CARLO SIMULATION

- •Initially, each site is occupied independently and randomly by S with $n_s(0)$, I with $n_1(0) = 1 n_s(0)$
- Update: Choose arbitrary site j
- If j occupied by an I, then I decays to R with $\frac{\gamma}{\gamma B+\gamma}$
- If not decay, then with prob $\frac{1}{2}$ adjacent site (left or right)
- Is this site occupied by S, then decay to I with

Numerical Results

Solid line: simulation; fixed N = 10^3

t

t

Numerical Results

t

t

MONTE CARLO SIMULATION

MONTE CARLO SIMULATION

Different parameters (1-D)

3-D Simulation

 $N = 1000, \beta = 0.7, \gamma = 0.5, B_0 = 200$

3-D Simulation

 $N = 1000, \beta = 0.9, \gamma = 0.1, B_0 = 200$

Steps

3-D Simulation

 $N = 1000, \beta = 0.2, \gamma = 0.5, B_0 = 400$

Initial configuration Infection rate B Recovery rate y

Phase diagram

SIMPLIFIED SIR MODEL & STOCHASTIC DYNAMICS INCOMPLETE CONTACT & FLUCTUATIONS MASTER EQUATION & QUANTUM FORMUL. PAULI-OPERATORS & COMMUTE/ANTICOM

EXACT SOLUTION

✓ DEPENDING ON PARAMETERS -> DIFFERENT BEHAVIOR
 ✓ INFECTIOUS -> MAXIMUM <-> CONTINUOUS DECAY
 ✓ SIGNIFICANT DIFFERENCE TO MFA
 ✓ COMPARISON <-> MONTE CARLO SIMULATION
 ✓ FLUCTUATIONS IRRELEVANT <-> LARGE POPULATION

PROBLEMS

Hopping of individuals (in particular S)
Cluster size of I (<BBBBBBB>)
Empty sites
Delay time for invection S -> I
After waiting time R -> S (S generated)
Immunization
Higher Dimensions (field theoretical appraoch)
Critical Dimension

Scale free networks (higher connectivity)

THE END

Key Words

>Uncorrelated random initial conditions: analytical solution

>I population may increase initially before decaying to zero.

Due to fluctuations, isolated regions of susceptible individuals evolve

Finite stationary distribution of the S type even for large population size.

Simulations, Mean-field, Master Equation

,Phase diagram'

I₀

γ

Phase diagram

