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Can a simple homopolymer model capture some essentials of protein folding?



Single Chain Conformational Transitions
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Multiple Transitions in a Simple Chain Model

Zhou, Hall, and Karplus found 
a "first-order" transition in a 

model homopolymer 

Model: Flexible Square-Well Chain 
Length: N = 64 

Well Diameter: λ = 1.5 
MC and DMD simulations 

PRL 77, 2822 (1996)
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Analogy with Bulk Fluid: 
Solid ⇔ Liquid ⇔ Gas 

Similar to Protein: 
Native⇔Globule⇔Denatured 



freezing 

collapse 

peaks merge as N→∞

Protein-like "all-or-none" transition in a simple model? 

Europhys Lett. 70, 628 (2005); J. Polym. Sci. B 44, 2542 (2006); 

PRE 75, 060801(R) (2007) 

Lattice Bond-Fluctuation Model 
Chain Length: N = 32-512 

Interaction Range: λ = 1.225 
Wang-Landau Simulation Method 

Ten years later ... a new result: 
Rampf, Paul, and Binder find 

evidence for a "direct freezing" 
transition in a simple model system. 

Analogous to simple liquid: 
Solid ⇔ Gas 

and single-step protein folding?: 
Native ⇔ Denatured 

Question: can a finite-length homopolymer 
exhibit such an all-or-none transition? 



SW Chain Model

Model has a discrete energy spectrum:  En = nε 
(n = number of monomer-monomer interactions)
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Polymer:

built from simple 
monomers:

Model Parameters: 
  ε = well depth (sets energy scale) 
  σ = hard-sphere diameter 
  L = fixed bond length (L = σ) 
  λ = interaction range/σ   
  T* = kBT/ε = reduced temperature 

Can study this model for a continuous range of λ

For SW monomers: liquid phase is unstable if λ ≤ 1.25 
 Question: Does the SW chain exhibit similar behavior? 
Note: chain connectivity places an upper limit on entropy of "gas" phase
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Density of States and Wang-Landau Sampling I

   Starting w/ g(En)=1, H(En)=0 ∀ n, ƒ0 =e 

Generate sequence of chain conformations 
using acceptance criteria: 

Update DOS:        g(En) → ƒm g(En) 

Update visitation 
histogram:             H(En) → H(En)+1 

When histogram ~flat ... 
   reduce modification factor:  ƒm+1 = (ƒm )1/2 
   reset histogram to zero:      H(En) = 0 ∀ n

€ 

Pacc (a→ b) = min 1, g(Ea )
g(Eb )

 

 
 

 

 
 

iterate 
 m levels 

m=20 is 
standard 

we need 
m>25

Density of States: 

     g(En) = volume of configurational 
     phase space for energy state En 

Thermodynamics: 

microcanonical entropy: 
   S(E) = kB lng(E) 

canonical partition function: 
    Z(T) = ∑ g(E)exp(-E/kBT) 

*Wang & Landau, PRL 86, 2050 (2001); PRE 64, 056101 (2001).

Wang-Landau algorithm* ... an iterative 
 simulation method to compute  g(En): 



Wang-Landau Sampling II

Success of the WL methods depends critically on underlying MC move set
These "standard" moves easily sample most of configuration space:

ReptationSingle bead crankshaft Pivot

Escobedo & de Pablo, JCP 102, 2636 (1995)

End-bridging
... However, we need this move to access the lowest energy regions of phase space:

This move requires 
weight factors in the 
acceptance criteria: 

wa = naJa

a b
# of bridgable 
sites in state a

Jacobian factor 
for state a



Single Chain DOS and Canonical Analysis

Canonical Analysis 

Partition Function: Z = ∑ g(E) e–E/kT  

Probability:  P(E,T) = g(E) e–E/kT / Z 

Average Energy:  〈E(T)〉 = ∑EP(E,T) 

Specific Heat:  C(T) = d〈E(T)〉/dT 
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For N = 256: g(E) spans ~700 orders of magnitude! 



Phase Behavior for Finite Length Chain?

1

10

100

1000

0.3 0.4 0.5 0.6 0.7 0.8

C
(T

) /
 N

k B

T *

1.06
1.08

1.10

SW Chain
N = 128

λ = 1.04

collapse

freezing

In the "canonical analysis", collapse and freezing 
specific heat peaks merge for small λ ... 

... a "microcanonical analysis" can be 
used to distinguish these transitions 



Microcanonical Analysis I

Phase transitions in a finite system 
determined from curvature of 

the microcaonical entropy: 
 S(E) = kB ln g(E)

Gross, "Microcanonical Thermodynamics" (2001) 
Junghans, Bachmann, & Janke, PRL 97, 218103 (2006) 

Taylor, Paul, & Binder, PRE 79, 050801(R) (2009) 

-1200

-900

-600

-300

0

-500 -250 0

 SW Chain
N = 128

E / ε

ln
[g

(E
)/g

(0
)]

λ = 1.15

1.02

1.05

1.10

Density of States

-900

-600

-300

0  SW Chain
N = 128, λ = 1.10

ln
[g

(E
)/g

(0
)]

Entropy: S(E) = kB ln g(E)

0.5

1.0

1.5

2.0

2.5

3.0

-500 -250 0
E / ε

T –
1 (E

) =
 d

 S
(E

) /
 dE

"convex intruder" signals 
discontinuous transition 

(chain freezing)

inflection point in T(E) 
signals continuous 

transition (chain collapse)

Phase boundaries obtained 
via "equal areas" construction



Microcanonical Analysis II

Phase transitions in a finite system 
determined from curvature of 

the microcaonical entropy: 
 S(E) = kB ln g(E)

Gross, "Microcanonical Thermodynamics" (2001) 
Junghans, Bachmann, & Janke, PRL 97, 218103 (2006) 

Taylor, Paul, & Binder, JCP 131, 114907 (2009) 
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Microcanonical Analysis III

Collapse transition is preempted 
by freezing for short-range interaction!
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Single Chain Phase Diagram: T-λ Version

Protein-like 
all-or-none 
 "folding"
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Macromolecules 41, 4537 (2008) 
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triple point moves to 
 λ = 1.15 in N → ∞ limit 



Single Chain Phase Diagram: E-λ Version
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Defining a physical folding 
 temperature sets the 
model energy scale
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Protein Thermodynamics: Free Energy Landscape

Here we take 
Tfold = 333 K (60 ºC) 
⇒  ε = 1.5 kcal/mol 

All-or-none folding 
of a N = 128 SW Chain 

with λ = 1.05

See Chan and Kaya:  
Proteins 40, 543 & 637 
 (2000); 52, 510 (2003).

Taylor, Paul, & Binder, 
PRE 79, 050801(R) (2009) 



Protein Thermodynamics: Calorimetry
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Experimental test for "two-state" folding:
Equality of calorimetric and van't Hoff* enthalpies
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@ T = T1/2:

See Chan and Kaya:  
Proteins 40, 543 & 637 
 (2000); 52, 510 (2003).

Transition enthalpy gives "distance" 
 between folded/unfolded states.

*experimentally this is 
 determined from the height of Cv
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to transition state.



Experimental Data for Chymotrypsin Inhibitor 2 (CI2)
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Summary and Outlook

Funding: DFG (SFB 625-A3)   
     NSF (DMR-0804370) 
     Hiram College          

Special thanks to the Binder group for their hospitality! 

                             Flexible SW Chain Model  

Findings:  Short range interaction results in "all-or-none" folding. 
                     see: PRE 79, 050801(R) (2009); JCP 131, 114907 (2009) 
                  Reproduces many key aspects of protein thermodynamics. 

To do:       Heteropolymer model (such as HP type). 
                                                    [difficulty: bridging moves change sequence] 
                  Explore free energy landscapes. 

Happy "American" Thanksgiving 


