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Introduction

Motivation I

1978: Shifman, Vainshtein and Zakharov introduced the
non-perturbative gluon condensate 〈απG G〉
Lattice gauge theory provides a promising tool to calculate it from
Wilson loops.
In the early 80th first computations : Plaquette(1981 Banks et al.,
DiGiacomo and Rossi), larger Wilson loops(1981/1982 Kripfganz
et al., Ilgenfritz et al.)

〈απG G〉 is conventionally derived using the plaquette P from the
relation

PMC = Ppert − a4 π
2

36

[−b0 g2

β(g)

]
〈α
π

GG〉 ,

→ Ppert is needed to very high order in LPT!
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Introduction

Motivation II

General interest in the behavior of perturbative series in QCD:

Q(n?) ∼
n?∑
n

anλ
n ,

Series are asymptotic, and assumed that for large n the leading
growth of the coefficients an can be parametrized

an ∼ C1 (C2)n Γ(n + C3) ,

NSPT→ orders (n?)of the perturbative series where a possible
set-in of this assumed behavior can be tested.

Talk H. Perlt (Leipzig) Wilson loops and NSPT CompPhys09 4 / 22
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Introduction

Motivation III

Standard diagrammatic approach in LPT is restricted essentially
to two-loop
Di Renzo et al. formulated the so-called Numerical Stochastic
Perturbation Theory (NSPT)
Based on the Langevin quantization method of Parisi/Wu
NSPT drops the concept of Feynman diagrams - uses the action
with the corresponding perturbative expansion of fields
There was a talk of A. Schiller at CompPhys07 about NSPT→
assume that all know the details ....

Talk H. Perlt (Leipzig) Wilson loops and NSPT CompPhys09 5 / 22
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The Langevin equation Langevin equation for lattice QCD

Langevin equation for lattice QCD

Use Euclidean lattice Langevin equation with “time” t

∂

∂t
Ux ,µ(t ; η) = i (∇x ,µSG[U]− ηx ,µ(t)) Ux ,µ(t ; η)

η = ηaT a random field with Gaussian distribution
∇x ,µ left Lie derivative on the group

For t →∞ link gauge fields U are distributed according to measure
exp(−SG[U])

Discretise t = n ε
Get solution at next time step n + 1 in the Euler scheme

Ux ,µ(n + 1; η) = exp(Fx ,µ[U, η]) Ux ,µ(n; η)

Fx ,µ[U, η] = i (ε∇x ,µSG[U] +
√
ε ηx ,µ)

We use the Wilson plaquette gauge action SG
Talk H. Perlt (Leipzig) Wilson loops and NSPT CompPhys09 6 / 22



The Langevin equation Langevin equation for lattice QCD

Langevin equation for lattice QCD

Use Euclidean lattice Langevin equation with “time” t

∂

∂t
Ux ,µ(t ; η) = i (∇x ,µSG[U]− ηx ,µ(t)) Ux ,µ(t ; η)

η = ηaT a random field with Gaussian distribution
∇x ,µ left Lie derivative on the group

For t →∞ link gauge fields U are distributed according to measure
exp(−SG[U])

Discretise t = n ε
Get solution at next time step n + 1 in the Euler scheme

Ux ,µ(n + 1; η) = exp(Fx ,µ[U, η]) Ux ,µ(n; η)

Fx ,µ[U, η] = i (ε∇x ,µSG[U] +
√
ε ηx ,µ)

We use the Wilson plaquette gauge action SG
Talk H. Perlt (Leipzig) Wilson loops and NSPT CompPhys09 6 / 22



The Langevin equation Perturbative Langevin equation

Perturbative Langevin equations I

Use that solution for perturbative expansion (DiRenzo et al.):
Rescale ε = βε and expand gauge fields U (and “force” F )

Ux ,µ(n; η)→ 1 +
∑
l>0

β−l/2U(l)
x ,µ(n; η)

Solution transforms to system of equations

U(1)(n + 1) = U(1)(n)− F (1)(n)

U(2)(n + 1) = U(2)(n)− F (2)(n)

+
1
2

(F (1)(n))2 − F (1)(n)U(1)(n)

· · ·

Random noise field η enters only in F (1)

Higher orders are stochastic via dependence on lower orders
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The Langevin equation Perturbative Langevin equation

Wilson loops in NSPT

Wilson loop WNM of size N ×M:

WNM(n?) =
n?∑

n=0

W (n)
NM gn

(n? denotes the maximal order of LPT)
The coefficients W (n)

NM are obtained as

W (n)
NM =

〈∑
ni

2(N+M)∏
j=1

U(ni )
µj

(xj)

 δ(
P

ni ),n

〉

It must be W (n)
NM = 0 for n =odd.

We expand around the trivial vacuum U(0)
µ (x) = 1.

Talk H. Perlt (Leipzig) Wilson loops and NSPT CompPhys09 8 / 22



The Langevin equation Computer implementation of NSPT

Computer implementation of NSPT

Computational framework:

Quenched Wilson gauge action
NSPT up to order n = 20 for Wilson loops WNM

Lattice sizes L4 with L = 4, ...,12
L = 12 on a NEC SX-9 computer of RCNP at Osaka University
The rest on Linux/HP-clusters at Leipzig university

Talk H. Perlt (Leipzig) Wilson loops and NSPT CompPhys09 9 / 22
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The Langevin equation Computer implementation of NSPT

Perturbative coefficients for ε→ 0

For L = 12 we get for some moderate Wilsonloop sizes

0.0001

0.001

0.01

0.1

1

10

0 5 10 15 20

W
(n

)
N

M

n

L = 12

−W11
+W22−W22
+W21−W21
+W31−W31
+W41−W41
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Perturbative series at large order

Questions

In order to extract quantities like 〈απG G〉 the perturbative series
should be known as precise as possible.
Is there a factorial behaviour of the perturbative coefficients?
Up to now: calculations for Wilsonloops up to order n = 10 (Di
Renzo et al.) and up to n = 16 (Rakow, plaquette)
Our investigation: Order n = 20 of LPT for various sizes of WNM

Is n = 20 "sufficient" or do we need some kind of extrapolation
formulae?
Do we observe a deviation from the assumed a4-behaviour of
〈απG G〉?
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Perturbative series at large order Heuristic model

Extended HRS model

Question: Can one find a functional form F (g) for the behaviour of the
Wilsonloops?

F (g) =
∑
n=1

cn g2n → rn =
cn

cn−1

We found a hypergeometric functional form

WNM,pert ∼ 2F1(1− ρ1,1− ρ2; 1 + s; u g2)

Taylor epansion in g results in the ratio rn

rn = u
(n − ρ1)(n − ρ2)

n(n + s)

generalization of an older HRS (Horsley, Rakow, Schierholz) formula
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Perturbative series at large order Heuristic model

Domb-Sykes plot
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Perturbative series at large order Heuristic model

rn(n) plot

Speculation of factorial behaviour based on renormalon inspired model
(Burgio et al. (1998), see also Y. Meurice (2006))
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c n
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n
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n

L = 12

HRS fit to W11
W11

BDMO fit to W11

We do not observe a factorial growth, at least in the region n ≤ 20 and
for our lattice sizes.
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Perturbative series at large order Boosted perturbation theory

Boosted perturbation theory

Bare coupling constant g is a bad expansion parameter
Redefinition into boosted coupling gb and rearrangement of series
→ better behaviour
First application by Rakow (2005)

For the plaquette P = W11 we define g2 → g2
b = g2

Ppert,b
and transform

Ppert (g,n?) = 1 +
n?∑

n=1

W (n)
11 g2n → Ppert ,b(gb,n?) = 1 +

n?∑
n=1

W (n)
b,11 g2n

b

Talk H. Perlt (Leipzig) Wilson loops and NSPT CompPhys09 15 / 22
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Perturbative series at large order Boosted perturbation theory

Coefficients for "naive" and boosted LPT
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Naive: −W11

Boosted: +Wb,11
Boosted: −Wb,11

W (n)
11 oscillate and show a very sharp decrease with n
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Perturbative series at large order Boosted perturbation theory

P for "naive" and boosted LPT

Summed series for P at β = 6.2 and for L = 12 as function of maximal
order n?, MC data from QCDSF
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n⋆

L = 12, β = 6.2

MC value
Naive LPT

Boosted LPT

Ppert ,b show a superior convergence behavior.
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Gluon condensate

Gluon condensate

∆P = (Ppert − PMC) ∼ a2 or ∼ a4 ?
Check: plot of ∆P versus a/r0 (r0 - Sommer scale) together with
fit curves ∼ (a/r0)4

MC data taken from Boyd et al. and QCDSF
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Gluon condensate

Extracting a value for the gluon condensate

∆P = a4 π2

36

[
−b0 g2

β(g)

]
〈απGG〉

Ansatz: ∆P(a/r0) = C (a/r0)4 and
(
−b0 g2

β(g)

)
∼ 1.

Fitting C in the range 0.1 ≤ a/r0 ≤ 0.25
r4
0 〈απG G〉HRS = 1.63(9), r4

0 〈απG G〉boosted = 1.80(5).

For r0 = 0.5 fm we obtain

〈α
π

G G〉HRS = 0.039(2) GeV 4, 〈α
π

G G〉boosted = 0.043(2) GeV 4 .

Fit the more general ansatz ∆P = C (a/r0)δ → δ = 3.5± 0.1
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Summary and outlook

Summary

NSPT calculation for Wilsonloops up to order n = 20 of LPT
Investigation of large n-behaviour - test of models for describing
the data
No factorial behaviour could be observed
Numerical value for gluon condensate: less assumptions on large
loop behaviour, but still rather uncertain
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Summary and outlook

Outlook

∆P also larger Wilson loops - MC data are available
Qualified error analysis for boosted LPT
More realistic error bound on the value for the gluon condensate
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