Systematic Microcanonical Analyses of Polymer Adsorption Transitions

BuildMoNa

Monika Möddel¹, Michael Bachmann², Wolfhard Janke¹

November 26, 2009

・ロト ・ 日下・ ・ ヨト

 1 Institut für Theoretische Physik, Universität Leipzig 2 Institut für Festkörperforschung, Theorie II, Forschungszentrum Jülich International NTZ-Workshop on New Developments in Computational Physics $10^{\rm th}$

Table of Contents

1 Basic Definitions

- The Model: Off-lattice Polymer near a Substrate
- Definitions for a Microcanonical Analysis

2 Simulation Results

- The Origin of the Peak
- Increasing Substrate Attraction
 - ${\scriptstyle \bullet}$ Adsorption vs. Coil-Globule Transition
- Increasing Chain Length
- Scaling of the Convex Intruder
- Adsorption Temperature
- 3 Conclusions

イロト イロト イヨト イ

The Model: Off-lattice Polymer near a Substrate Definitions for a Microcanonical Analysis

Semiflexible 3*D*-Coarse-Grained Polymer near a Substrate

$$E_{\text{total}} = E_{\text{LJ}} + E_{\text{bend}} + E_{\text{sur}}$$

Lennard-Jones Potential

$$E_{\rm LJ} = 4 \sum_{i=1}^{N-2} \sum_{j=i+1}^{N} \left(\frac{1}{r_{ij}^{12}} - \frac{1}{r_{ij}^{6}} \right)$$

Bending Energy

$$E_{\text{bend}} = \frac{1}{4} \sum_{k=1}^{N-2} \left(1 - \cos\left(\vartheta_k\right) \right)$$

Surface Attraction

$$E_{sur} = \epsilon_s \sum_{i=1}^{N} \left(\frac{2}{15} \frac{1}{z_i^9} - \frac{1}{z_i^3} \right)$$

The Model: Off-lattice Polymer near a Substrate Definitions for a Microcanonical Analysis

Semiflexible 3D-Coarse-Grained Polymer near a Substrate

Lennard-Jones Potential

$$E_{\rm LJ} = 4 \sum_{i=1}^{N-2} \sum_{j=i+1}^{N} \left(\frac{1}{r_{ij}^{12}} - \frac{1}{r_{ij}^6} \right)$$

Bending Energy

$$E_{\text{bend}} = \frac{1}{4} \sum_{k=1}^{N-2} \left(1 - \cos\left(\vartheta_k\right)\right)$$

Surface Attraction

$$E_{sur} = \epsilon_s \sum_{i=1}^{N} \left(\frac{2}{15} \frac{1}{z_i^9} - \frac{1}{z_i^3} \right)$$

ComPhys09

Canonical vs. Microcanonical Approach

canonical ensemble (controlled by intensive parameter T)

Def.: NVT-ensemble: statistical equilibrium ensemble, where the number of particles (N) and the volume (V) of each microstate are the same. The temperature (T) is the one of a common heat bath.

• resultant energy distribution: Boltzmann distribution $p(E) = g(E)e^{-E/k_BT}$

microcanonical ensemble (controlled by extensive parameter E)

Def.: NVE-ensemble: ensemble of microstates with (N, V and E conserved), e.g., the system is isolated from any environment

- based on density of states g(E), that is still well-defined for non-extensive systems
- g(E) obtained by multicanonical Monte Carlo sampling

The Model: Off-lattice Polymer near a Substrat Definitions for a Microcanonical Analysis

Important Definitions

microcanonical entropy

$$s(e) = N^{-1}k_B \ln g(e)$$
, with $k_B = 1$ and $e = E/N$

<ロト < 部ト < ヨト < ヨト

ComPhys09

크

Important Definitions

The Model: Off-lattice Polymer near a Substrate Definitions for a Microcanonical Analysis

microcanonical entropy

$$s(e) = N^{-1}k_B \ln g(e)$$
, with $k_B = 1$ and
 $e = E/N$

<ロト <部ト < 国ト < 国ト

microcanonical temperature

$$T(e) = (\partial s(e) / \partial e)_{N,V}^{-1}$$

Important Definitions

The Model: Off-lattice Polymer near a Substrate Definitions for a Microcanonical Analysis

microcanonical entropy

$$s(e) = N^{-1}k_B \ln g(e)$$
, with $k_B = 1$ and $e = E/N$

microcanonical temperature

$$T(e) = (\partial s(e) / \partial e)_{N,V}^{-1}$$

Gibbs construction/adsorption temp.

concave hull $\mathcal{H}_s(e) = s(e_{ads}) + e/T_{ads}$, that touches s(e) at e_{ads} and e_{des}

・ロト ・日下 ・ヨー

Important Definitions

The Model: Off-lattice Polymer near a Substrate Definitions for a Microcanonical Analysis

microcanonical entropy

$$s(e) = N^{-1}k_B \ln g(e)$$
, with $k_B = 1$ and $e = E/N$

microcanonical temperature

$$T(e) = (\partial s(e) / \partial e)_{N,V}^{-1}$$

Gibbs construction/adsorption temp.

concave hull $\mathcal{H}_s(e) = s(e_{ads}) + e/T_{ads}$, that touches s(e) at e_{ads} and e_{des}

Latent heat per monomer required to break the surface contacts at $T_{\rm ads}$

$$\Delta q = e_{\rm des} - e_{\rm ads} = T_{\rm ads}[s(e_{\rm des}) - s(e_{\rm ads})]$$

ComPhys09

Important Definitions

The Model: Off-lattice Polymer near a Substrate Definitions for a Microcanonical Analysis

microcanonical entropy

$$s(e) = N^{-1}k_B \ln g(e)$$
, with $k_B = 1$ and $e = E/N$

microcanonical temperature

$$T(e) = (\partial s(e) / \partial e)_{N,V}^{-1}$$

Gibbs construction/adsorption temp.

concave hull $\mathcal{H}_s(e) = s(e_{ads}) + e/T_{ads}$, that touches s(e) at e_{ads} and e_{des}

Latent heat per monomer required to break the surface contacts at $T_{\rm ads}$

$$\Delta q = e_{\rm des} - e_{\rm ads} = T_{\rm ads}[s(e_{\rm des}) - s(e_{\rm ads})]$$

Surface entropy

 $\Delta s_{\text{surf}} \equiv \Delta s(e_{\text{sep}})$, where e_{sep} is the energy with $\Delta s(e) = \mathcal{H}_s(e) - s(e)$ being maximal

ComPhys09

The Origin of the Peak Increasing Substrate Attraction Increasing Chain Length Scaling of the Convex Intruder Adsorption Temperature

Let's start simple: Density of States g(E) of a Free 3mer

v

N=3 and $\epsilon_s=0$

Here the hamiltonian can be written as:

$$H(\vartheta) = E_{\rm LJ} + E_{\rm bend}$$

= 4(2 + 2 cos \vartheta)^{-3}((2 + 2 cos \vartheta)^{-3} - 1)
+ (1 - cos \vartheta)/4

The Origin of the Peak Increasing Substrate Attraction Increasing Chain Length Scaling of the Convex Intruder Adsorption Temperature

Density of States g(e) of a Free Polymer increasing

the Chain Length

The Origin of the Peak Increasing Substrate Attraction Increasing Chain Length Scaling of the Convex Intruder Adsorption Temperature

Microcanonical Entropy $s(e) = \ln g(e)$ of a Free Polymer

increasing the Chain Length

The Origin of the Peak Increasing Substrate Attraction Increasing Chain Length Scaling of the Convex Intruder Adsorption Temperature

Microcanonical Entropy $s(e) = \ln g(e)$ of a Free Polymer

increasing the Chain Length

Monika Möddel

ComPhys09

The Origin of the Peak Increasing Substrate Attraction Increasing Chain Length Scaling of the Convex Intruder Adsorption Temperature

Now add and increase a Substrate Attraction

- for low ϵ_s no convex intruder can be found (continuous adsorption, docking)
- $\bullet\,$ with increasing ϵ_s the amount of low-energy states increases and s(e) gets convex at some ϵ_s
- $T_{\rm ads}$ (inverse slope), Δq and $\Delta s_{\rm surf}$ increases with ϵ_s

Now add and increase a Substrate Attraction

- for low ϵ_s no convex intruder can be found (continuous adsorption, docking)
- $\bullet\,$ with increasing ϵ_s the amount of low-energy states increases and s(e) gets convex at some ϵ_s
- $T_{\rm ads}$ (inverse slope), Δq and $\Delta s_{\rm surf}$ increases with ϵ_s

Monika Möddel ComPhys0

The Origin of the Peak Increasing Substrate Attraction Increasing Chain Length Scaling of the Convex Intruder Adsorption Temperature

Relation between scaling and conformation

- for $\epsilon_s \gtrsim 2$ the adsorption transition takes place at higher T than the Θ -transition and scaling converges
 - \rightarrow scaling directly linked to conformations?

M. Möddel, M. Bachmann, and W. Janke, J. Phys. Chem. B **113**, 3314 (2009). Basic Definitions Simulation Results Conclusions Concl

And what happens for longer Polymers?

- the maximum in s(e) disappears for long chains
- Δs_{surf} as well as Δq decrease with N, while T_{ads} seems to saturate
- slope for high e increases with N (microcanonical temperature changes sign)

And what happens for longer Polymers?

- the maximum in s(e) disappears for long chains
- Δs_{surf} as well as Δq decrease with N, while T_{ads} seems to saturate
- slope for high e increases with N (microcanonical temperature changes sign) 0.20

And what happens for longer Polymers?

- the maximum in s(e) disappears for long chains
- Δs_{surf} as well as Δq decrease with N, while T_{ads} seems to saturate
- slope for high e increases with N (microcanonical temperature changes sign)

The Origin of the Peak Increasing Substrate Attraction Increasing Chain Length Scaling of the Convex Intruder Adsorption Temperature

Scaling of the Convex Intruder for different ϵ_s

 Δs_{surf} and Δq

the data clearly suggest

- $\Delta s_{\text{surf}} \propto N^{-\kappa_s}$
- $\Delta q \propto N^{-\kappa_q}$

for $\epsilon_s \gtrsim 2$

ϵ_s	κ_s	κ_q
3	1.647 ± 0.014	0.390 ± 0.004
4	1.360 ± 0.013	0.368 ± 0.004
5	1.237 ± 0.008	0.367 ± 0.003
6	1.166 ± 0.005	0.358 ± 0.004

for ε_s ≥ 4 single layer conformations get likely at low T and Δq ∝ ε_s

The Origin of the Peak Increasing Substrate Attraction Increasing Chain Length Scaling of the Convex Intruder Adsorption Temperature

Scaling of the Convex Intruder for different ϵ_s

 $\Delta s_{\rm surf}$ and Δq

the data clearly suggest

- $\Delta s_{\text{surf}} \propto N^{-\kappa_s}$
- $\Delta q \propto N^{-\kappa_q}$

for $\epsilon_s \gtrsim 2$

ϵ_s	κ_s	κ_q
3	1.647 ± 0.014	0.390 ± 0.004
4	1.360 ± 0.013	0.368 ± 0.004
5	1.237 ± 0.008	0.367 ± 0.003
6	1.166 ± 0.005	0.358 ± 0.004

for comparison: First order: $\Delta s_{\text{surf}} \sim N^{-1}$

 $\Delta q - \Delta q_{\epsilon_s \to \infty} \sim N^{-1}, \ \Delta q_{\epsilon_s \to \infty} \neq 0$ here: $\Delta q_{\epsilon_s \to \infty} = 0$

different scaling \rightarrow continuous transition

The Origin of the Peak Increasing Substrate Attraction Increasing Chain Length Scaling of the Convex Intruder Adsorption Temperature

Saturation of the Adsorption Temperature with Chain Length

- $T_{\rm ads}$ monotonically increasing with N
- $\bullet\,$ likely not diverging, but reaching a fixed (probably universal) value for $N\to\infty$

Conclusions

- Adsorption transition exhibits clear signals of a first-order-like conformational transition in the important case of finitely long polymers
 - expressed by coexistence of adsorbed and desorbed conformations at the adsorption temperature
- A better understanding can be obtained by separating s(e) in adsorbed and desorbed part or deriving it for very short chains
- The transition crosses over into a second-order phase transition in the thermodynamic limit, as expected
- Scaling of Δs_{surf} and Δq was found for not too small ϵ_s
- Approach also feasible for a study of simulation box/density-dependence

(日) (四) (日) (日)

Conclusions

- Adsorption transition exhibits clear signals of a first-order-like conformational transition in the important case of finitely long polymers
 - expressed by coexistence of adsorbed and desorbed conformations at the adsorption temperature
- A better understanding can be obtained by separating s(e) in adsorbed and desorbed part or deriving it for very short chains
- The transition crosses over into a second-order phase transition in the thermodynamic limit, as expected
- Scaling of $\Delta s_{\rm surf}$ and Δq was found for not too small ϵ_s
- Approach also feasible for a study of simulation box/density-dependence

Monika Möddel

BuildMoNa

ComPhys09

UNIVERSITÄT LEIPZIG

Bonus Material

Monika Möddel ComPhys09

《曰》 《圖》 《圖》 《圖》

æ