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Canonical vs. Microcanonical Approach

canonical ensemble (controlled by intensive parameter T )

Def.: NV T -ensemble: statistical equilibrium ensemble, where
the number of particles (N) and the volume (V ) of each
microstate are the same. The temperature (T ) is the one of a
common heat bath.

resultant energy distribution: Boltzmann distribution
p(E) = g(E)e−E/kBT

microcanonical ensemble (controlled by extensive parameter E)

Def.: NV E-ensemble: ensemble of microstates with (N , V and
E conserved), e.g., the system is isolated from any environment

based on density of states g(E), that is still well-defined
for non-extensive systems

g(E) obtained by multicanonical Monte Carlo sampling
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Latent heat per monomer required to
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Surface entropy
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Let’s start simple: Density of States g(E) of a Free 3mer
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Monika Möddel ComPhys09



Basic Definitions
Simulation Results

Conclusions

The Origin of the Peak
Increasing Substrate Attraction
Increasing Chain Length
Scaling of the Convex Intruder
Adsorption Temperature

Density of States g(e) of a Free Polymer increasing

the Chain Length
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Microcanonical Entropy s(e) = ln g(e) of a Free Polymer
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Monika Möddel ComPhys09



Basic Definitions
Simulation Results

Conclusions

The Origin of the Peak
Increasing Substrate Attraction
Increasing Chain Length
Scaling of the Convex Intruder
Adsorption Temperature

Microcanonical Entropy s(e) = ln g(e) of a Free Polymer
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Now add and increase a Substrate Attraction

divide s(e) into adsorbed and desorbed part

def.: adsorbed if: esurf < −0.1 ǫs (some arbitrariness here)

sdes(e) quite constant while sads(e) arises with ǫs

sads, sdes both concave at adsorption transition
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Now add and increase a Substrate Attraction

for low ǫs no convex intruder can be found (continuous adsorption, docking)

with increasing ǫs the amount of low-energy states increases and s(e) gets
convex at some ǫs

Tads (inverse slope), ∆q and ∆ssurf increases with ǫs
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Monika Möddel ComPhys09



Basic Definitions
Simulation Results

Conclusions

The Origin of the Peak
Increasing Substrate Attraction
Increasing Chain Length
Scaling of the Convex Intruder
Adsorption Temperature

Now add and increase a Substrate Attraction

for E < Eads, T (e) increases with e and depends on ǫs

for E > Edes, T (e) is independent of ǫs

in the phase coexistence regime there is a region (between max and
min of T−1(E)), where T (E) decreases with E

negative
specific heat!

location of esep
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quite
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Relation between scaling and conformation
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And what happens for longer Polymers?
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the maximum in s(e) disappears for long chains

∆ssurf as well as ∆q decrease with N , while Tads seems to saturate

slope for high e increases with N (microcanonical temperature
changes sign)
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Scaling of the Convex Intruder for different ǫs

∆ssurf and ∆q

the data clearly suggest

∆ssurf ∝ N−κs

∆q ∝ N−κq
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5 1.237 ± 0.008 0.367 ± 0.003
6 1.166 ± 0.005 0.358 ± 0.004

for ǫs ' 4 single layer
conformations get
likely at low T and
∆q ∝ ǫs
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First order: ∆ssurf ∼ N−1

for comparison:

∆q − ∆qǫs→∞ ∼ N−1, ∆qǫs→∞ 6= 0
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different scaling → continuous transition
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Saturation of the Adsorption Temperature with Chain Length

Tads monotonically increasing with N

likely not diverging, but reaching a fixed (probably universal) value
for N → ∞

fit was performed
on function
derived from
simple mean-field
argument

suggests a finite
T∞
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Conclusions

Adsorption transition exhibits clear signals of a first-order-like
conformational transition in the important case of finitely long
polymers

expressed by coexistence of adsorbed and desorbed
conformations at the adsorption temperature

A better understanding can be obtained by separating s(e) in
adsorbed and desorbed part or deriving it for very short chains

The transition crosses over into a second-order phase transition
in the thermodynamic limit, as expected

Scaling of ∆ssurf and ∆q was found for not too small ǫs

Approach also feasible for a study of simulation
box/density-dependence
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