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1. Motivation / introduction 

Coulomb glass model  =  semiclassical model of diluted impurity band in amorphous or 
crystalline semiconductor, invented by Pollak, 1970, and Efros and Shklovskii, 1975 
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     interaction energy of nearest neighbours ∼ 12 meV
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Presumptions of Coulomb glass model: 

• 

• 

Temperature so low, that excitations to the conduction band / from the valence band 
negligible 

Concentration so low, that quantum interference of the states at neighbouring sites 
irrelevant  

Further simplifications: 

Sites at lattice, acceptors emulated by background charge, disorder by on-site potential: 
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mostly −B / 2ϕi uniformly distributed in [ , ].  B / 2

Advantage:  Interaction matrix can be stored for larger systems. 

Danger:       Modification of interaction spectrum, correlation of static potential lost. 



Experimental evidence for predictions by Efros & Shklovskii, 1975  

Temperature dependence of conductivity  
for variable range hopping with interaction, 

σ ∝ exp{-(T

Coulomb gap in single-particle density of  
states g(E) ∝ |E − μ|d-1  for T = 0: 

1/2/T) }, here a-Si

  
                      Sandow et al., PRL, 2001 

0 1-xCrx:: 

           
                           see AM et al., JPC, 1985 

 



Current research in this field: Glass transition 

Huge number of local minima concerning single-particle hops 

⇒  broad scale of relaxation times, see Schreiber et al. 1996, Pérez-Garrido et al. 1999 

⇒  non-ergodicity causes e.g. measuring time dependence of specific heat 

But what about the glass transition? 

Purely dynamic feature or  
       thermodynamic phase transition behind? 

Under which conditions does phase  
       transition exist? 

No glass transition found by  
       Surer et al. PRL 2009,  
       Goethe and Palassini, PRL 2009. 

Our aim in this work: precise study of       Phase diagram of 3d Coulomb glass by  
nature of order-disorder transition for K = 0.5     Pankov & Dobrovsavljević, PRL, 2005 



2. Simulation method 

As ususal: substitution of time averaging for ensemble averaging 

Problem:   Cluster algorithm seems not to be available for the antiferromagnetic  
Coulomb interaction because of frustration (Swendsen, priv. com.) 

Our approach: introducing by hand set of system modifications of various complexity: 
     one-particle exchange with surroundings (single-spin flip),  
    one-electron-hop over distance below certain bound (two-spin flip),  
    two-electron hops changing ni for four neighbouring sites (four-spin flip) 

Efficient error control:  decomposition of simulation in 100 intervals of simulation time τ  

with random start and equilibration during τ /3 before starting integration    

⇒  Estimation of mean values and errors, and restart with increased τ if needed. 

Method is advantageous also due to better sampling of configuration space. 



At low T, acceleration by modifying dynamics  
AM and P. Thomas, Phys. Rev. B 55 (1997) 7460 
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B) Increase rates of auxiliary transition 
→  treat low-energy subset analytically 

A) ‘Drive tunnels’ between states of  

low-energy subset S 
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3. Raw data 
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     indicates phase transition at finite T  
     for d = 2 and 3, but not for d =1. 
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b)  Staggered occupation 
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     characterises degree of order analogously 
     to antiferromagnet,  
 

             σ i i
x y zn i i i= − ⋅ − + +( ) ( )2 1 1   

 

     Sample average:   σ = Σσ d / Li    

     Thus:  σ =  order parameter, introduced  

     by Vojta 1993 

σ ( , )T L     Behaviour of   ⇒  phase transition  

     at finite T  for d = 2 and 3, but presumably  
     not for d = 1. 

     Confirmed by extrapolation L → ∞  based  

     on high-temperature relation  d /2−Lσ ∝    

         



c)  Generalised susceptibility 
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χ σ σ= −L Td ( ) /2 2
               
 
 
     Peaks evolve with increasing L, 
             broad on logarithmic scale for d = 1, 
             sharp for d = 2 and 3 

      
  
 
 
 
 
 
 
         



d)  Binder parameter = fourth moment ratio 
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     In sense of Binder-cumulant analysis,  
     at transition from ordered to disordered phase, 
     ratio   

                Q = 〈σ 2 2 / 〈σ 4〉 〉    

     changes from 1 to 1/3. 

     Scaling in this T region  ⇒  critical exponents 
 

 
 
 
 
 
         



4. Data evaluation 

a)  d = 1:  There seems to be no phase transition in this case. 

Solution of   Q(TA,L) = A    
for A = 0.90, 0.75, 0.60, and 0.45 yields 
exponential vanishing of T

 
 

A with rising L. 
Similar behavior of susceptibility maximum. 

 
  ⇒    Scaling  Q(T,L) = Q(T0/T – ln L) , here 
          for L = 40, 100, 280, 700, and 1400.  
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b)  d = 2  and  d = 3 

Numerical procedure in analysing Binder ratio: 
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q q2 1= − −ln( )           

and   

q q3 3 2 1= −tan(( / ) )π           

Deviations from scaling described by  
L dependence of   (Hasenbusch 2001) T dc,

Ansatz    

          

with   

q T L q t b t c td d d d( , ) ,= + + +0
2 3

              t a L T T Ld d= −( )( ( )),c

L = 16, 24, 34, 48, 68, 88, and 112 for d = 2, 
and 
L = 8, 10, 12, 14, 16, 18, 20, 22 for d = 3 

and universal , ,  enables  

high accuracy of  
qd,0 bd cd

a Ld ( )



Prerequisite:  

high quality of  

modified scaling of Q(T,L) 
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Problem:  Adjustable    ⇒   

linear contribution    to  , 

suppressed by   

qd,0
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T Ldc, ( )∝ 1/ ( )a Ld

           Q2,0 = 0.8492(12),   
           Q  = 0.625(4)   3,0

 Extrapolation of quadratic relation  
                                 ⇒  critical temperatures 
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analogously to ) analysis:  

logarithms approx. by polynomials of 3
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q T Ld ( ,
rd order in t, 

partly utilising parameter universalities 

  



Critical exponents from differentiation as well as from power law fits for various L regions 
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For order parameter and specific heat, alternatively by Widom and hyperscaling relations  

p p-1)/p  instead of by  a + b LSpecial for specific heat: approx. c(L)  by  a + b (L

0 0.025 0.05 0.075 0.1
-0.2

0

0.2

0.4

0.6

α / ν

0 0.05 0.1 0.15 0.2

1 / L

0

0.2

0.4

0.6

0.8

α / ν

d = 2

d = 3

0 0.025 0.05 0.075 0.1

0.1

0.15

0.2

β / ν

0 0.05 0.1 0.15 0.2

1 / L

0.4

0.5

β / ν

d = 2

d = 3

     



5. Summary of exponent values 

quantity d L region Coulomb short-range Ising model Agreement 

α /ν 2 24 – 96     -0.02(4)                  0  (ln) + 

β /ν 2 48 – 96      0.1318(21)                  1/8 +/- 

γ /ν 2 48 – 96      1.742(15)                  7/4 ++ 

ν 2 34 – 96      1.013(25)                  1 ++ 

α /ν 3   6 – 18      0.09(9)             0.1740[8] +/- 

β /ν 3 12 – 18      0.506(7)             0.51820[8] +/- 

γ /ν 3 14 – 18      1.973(10)             1.96361[15] ++ 

ν 3 10 – 18      0.633(4)             0.63012[16] ++ 

Widom relation: α + 2 β + γ = 2                         Hyperscaling relation:  2 − α = d ν    



6. Conclusion  

Studied:  System of localised charges on half-filled lattice without static disorder  

Result:    Critical exponents consistent with short-range Ising universality,  
in agreement with previous, less precise numerical data by Overlin et al., 2004.  
Now, all other known universality classes excluded,  
supporting analytical studies by Brognara et al., 2002, and Ciach, 2004. 

⇒  Screening is so efficient that, in spite of long-range interaction,  
model belongs to same universality class as short-range Ising model. 

 

Thus Coulomb glass resembles a chameleon:  
Coulomb gap is long-range effect, while, for  
samples without static disorder, thermal  
order-disorder transition is short-range feature. 

⇒  Challenge:  Influence of static disorder 

Details:  Phys. Rev. B 79, 174206 (2009)                       en.wikipedia.org/wiki/File:Caméléon_Madagascar_02.jpg 
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