Critical behavior of bond-diluted negative-weight percolation

O. Melchert¹, L. Apolo², A.K. Hartmann¹

¹Institut für Physik, Universität Oldenburg ²City College of the City University of New York, New York

Introduction

- Percolation problem
- Results
 - Diluted negative-weight percolation (DNWP)
 - Densely packed loops (DPLs)
 - NWP in higher dimensions
- Summary

- L \times L lattice, fully periodic boundary conditions
- Undirected edges, weight (cost) distribution:

$$P(\omega) = \rho (2\pi)^{-1/2} \exp(-\omega^2/2) + (1-\rho) \delta(\omega-1)$$

- Allows for loops \mathcal{L} with negative weight $\omega_{\mathcal{L}}$
- Agent on lattice edges: pay/receive resources
- **Configuration** C of loops, with

$${m E}\equiv\sum_{{\cal L}\in {\cal C}}\omega_{{\cal L}}\stackrel{!}{=}{\sf min}$$

Obtain C through mapping to minimum weight perfect matching problem

d(i) = min_{j \in N(i)} $[d(j) + \omega(i,j)]$ not fulfilled

d(i) = min_{j \in N(i)} $[d(j) + \omega(i,j)]$ not fulfilled

d(i) = min_{j \in N(i)} $[d(j) + \omega(i,j)]$ not fulfilled

- d(i) = min_{j \in N(i)} $[d(j) + \omega(i,j)]$ not fulfilled
- Standard minimum-weight path algorithms, e.g.
 Dijkstra, Bellman-Ford, Floyd-Warshall, don't work
- Minimum-weight path problem requires matching techniques

[R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network flows]

Loop percolation

 $(L = 64 \text{ at } \rho = 0.335, \ 0.340, \ 0.750)$

- 💶 Observe system spanning loops above critical ho
- Disorder induced, geometric transition
- Characterize loops using observables from percolation theory (finite-size scaling (FSS) analysis)

[D. Stauffer, A. Aharony, Introduction to Percolation Theory]

Bond diluted NWP

- Consider diluted lattice: fraction p of absent bonds
- Modified lattice topology: $p=0 \rightarrow$ regular lattice $p>0 \rightarrow$ fractal lattice structure
- Random percolation has impact on NWP of loops
- p>1/2: unlikely to find spanning (red) loops

 Figure: minimum-weight loop configuration on largest cluster of bonds (gray edges)

Effect of bond dilution on NWP

Scaling analysis for relative size of smallest box that fits largest loop $\langle A_L \rangle \equiv \langle R_x \times R_y \rangle / L^2$

Finite-size scaling: $\langle A_I \rangle \sim f_1[(p-p_c)L^{1/\nu}]$ p_c : critical point ν : correlation length exponent Data collapse for $\rho = 1.0$: S = 1.25 $p_c = 0.4998(5)$ $\nu = 1.33(5)$ (no dilution: $\nu = 1.49(7)$)

S = "quality" of the scaling assumption (good if S ≤ 2)
 FSS analysis via autoScale.py [OM, arXiv:0910.5403]

Effect of bond dilution on NWP

Scaling analysis: probe critical points *p_c* and correlation length exponents *ν* at fixed disorder parameter *ρ*

ρ	p_c	ν	S		1			
0.340(1)	0.0	1.49(7)	0.91	0.5	- no	spannii	ng 🔒	⇔ -€
0.4	0.125(2)	1.49(9)	0.97		loo	ps	Ŭ <u>∧</u> ,⊕'	·
0.5	0.265(2)	1.49(15)	1.02			•	a. ~	
0.6	0.357(2)	1.49(11)	1.03				.*	
0.7	0.420(2)	1.47(11)	1.02	d		∲		
0.8	0.463(1)	1.47(11)	0.93				spanr	ning
0.9	0.4893(9)	1.41(8)	1.20			o	loops	
1.0	0.4998(5)	1.33(5)	0.91	0		į		
	abart Llarta		(0000)]	0		*		
[Apolo, iviel	chert, Harth	nann, PRE	(2009)]		0	0.34	ρ	1

- ▶ ν at ρ = 1.0: characteristic for 2*d* random percolation Here: NWP → different compared to usual percolation
- Dilution changes universality class of NWP

Effect of bond dilution on NWP

Scaling analysis: probe critical points *p_c* and correlation length exponents *ν* at fixed disorder parameter *ρ*

ρ	<i>p</i> _c	ν	S				
0.340(1)	0.0	1.49(7)	0.91	0.5	l no spannii	na .	\$ (
0.4	0.125(2)	1.49(9)	0.97		loops	, ©	
0.5	0.265(2)	1.49(15)	1.02			a. ~	
0.6	0.357(2)	1.49(11)	1.03			, *	
0.7	0.420(2)	1.47(11)	1.02	d	∲		
0.8	0.463(1)	1.47(11)	0.93		1	spann	in
0.9	0.4893(9)	1.41(8)	1.20			loops	
1.0	0.4998(5)	1.33(5)	0.91	0			
[Apolo, Me	lchert, Hartr	nann, PRE	(2009)]	0	0 0.34	ρ	

Detailed analysis at $\rho = 1.0$, p = 0.4998(5) up to L = 512: Scaling of loop-length: $\langle \ell \rangle \sim L^{d_f} \rightarrow d_f = 1.333(2)$ Similar to self-avoiding walks: $d_f^{SAW} = 4/3$

Densely-packed loops (DPLs)

- Consider NWP at large values of "Gaussian" disorder parameter ρ
- Similarity to fully-packed loop (FPL) model [Zeng et. al., PRL (1998)]
- Comparison to FPL model: DPL model ...
 - \rightarrow exhibits local "impurities"
 - \rightarrow has more general disorder
 - → possible on various lattice geometries

 Figure: configuration of densely packed loops (red: single spanning loop, blue: nonspanning "small" loops)

Results for densely packed loops

Scaling analysis for square system with L=256 at $\rho=1.0$

Finite-size scaling:

length distrib.:

 $n_{s}\sim s^{- au},$ rough. distrib.: $n_r \sim r^{\zeta-3}$, loop length: $\langle \ell \rangle \sim R^{d_f} (1 + cR^{-\omega})$

scaling relation: $\tau - 1 = (2 - \zeta)/d_f$

		DPL	FPL
au	=	2.14(2)	2.15(1)
d_{f}	=	1.751(5)	1.75(1)
ω	=	0.92(5)	-
ζ	=	0.00(3)	0.00(1)

- DPL: square lattice, FPL: hexagonal lattice
- General disorder distribution + local "impurities": DPLs exhibit same scaling as FPLs

NWP in higher dimensions

- Consider NWP on regular lattice graphs
- Here: hypercubic lattices with dimension d=2...7
- Scaling analysis: estimate geometric properties of loops

 Figure: minimum-weight configuration of loops (red: spanning loop, blue: nonspanning "small" loops)

Results for NWP in higher dimensions

Finite-size scaling analysis:

suszept.: $\chi_L \sim L^{\gamma/\nu}$, length distrib.: $n_s \sim s^{-\tau}$

Scaling relations: $\gamma + 2\beta = d\nu, \tau = 1 + d/d_f$ and $2 - \alpha = d\nu$

Resulting critical points and exponents in $d = 2 \dots 7$:

d	$ ho_{c}$	ν	α	β	γ	d _f	τ
2	0.340(1)	1.49(7)	-0.99(14)	1.07(6)	0.77(7)	1.266(2)	2.59(3)
3	0.1273(3)	1.00(2)	-1.00(3)	1.54(5)	-0.09(3)	1.459(3)	3.07(1)
4	0.0640(2)	0.80(3)	-1.20(12)	1.91(11)	-0.66(5)	1.60(1)	3.55(2)
5	0.0385(2)	0.66(2)	-1.30(10)	2.10(12)	-1.06(7)	1.75(3)	3.86(3)
6	0.0265(2)	0.50(1)	-1.00(6)	1.92(6)	-0.99(3)	2.02(1)	4.00(2)
7	0.01977(6)	3/7 (?)				2.01(2)	4.50(1)

- Negative-weight percolation of loops
- Distinct from random bond/site percolation
- Results:
 - dilution changes universality class of 2d NWP
 - densely packed loops: scaling as for FPL model
 - scaling properties for various dimensions

More details:

OM & A.K. Hartmann, NJP 10 (2008) 043039 L. Apolo, OM & A.K. Hartmann, PRE 79 (2009) 031103

- Negative-weight percolation of loops
- Distinct from random bond/site percolation
- Results:
 - dilution changes universality class of 2d NWP
 - densely packed loops: scaling as for FPL model
 - scaling properties for various dimensions

More details:

OM & A.K. Hartmann, NJP 10 (2008) 043039 L. Apolo, OM & A.K. Hartmann, PRE 79 (2009) 031103

Thank you!