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Introduction

transition state theory

http://www.bio.mtu.edu/campbell/401l18p2.html



Introduction

supported catalysts

� metal particles deposited on the internal surface 
of a porous support 

� designed to maximize the active surface area per 
unit  mass and volume of the catalyst

� porous pellets (2 – 20 nm in diameter) or monoliths 
with a porous "washcoat"

� pores diameter: 1 – 2 nm (micropores)

2 – 50 nm (mesopores)

≥ 50 nm (macropores)



Introduction

supported catalysts

� size of metal particles:  few atoms

1 – 20 nm (more typical)

10 – 100 nm (car exhaust)

� fabrication of real/model catalysts: impregnation, 
evaporation, chemical vapor deposition, vesicle-
mediated deposition, spin-coating technique, 
electron beam lithography, electrochemical 
fabrication etc.



Introduction

heterogeneous catalysis

� particle structure: geometric shape, exposed 
crystal planes, size, properties of the support 
(e.g. metal-support interaction), temperature 
and method of fabrication

� reaction mechanisms: prescription of 
elementary steps (adsorption, desorption, 
reaction and diffusion) and ratios of the rate 
constants

� spillover and back spillover effects



Introduction

heterogeneous catalysis

� rate equations (mean-field)

� distribution of catalytic sites in lattices (CO 
oxidation), with simplified diffusion and 
adsorption of some species

� simple models emphasizing scaling properties



Goal

discuss the interplay of various 
physico-chemical quantities and 
conditions  in systems where spillover 
is present
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reaction mechanism

gasads

adsgas

PCR

RR

→+

↔

gasgasads PCRR →+′+



The Model

definition

dl

l

+
=εcatalyst coverage:



The Model

definition



The Model

1

1

>>
>>

d

l

500100         20050

1503             501

≤≤⇒−
≤≤⇒−

dnm

lnm

continuum limit
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The Model

( ) ( ) 0,, =
∂
∂=

∂
∂

tx
t

tx
t sc θθ

stationary state

( ) ( )
( ) ( )xtx

xtx

ss

cc

θθ
θθ

=
=

,

,



The Model
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The Model
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The Model

balance
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The Model

crkTOF θ=

turnover frequency



The Model

comparison with simulations



Mobility and Geometry

diffusion lengths
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Mobility and Geometry

a few assumptions

� setting the time unit

� low desorption on the catalyst
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Mobility and Geometry

reactant mobility
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Mobility and Geometry

catalyst particles size
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Temperature

Arrhenius
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Temperature

a few assumptions
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Temperature

activation of a process

� exceeding the external flux

� excluded volume effects

� low temperature         surface poisoning

� reaction activation            other processes activation



Temperature
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Conclusions

� for rapid reactions, enhancing surface 
diffusion or increasing catalyst particle size 
favors back spillover  and thus increases the 
turnover frequency

� for slow reactions, spillover-dominated 
regime: enhancing surface diffusion or 
increasing catalyst particle size slows down 
the convertion

� catalyst coverage dependent critical ratio of 
diffusion lengths separates these regimes



Conclusions

� a peak in the turnover frequency as function 
of temperature is observed when Ed > ED and 
Er < Ed

� significant particle size dependece in the 
peaks for small gaps between the activation 
energies

� for fixed amount of catalytic material, small 
particle sizes allow the turnover frequency to 
attain high peak values (beneficial effect of 
back spillover)



Conclusions

� for slow reactions, i.e. Er > Ed , the turnover 
frequency monotonically increases with 
temperature

� in that case, large particle sizes are more 
efficient to avoid negative effects of spillover



Perspectives

� catalyst deactivation by poisoning (trapping 
problems): 

T. G. Mattos and F. D. A. Aarão Reis

J. Chem.Phys. (accepted)

� anodic corrosion of metals: formation of 
patterns with nanotube shapes:

in colaboration with Prof. J-P Badiali and D. Di 
Caprio (CNRS - Paris)
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