The equilibrium low temperature phase of 3D Ising spin glasses: results from Janus

Víctor Martín-Mayor in the name of the Janus Collaboration:

L. A. Fernandez, V.M.-M., A. Muñoz Sudupe, B. Seoane, D. Yllanes UNIVERSIDAD COMPLUTENSE DE MADRID

> A. Cruz, J. Monforte, D. Navarro, A. Tarancon UNIVERSIDAD DE ZARAGOZA

A. Maiorano, E. Marinari, G. Parisi, S. Perez-Gaviro UNIVERSITÀ DI ROMA 1, LA SAPIENZA

M. Guidetti, F. Mantovani, S. F. Schifano, R. Tripiccione UNIVERSITÀ DI FERRARA

> A. Gordillo-Guerrero, J.J. Ruiz-Lorenzo UNIVERSIDAD DE EXTREMADURA

- Spin-glasses: basic facts.
- The Janus computer.
- The temperature random-walk.
- Numerical results.
- Onclusions.
- Jobs with the Janus collaboration.

Observables

Madrid (UCM)

2

・ロト ・ 四ト ・ ヨト ・ ヨト

•
$$\mathcal{H} = -\sum_{\langle \boldsymbol{x}, \boldsymbol{y} \rangle} J_{\boldsymbol{x} \boldsymbol{y}} \sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}}, \quad \mathcal{P}(J_{\boldsymbol{x} \boldsymbol{y}}) = \delta(J_{\boldsymbol{x} \boldsymbol{y}}^2 - 1).$$

• First thermal averaging, $\langle \ldots \rangle$, then disorder averaging, $\overline{\langle \ldots \rangle}$.

Observables

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

•
$$\mathcal{H} = -\sum_{\langle \boldsymbol{x}, \boldsymbol{y} \rangle} J_{\boldsymbol{x} \boldsymbol{y}} \sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}}, \quad \mathcal{P}(J_{\boldsymbol{x} \boldsymbol{y}}) = \delta(J_{\boldsymbol{x} \boldsymbol{y}}^2 - 1).$$

- First thermal averaging, $\langle \ldots \rangle$, then disorder averaging, $\overline{\langle \ldots \rangle}$.
- 3D SG transition at $T_c = 1.109(10)$ (Hasenbusch et al. 2008).

Observables

•
$$\mathcal{H} = -\sum_{\langle \boldsymbol{x}, \boldsymbol{y} \rangle} J_{\boldsymbol{x} \boldsymbol{y}} \sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}}, \quad \mathcal{P}(J_{\boldsymbol{x} \boldsymbol{y}}) = \delta(J_{\boldsymbol{x} \boldsymbol{y}}^2 - 1).$$

- First thermal averaging, $\langle \ldots \rangle$, then disorder averaging, $\overline{\langle \ldots \rangle}$.
- 3D SG transition at $T_c = 1.109(10)$ (Hasenbusch et al. 2008).

Observables

• Gauge invariant field with real replicas: $q_x = s_x^{(1)} s_x^{(2)}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

•
$$\mathcal{H} = -\sum_{\langle \boldsymbol{x}, \boldsymbol{y} \rangle} J_{\boldsymbol{x} \boldsymbol{y}} \sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}}, \quad \mathcal{P}(J_{\boldsymbol{x} \boldsymbol{y}}) = \delta(J_{\boldsymbol{x} \boldsymbol{y}}^2 - 1).$$

- First thermal averaging, $\langle \ldots \rangle$, then disorder averaging, $\overline{\langle \ldots \rangle}$.
- 3D SG transition at $T_c = 1.109(10)$ (Hasenbusch et al. 2008).

Observables

- Gauge invariant field with real replicas: $q_x = s_x^{(1)} s_x^{(2)}$
- Overlap order parameter: $q = \frac{1}{V} \sum_{x} q_{x}$

•
$$\mathcal{H} = -\sum_{\langle \boldsymbol{x}, \boldsymbol{y} \rangle} J_{\boldsymbol{x} \boldsymbol{y}} \sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}}, \quad \mathcal{P}(J_{\boldsymbol{x} \boldsymbol{y}}) = \delta(J_{\boldsymbol{x} \boldsymbol{y}}^2 - 1).$$

- First thermal averaging, $\langle \ldots \rangle$, then disorder averaging, $\overline{\langle \ldots \rangle}$.
- 3D SG transition at $T_c = 1.109(10)$ (Hasenbusch et al. 2008).

Observables

- Gauge invariant field with real replicas: $q_x = s_x^{(1)} s_x^{(2)}$
- Overlap order parameter: $q = \frac{1}{V} \sum_{x} q_{x}$
- Correlation function: $C_4(\mathbf{r}) = \overline{\langle q_{\mathbf{x}} q_{\mathbf{x}+\mathbf{r}} \rangle}$

•
$$\mathcal{H} = -\sum_{\langle \boldsymbol{x}, \boldsymbol{y} \rangle} J_{\boldsymbol{x} \boldsymbol{y}} \sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}}, \quad \mathcal{P}(J_{\boldsymbol{x} \boldsymbol{y}}) = \delta(J_{\boldsymbol{x} \boldsymbol{y}}^2 - 1).$$

- First thermal averaging, $\langle \ldots \rangle$, then disorder averaging, $\overline{\langle \ldots \rangle}$.
- 3D SG transition at $T_c = 1.109(10)$ (Hasenbusch et al. 2008).

Observables

- Gauge invariant field with real replicas: $q_x = s_x^{(1)} s_x^{(2)}$
- Overlap order parameter: $q = \frac{1}{V} \sum_{x} q_{x}$
- Correlation function: $C_4(\mathbf{r}) = \overline{\langle q_{\mathbf{x}} q_{\mathbf{x}+\mathbf{r}} \rangle}$
- Link overlap (interfaces' density) $Q_{\text{link}} = \frac{1}{V} \sum_{x} q_{x} q_{x+r}, r = 1.$

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

•
$$\mathcal{H} = -\sum_{\langle \boldsymbol{x}, \boldsymbol{y} \rangle} J_{\boldsymbol{x} \boldsymbol{y}} \sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}}, \quad \mathcal{P}(J_{\boldsymbol{x} \boldsymbol{y}}) = \delta(J_{\boldsymbol{x} \boldsymbol{y}}^2 - 1).$$

- First thermal averaging, $\langle \ldots \rangle$, then disorder averaging, $\overline{\langle \ldots \rangle}$.
- 3D SG transition at $T_c = 1.109(10)$ (Hasenbusch et al. 2008).

Observables

- Gauge invariant field with real replicas: $q_x = s_x^{(1)} s_x^{(2)}$
- Overlap order parameter: $q = \frac{1}{V} \sum_{x} q_{x}$
- Correlation function: $C_4(\mathbf{r}) = \overline{\langle q_{\mathbf{x}} q_{\mathbf{x}+\mathbf{r}} \rangle}$
- Link overlap (interfaces' density) $Q_{\text{link}} = \frac{1}{V} \sum_{x} q_{x} q_{x+r}, r = 1.$

• Clustering correlation function: $C_4(\mathbf{r}|C) = \frac{\overline{\langle \delta(q-C) q_x q_{x+r} \rangle}}{\overline{\langle \delta(q-C) \rangle}}$

 There exist several theoretical pictures for the low temperature (T < T_c) phase of a spin glass (SG).

< A >

- There exist several theoretical pictures for the low temperature (T < T_c) phase of a spin glass (SG).
- Droplet:
 - Only two equilibrium states: $P(q) = \delta(q^2 q_{\mathsf{EA}}^2)$.
 - Coarsening dynamics: growth of compact domains with $q = \pm q_{FA}$.

- There exist several theoretical pictures for the low temperature (T < T_c) phase of a spin glass (SG).
- Droplet:
 - Only two equilibrium states: $P(q) = \delta(q^2 q_{EA}^2)$.
 - Coarsening dynamics: growth of compact domains with $q = \pm q_{FA}$.
- RSB (Replica Symmetry Breaking, Mean Field):
 - All $q \in [-q_{\mathsf{EA}}, q_{\mathsf{EA}}]$ are reachable.
 - The excitations are space filling.

- There exist several theoretical pictures for the low temperature (T < T_c) phase of a spin glass (SG).
- Droplet:
 - Only two equilibrium states: $P(q) = \delta(q^2 q_{EA}^2)$.
 - Coarsening dynamics: growth of compact domains

with
$$q = \pm q_{\mathsf{EA}}$$
.

- RSB (Replica Symmetry Breaking, Mean Field):
 - All $q \in [-q_{\mathsf{EA}}, q_{\mathsf{EA}}]$ are reachable.
 - The excitations are space filling.
- TNT (Trivial-Non-Trivial):
 - Intermediate picture: *q* as in RSB, but the excitations have vanishing surface to volume ratio (trivial link overlap).

- There exist several theoretical pictures for the low temperature $(T < T_c)$ phase of a spin glass (SG).
- Droplet:
 - Only two equilibrium states: $P(q) = \delta(q^2 q_{EA}^2)$.
 - Coarsening dynamics: growth of compact domains

with
$$q = \pm q_{\mathsf{EA}}$$
.

- RSB (Replica Symmetry Breaking, Mean Field):
 - All $q \in [-q_{\mathsf{EA}}, q_{\mathsf{EA}}]$ are reachable.
 - The excitations are space filling.
- TNT (Trivial-Non-Trivial):
 - Intermediate picture: *q* as in RSB, but the excitations have vanishing surface to volume ratio (trivial link overlap).
- Numerical work is needed to make these theories quantitative and to determine which one best describes the 3DSG phase.

The Janus Computer

Custom built computer

- 16 boards with 16FPGA each.
- 20 ps per spin update.
- Parallel Tempering on individual FPGAs.
- Designed with spin glasses in mind, but reconfigurable

A .

The Janus Computer

Custom built computer

- 16 boards with 16FPGA each.
- 20 ps per spin update.
- Parallel Tempering on individual FPGAs.
- Designed with spin glasses in mind, but reconfigurable

4 A N

70% of Janus time past 14 months: parallel tempering simulation of the 3D SG in large lattices at low temperatures.

• A single FPGA did **N**_T systems. Four replicas of each sample.

- A single FPGA did N_T systems. Four replicas of each sample.
- As few temperatures as possible (acceptance \sim 15%).

A D M A A A M M

- A single FPGA did N_T systems. Four replicas of each sample.
- As few temperatures as possible (acceptance \sim 15%).
- Temperature swap attempt every 10 Heat-Bath.

A D M A A A M M

- A single FPGA did N_T systems. Four replicas of each sample.
- As few temperatures as possible (acceptance \sim 15%).
- Temperature swap attempt every 10 Heat-Bath.
- Dramatic sample dependence of thermalization time.

Our parallel tempering simulations

- A single FPGA did N_T systems. Four replicas of each sample.
- As few temperatures as possible (acceptance \sim 15%).
- Temperature swap attempt every 10 Heat-Bath.
- Dramatic sample dependence of thermalization time.
- Temperature chaos: T_{min} needs to grow with L.

T _{min}	T _{max}	N _T	N ^{min} MC	N _{MC} ^{max}	N ^{med} MC	Ns
0.150	1.575	10	5.0×10 ⁶	8.30×10 ⁸	7.39×10 ⁶	4000
0.245	1.575	8	1.0×10^{6}	6.48×10^{8}	$2.30 imes10^{6}$	4000
0.414	1.575	12	1.0×10^{7}	$5.01 imes 10^{9}$	4.48×10 ⁷	4000
0.479	1.575	16	4.0×10^{8}	2.72×10 ¹¹	9.37×10 ⁸	4000
0.625	1.600	28	1.0×10^{9}	1.81×10 ¹²	3.20×10 ⁹	4000
0.703	1.549	34	4.0×10 ⁹	7.68×10 ¹¹	1.08×10 ¹⁰	1000
0.985	1.574	24	1.0×10^{8}	$4.40 imes 10^9$	1.13×10 ⁸	1000
	Tmin 0.150 0.245 0.414 0.479 0.625 0.703 0.985	T _{min} T _{max} 0.150 1.575 0.245 1.575 0.414 1.575 0.479 1.575 0.625 1.600 0.703 1.549 0.985 1.574	Tmin Tmax NT 0.150 1.575 10 0.245 1.575 8 0.414 1.575 12 0.479 1.575 16 0.625 1.600 28 0.703 1.549 34 0.985 1.574 24	T_{min} T_{max} N_T N_{MC}^{min} 0.1501.57510 5.0×10^6 0.2451.5758 1.0×10^6 0.4141.57512 1.0×10^7 0.4791.57516 4.0×10^8 0.6251.60028 1.0×10^9 0.7031.54934 4.0×10^9 0.9851.57424 1.0×10^8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Follow the temperature of a single copy during the Parallel Tempering: the T-random walk is strongly non Markovian

The random walk in T space (II)

- i_t temperature index at time t; pdf of i uniform in $\{1, 2, ..., N_T\}$
- f(i), with $\sum_{i} f(i) = 0$ (i.e. $\langle f \rangle = 0$), changing sign only at i_c .
- $C(s) = \langle f(i_t)f(i_{t+s}) \rangle \longrightarrow \tau_{\text{int}}, \tau_{\text{exp}}$
- Automatize analysis: simulation length (at least) 12 τ_{exp}

Sample to sample fluctuations in PT dynamics

• τ_{exp} is a wildly oscillating variable, log τ_{exp} better behaved.

Sample to sample fluctuations in PT dynamics

- τ_{exp} is a wildly oscillating variable, log τ_{exp} better behaved.
- log τ_{exp} does not correlate with single *T* properties (*P*(*q*)). Failure of PT seems a genuine effect of temperature chaos.

< 47 ▶

$${\it P}({\it q}={\it C})\equiv \overline{\langle \delta({\it C}-{\it q})
angle},~{\it T}<{\it T}_{
m c}$$

Madrid (UCM)

November 27, 2009 10 / 16

Madrid (UCM)

November 27, 2009

10/16

November 27, 2009

Madrid (UCM)

Correlation functions (I)

Distressing result: ξ/L KT-like?

Madrid (UCM)

November 27, 2009 11 / 16

A different interpretation:

$$C_4(r) \sim \frac{1}{r^{\theta}} + \text{const.} \qquad \qquad \theta \sim 0.4$$

$$F = \hat{C}_4 \left(\frac{2\pi}{L}\right) \sim L^{D-\theta} \qquad \qquad \chi = C_4(0) = L^D$$

$$\frac{\xi}{L} = \frac{1}{2L \sin \frac{\pi}{L}} \sqrt{\frac{\chi}{F} - 1} \sim L^{\theta/2} \qquad \qquad \left[\frac{32}{24}\right]^{0.4/2} \approx 1.06$$

크

Correlation functions (II)

It is best to study clustering correlation functions: $F = \int_{-1}^{1} dq F_q P(q)$. Nice scaling for $q \sim 0$.

Madrid (UCM)

November 27, 2009 12 / 16

Correlation functions (II)

Computation of θ . Beware of finite-size effects:

T = 0.7025641

Correlation functions (II)

Computation of θ . Beware of finite-size effects:

T = 0.625

Equilibrium is relevant to nonequilibrium experiments

Surprise? Non-equilibrium computation of equilibrium $C_4(r|q)$ Equilibrium L = 32:0.002 experimental seconds!! (L = 128: 1 hour)

• Couple two real replicas through Q_{link}

$$H = H^{(1)} + H^{(2)} + \epsilon NQ_{\text{link}}$$

- RSB: discontinuity $\overline{\langle Q_{\text{link}} \rangle}_{\epsilon=0^+, L=\infty} \overline{\langle Q_{\text{link}} \rangle}_{\epsilon=0^-, L=\infty} > 0$
- Droplects expect $\overline{\langle Q_{\text{link}} \rangle}_{\epsilon, L=\infty}$ differentiable at $\epsilon = 0$.
- Finite system:

Does
$$\frac{\mathrm{d}\overline{\langle Q_{\mathsf{link}} \rangle}_{\epsilon,L}}{\mathrm{d}\epsilon} \propto L^D$$
 ?

(mind expected violation of Chayes et al. bound).

Qlink susceptibility

Certainly, not an effect of critical fluctuations ($T_c \approx 1.1$)

Madrid (UCM)

November 27, 2009 14 / 16

Qlink susceptibility

Effective exponents, already violate Chayes bound. Pre-asymptotic.

• Janus allow to reach low temperatures on large lattice.

.∃ ▶ ∢

크

- Janus allow to reach low temperatures on large lattice.
- Simulation parameters need sample-by-sample customization.

< 47 ▶

- Janus allow to reach low temperatures on large lattice.
- Simulation parameters need sample-by-sample customization.
- P(q) behaves as in an RSB picture

- Janus allow to reach low temperatures on large lattice.
- Simulation parameters need sample-by-sample customization.
- P(q) behaves as in an RSB picture
- $C_4(r|q)$: power-law, $\theta(q) \approx \theta(0)$ [RSB: $\theta(q) < \theta(0)$]

- Janus allow to reach low temperatures on large lattice.
- Simulation parameters need sample-by-sample customization.
- P(q) behaves as in an RSB picture
- $C_4(r|q)$: power-law, $\theta(q) \approx \theta(0)$ [RSB: $\theta(q) < \theta(0)$]
- Q_{link} susceptibility diverges (non droplet), and pre-asymptotic effective exponents.

- Janus allow to reach low temperatures on large lattice.
- Simulation parameters need sample-by-sample customization.
- P(q) behaves as in an RSB picture
- $C_4(r|q)$: power-law, $\theta(q) \approx \theta(0)$ [RSB: $\theta(q) < \theta(0)$]
- Q_{link} susceptibility diverges (non droplet), and pre-asymptotic effective exponents.
- Nonequilibrium correlation functions reproduce equilibrium ones. Computational difficulty of nonequilibrium scales better with L $(\xi(t_w))$ than equilibrium.

3

A B F A B F

- Janus allow to reach low temperatures on large lattice.
- Simulation parameters need sample-by-sample customization.
- P(q) behaves as in an RSB picture
- $C_4(r|q)$: power-law, $\theta(q) \approx \theta(0)$ [RSB: $\theta(q) < \theta(0)$]
- Q_{link} susceptibility diverges (non droplet), and pre-asymptotic effective exponents.
- Nonequilibrium correlation functions reproduce equilibrium ones. Computational difficulty of nonequilibrium scales better with L $(\xi(t_w))$ than equilibrium.
- Large number of well thermalized samples, awaiting further analysis.

3

A D b 4 A b

• Jobs:

A D b 4 A b

- A sequel of the Janus project will be funded by Spanish government. New machine expected by mid 2012.
- Jobs:
 - 1 year contract, postdoctoral in Madrid (ask VMM).

- A sequel of the Janus project will be funded by Spanish government. New machine expected by mid 2012.
- Jobs:
 - 1 year contract, postdoctoral in Madrid (ask VMM).
 - 1 year contract, postdoctoral in Zaragoza (ask Alfonso Tarancon).

Jobs:

- 1 year contract, postdoctoral in Madrid (ask VMM).
- 1 year contract, postdoctoral in Zaragoza (ask Alfonso Tarancon).
- 4 years grant for a Ph.D. in Zaragoza (ask Alfonso Tarancon).

Jobs:

- 1 year contract, postdoctoral in Madrid (ask VMM).
- 1 year contract, postdoctoral in Zaragoza (ask Alfonso Tarancon).
- 4 years grant for a Ph.D. in Zaragoza (ask Alfonso Tarancon).
- A tenure tack through *Ramon y Cajal* program (Zaragoza, ask Alfonso Tarancon; competitive at a national level).