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Critical quench dynamics in confined quantum systems

Crossing a critical point

Qualitative picture

Time-dependent hamiltonian

H(t) = Hcritical + g(t)V

Power-law tuning parameter g(t) ∼ sgn(t)|t/τ |α = sgn(t)v |t|α driving
the system through the critical point.

The system remains in the instantaneous ground state |GS(t)〉 as
long as it is protected by a finite gap ∆(t) from the excited states.

Breaking of the adiabaticity close to the critical point since the gap
vanishes right at the QCP.
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Crossing a critical point

Kibble-Zurek argument

Kibble-Zurek mechanism

Adiabatic: Sufficiently away
from the critical point no
transitions between
instantaneous eigenstates

Impulse: Sufficiently close
to the critical point critical
slowing down ⇒ no change
in the wave function except
for an overall phase factor

Adiabatic-Impulse approximation
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FIG. 2: Transition probability when the system starts time
evolution from a ground state at ti → −∞ and evolves to
tf → +∞. Dots: exact expression (11). Solid line: AI predic-
tion (12) with α = π/2 determined from diabatic solution in
Appendix A. Dashed thick line: lowest order diabatic result,
1− πτQ/2, coming from (A5) and (A6) with η = 1/2.

leading to Eqs. (A5) and (A6) is not only much easier
then determination of exact LZ solution [18], but also
really elementary. Therefore, we expect that it can be
done comparably easily for any model of interest.

Now we are ready to compare our AI approximation
with α determined as above, to the exact result, i.e.,

P = exp
(
−πτQ

2

)
. (11)

First, the agreement between the exact and AI result is
up to O(τ3

Q), i.e., one order above the first nontrivial
term. This is the advantage that the AI approximation
provides over a simple diabatic approximation performed
in Appendix A. Second, we see that the AI expansion
contains the same powers of τQ as the diabatic (small τQ)
expansion of the exact result. Third, Fig. 2 quantifies
the discrepancies between exact, AI and diabtic results.
For the AI prediction, we plot in Fig. 2 instead of a
Taylor series (10) the full expression evaluated in [9]

PAI =
2

(ατQ)2 + ατQ

√
(ατQ)2 + 4 + 2

, (12)

with α = π/2. As easily seen the AI approximation
significantly outperforms a diabatic solution. In other
words, the combination of AI simplification of dynam-
ics and diabatic prediction for the purpose of getting the
constant α leads to fully satisfactory results considering
simplicity of the whole approach.

It is instructive to consider now separately three sit-
uations: (i) dynamics in a nonsymmetric avoided level
crossing (Sec. III A); (ii) dynamics beginning at the anti-
crossing center (Sec. III B); and (iii) dynamics starting
at ti → −∞ but ending at the anti-crossing center (Sec.
III C). The first case will give us a hint whether O(τ3

Q)
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FIG. 3: The same as in Fig. 1 but for nonsymmetric Landau-
Zener problem with δ > 1 – see (13).

agreement we have seen above is accidental and has some-
thing to do with the symmetry of the Landau-Zener prob-
lem. The second problem was preliminarily considered in
[9], but without comparing the AI prediction to exact an-
alytic one being interesting on its own. Finally, the third
problem is an example where AI approximation correctly
suggests at a first sight unexpected symmetry between
this problem and the one considered in Sec. III B.

A. Nonsymmetric Landau-Zener problem

We assume that system Hamiltonian is provided by the
following expression

H =
1
2

(
1
χ

t
τQ

1
1 − 1

χ
t

τQ

)
, χ =

{
1 for t ≤ 0
δ for t > 0 (13)

with δ > 0 being the asymmetry parameter – see Fig.
3(a) for schematic plot of the spectrum.

Once again, evolution starts at ti → −∞ from a ground
state. The exact expression for finding the system in the
excited eigenstate at the end of time evolution (tf →
+∞) is

P = 1− e−
1
8π(1+δ)τQ

2
sinh

(
1
4
πτQδ

)
∣∣∣∣∣Γ(1/2 + iτQδ/8)

Γ(1/2 + iτQ/8)
+

√
1
δ

Γ(1 + iτQδ/8)
Γ(1 + iτQ/8)

∣∣∣∣∣
2

,(14)

and its derivation is presented in Appendix B. Naturally,
for δ = 1, i.e., in a symmetric LZ problem, the expression
(14) reduces to (11).

Now we would like to compare (14) to predictions com-
ing from AI approximation. Due to asymmetry of the
Hamiltonian the systems enters the impulse regime in
the time interval [−t̂L, t̂R] – see Fig. 3(b) for illustra-
tion of these concepts. The instants t̂L and t̂R are easily
found in the same way as in the symmetric case. It is
a straightforward exercise to verify that according to AI

t ∈ [−∞,−t̂L] : |ϕ(t)〉 ≈ e−iα(t)|0(t)〉
t ∈ [−t̂L, t̂R ] : |ϕ(t)〉 ≈ e−iβ(t)|0(−t̂L)〉
t ∈ [t̂R ,+∞] : |〈ϕ(t)|0(t)〉|2 = const.
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Crossing a critical point

Kibble-Zurek argument

Kibble-Zurek time-scale τKZ

Kibble-Zurek timescale τKZ

τ0/∆(τKZ ) = ∆(τKZ )/|∆̇(τKZ )|
with

∆(t) ∼ |g(t)|νz ∼ vνz |t|νzα

one has
τKZ ∼ v−νz/(1+ανz); ` ∼ τ 1/z

KZ

Scaling for defect density

n ∼ `−d ∼ vdν/(1+νzα)

A. Polkovnikov, PRB 72, 161201(R) (2005)
W. H. Zurek, U. Dorner and P. Zoller, Phys. Rev. Lett. 95, 105701 (2005).
B. Damski, Phys. Rev. Lett. 95, 035701 (2005);
B. Damski and W. H. Zurek, Phys. Rev. A 73, 063405 (2006);
ibid, Phys. Rev. Lett. 99, 130402 (2007).
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Confining potential

Power-law spatial inhomogeneity

A power-law deviation in one direction of the quantum control parameter
h form its critical value hc :

δ(x , t) ≡ h(x , t)− hc ' g(t)xω, x > 0

g(t) = v |t|αsgn(t) g(t)

x2

x

The perturbation introduces a crossover region in space-time (x , t)
around the critical locus (0,0).

Lenght-scale

`(t) ∼ δ(`, t)−ν → `(t) ∼ |g(t)|−1/yg

yg = (1 + νω)/ν

Time-scale

τ ∼ `(τ)z → τ ∼ v−z/yv

yv = yg + zα

The exponent yv is the RG dimension of the perturbation field, such that
under rescaling by a factor b the amplitude transforms as v ′ = byv v .
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Confining potential

Scaling arguments

Under rescaling, the profile ϕ(x , t, v) associated to an operator ϕ with
scaling dimension xϕ transform as

ϕ(x , t, v) = b−xϕϕ(xb−1, tb−z , vbyv )

Taking b = v−1/yv ∝ ` ∝ τ 1/z one obtains

ϕ(x , t, v) = v xϕ/yv Φ(xv1/yv , tv z/yv )

Trap-size scaling ϕ ∼ `−xϕ associated to a finite size system with
` ∼ v−1/yv .

T. Platini, D. Karevski and L. Turban, J. Phys. A 40 1467 (2007)
B. Damski and W. H. Zurek, New J. Phys. 11 063014 (2009)
M. Campostrini and E. Vicari, Phys. Rev. Lett. 102, 240601 (2009)
M. Collura, D. Karevski and L. Turban, J. Stat. Mech. P08007 (2009)
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Adiabatic approximation

Adiabatic approximation

Time evolution of a quantum system described by a time-dependent
Hamiltonian H(t)

The system is initially in the instantaneous ground state of the
Hamiltonian H(t0):

|ϕ(t0)〉 = |0(t0)〉
At time t

|ϕ(t)〉 = U(t, t0)|0(t0)〉
where the time evolution operator is

U(t, t0) = T̂ exp−i

∫ t

t0

dsH(s)
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Adiabatic approximation

Adiabatic expansion in the instantaneous eigenbasis

Instantaneous eigenstates

H(t)|k(t)〉 = Ek(t)|k(t)〉

Adiabatic expansion up to first order

Rate of change of the Hamiltonian: ∂tH(t) ∼ ∂tg(t) ∼ v → 0

|ϕ(t)〉 = e
−i

R t
t0

dsE0(s)|0(t)〉+
∑
k 6=0

e
−i

R t
t0

dsE0(s)
ak(t0, t)|k(t)〉
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Adiabatic approximation

Adiabatic expansion up to first order

|ϕ(t)〉 = e
−i

R t
t0

dsE0(s)|0(t)〉+
∑
k 6=0

e
−i

R t
t0

dsE0(s)
ak(t0, t)|k(t)〉

ak(t0, t) =

∫ g(t)

g(t0)

dg
〈k(g)|∂gH(g)|0(g)〉

δωk0(g)
e−iϑk (g ,g(t))

where

ϑk(x , y) =
v−1/α

α

∫ y

x

dg |g |1/α−1δωk0(g)

δωk0(g) = Ek(g)− E0(g)

For v � 1, ak ' 0:
instantaneous ground state

For v � 1, exp(−iϑk) ∼ 1:
sudden quench

Mario Collura and Dragi Karevski Critical quench dynamics in confined quantum systems



Critical quench dynamics in confined quantum systems

Adiabatic approximation
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Density of defects

Density of defects

Density of defects

n =
∑
k 6=0

|ak |2

General scaling arguments (` ∼ g−1/yg ):

δωk0 ∼ `−zΩ(`−z/kz); 〈k(g)|∂gH(g)|0(g)〉 ∼ `−z+yg G (`−z/kz)

For a quench crossing the QCP,
in order that the integral
converges at g = 0 the scaling
function G (u)/Ω(u) = uf (u) at
small u.

n ∼ `−d ∼ vdν/(1+νzα)

In the inhomogeneous case the
convergence close to the critical
point is not garanted.

Mario Collura and Dragi Karevski Critical quench dynamics in confined quantum systems



Critical quench dynamics in confined quantum systems

Density of defects

Density of defects

Density of defects

n =
∑
k 6=0

|ak |2

General scaling arguments (` ∼ g−1/yg ):

δωk0 ∼ `−zΩ(`−z/kz); 〈k(g)|∂gH(g)|0(g)〉 ∼ `−z+yg G (`−z/kz)

For a quench crossing the QCP,
in order that the integral
converges at g = 0 the scaling
function G (u)/Ω(u) = uf (u) at
small u.

n ∼ `−d ∼ vdν/(1+νzα)

In the inhomogeneous case the
convergence close to the critical
point is not garanted.

Mario Collura and Dragi Karevski Critical quench dynamics in confined quantum systems



Critical quench dynamics in confined quantum systems

Density of defects

Density of defects

Density of defects

n =
∑
k 6=0

|ak |2

General scaling arguments (` ∼ g−1/yg ):

δωk0 ∼ `−zΩ(`−z/kz); 〈k(g)|∂gH(g)|0(g)〉 ∼ `−z+yg G (`−z/kz)

For a quench crossing the QCP,
in order that the integral
converges at g = 0 the scaling
function G (u)/Ω(u) = uf (u) at
small u.

n ∼ `−d ∼ vdν/(1+νzα)

In the inhomogeneous case the
convergence close to the critical
point is not garanted.

Mario Collura and Dragi Karevski Critical quench dynamics in confined quantum systems



Critical quench dynamics in confined quantum systems

Density of defects

Density of defects

Density of defects

n =
∑
k 6=0

|ak |2

General scaling arguments (` ∼ g−1/yg ):

δωk0 ∼ `−zΩ(`−z/kz); 〈k(g)|∂gH(g)|0(g)〉 ∼ `−z+yg G (`−z/kz)

Inhomogeneous QCP

τKZ ∼
(
τ0

Ω0

zα
yg

)yg/yv

v−z/yv

n ∼ [∆(τKZ )]d/z ∼
(
τ0

Ω0

zα
yg

)dα/yv

vd/yv
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Ising quantum chain

Ising quantum chain in time-dependent inhomogeneous transverse field

H(t) = −1

2

L−1∑
n=1

σx
nσ

x
n+1 −

1

2

L∑
n=1

hn(g)σz
n

hn(g) = 1 + g(t)nω, g(t) = v |t|αsgn(t)

In linear case ω = 1 Exact solution
using fermionic mapping

For general ω Numerical
diagonalization +
Finite-size analyses
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Ising quantum chain

Transition amplitude

Up to the first order correction we can write the evolution of the Ising
chain ground state |0(g0)〉 as

|ϕ(t)〉 ≈ |0(g)〉+
∑
pq

apq(t0, t)η†q(g)η†p(g)|0(g)〉

Defects density ∼ Fidelity

n ≈
∑
pq

|apq(t0, t)|2

Excess energy

e ≈
∑
pq

δωpq|apq(t0, t)|2
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Ising quantum chain

Transition amplitude

Linear case ω = 1

Transition amplitude apq(t0, t) for a quench starting at a value
g0 = g(t0) and ending at a new value gt = g(t).

Quenches that do not cross the critical point

apq(t0, t) = FpqAφpq (|g0|, |g(t)|) eiΘpq(t)

where

Θpq(t) = πH(−g0) + φpq|g(t)| 2+α
2α

φpq = −2Ωpq
v−1/α

α + 2
sgn(g0)

Aφ(x , y) =
2α

2 + α

h
E1

“
iφx

2+α
2α

”
− E1

“
iφy

2+α
2α

”i
The spatial inhomogeneity
modifies the dependence on g
of the scaling function
Fpq(g) = Gpq(g)/(2Ωpq(g))
close to g = 0 such that it
leads to a complete breakdown
of the approximation
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Ising quantum chain

Transition amplitude

Quench to the critical point: gi = 1, gf = 0
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For v � 1, n ∼ v1/4,1/5,1/6 and e ∼ n2.
The dashed lines correspond to the asymptotic sudden-quench values
nsq ≈ 0.179 and esq ≈ 0.136
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Ising quantum chain

Transition amplitude

Conclusion

Scaling theory for the non-linear quench of a power-law
perturbation, such as a confining potential, close to a critical point

Power law behavior of the density of defects with the ramping rate
with an exponent depending on the space-time properties of the
potential.

First order adiabatic calculation and exact results on an
inhomogeneous transverse field Ising chain
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