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Disordered Potts model

Hamiltonian:

H =−∑
〈i, j〉

Ji jδ (σi,σ j)

σi = 1,2, . . . ,q, at site i
Ji j independent and identically distributed random numbers.

Phases and phase transitions in regular lattices

Pure system: Ji j = J > 0

• q≤ qc: 2nd-order transition

• q > qc: 1st-order transition

qc(d = 2) = 4, qc(d = 3) < 3

Random ferromagnet (RF): Ji j > 0

• d = 2: 2nd-order transition for all q

• d = 3 and q≥ 3

– weak disorder: 1st-order transition

– strong disorder: 2nd-order transition

Spin glass (SG): Ji j < 0 and Ji j > 0

• d = 3

– q = 3: SG phase

– q = 10: no SG phase

• d = 2 < dc no SG phase
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Potts model in the large-q limit

Motivations of its study

• experimental side

– suggested as plausible model for supercooled liquids

∗ valid in the mean-field approach

∗ not for the nearest-neighbour model

• theoretical side

– simpler to study

∗ 1/q-expansion

∗ high-temperature expansion is dominated by one diagram

– q→ ∞ is non-singular limit
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Diamond hierarchical lattice

n=0 n=2n=1

BBB

AA A

• branching number: b = 2

• generation: n

• length (between A and B):
Ln = 2n

• total number of bonds:
Bn = (2b)n = Lde f f (b)

n

• effective dimension:
de f f (b) = ln(2b)/ ln(2).
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Renormalization of the Potts model

Fix one boundary σA = +1, then the partition function reads

Z(1,.)
n = Z+

n +Z−n
Z+

n = Z(1,1)
n

Z−n = ∑
σB 6=1

Z(1,σB)
n = (q−1)Z(1,2)

n

The exact RG equations for the Z

Z(1,1)
n+1 =

b

∏
i=1

[
Z(1,1)

n (i1)Z(1,1)
n (i2)+(q−1)Z(1,2)

n (i1)Z(1,2)
n (i2)

]
Z1,2

n+1 =
b

∏
i=1

[
Z(1,1)

n (i1)Z(1,2)
n (i2)+Z(1,2)

n (i1)Z(1,1)
n (i2)+(q−2)Z(1,2)

n (i1)Z(1,2)
n (i2)

]
It is easier to work in terms of:

xn =
Z 1,1

n

Z 1,2
n

= eβF inter
n ,

where F inter
n = F1,2

n −F1,1
n is the interface free energy. The ratio xn obeys the recursion equation

xn+1 =
b

∏
i=1

[
x(i1)

n x(i2)
n +(q−1)

x(i1)
n + x(i2)

n +(q−2)

]
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Renormalization for large-q

rescale the temperature:
T ′ = T lnq, so that eβ = qβ ′ where β ′ = 1/T ′ (kB = 1)
high-temperature series expansion of Z is dominated by one diagram:

Z '
q→∞

qφ + subleading terms

which is related to the free energy through φ =−β ′F.

Similarly, the interface free energy:

xn = qβ ′F inter
n , In = β

′F inter
n
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In terms of In the recursion equations are:

qIn+1 =
b

∏
i=1

[
qI(i1)

n qI(i2)
n +(q−1)

qI(i1)
n +qI(i2)

n +(q−2)

]
which have a simpler form for large-q:

In+1 =
b

∑
i=1

Φ

[
I(i1)
n , I(i2)

n

]
where the auxiliary function is:

Φ

[
I(1), I(2)

]
=


0 if Imax + Imin < 1 and Imax < 1,
1− Imax if Imax + Imin < 1 and Imax > 1,
Imax + Imin−1 if Imax + Imin > 1 and Imax < 1,
Imin if Imax + Imin > 1 and Imax > 1.

with Imax = max(I(1), I(2)) and Imin = min(I(1), I(2)).

The initial condition is given by

I(i)
0 = β

′Ji

where Ji is the value of the ith coupling.
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Phase diagram: pure system

In+1 =


0 if 0 < In ≤ 1/2,

b(2In−1) if 1/2 < In ≤ 1,

bIn if In > 1.

• fixed-point at Ic = b/(2b−1)

• first-order transition
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Random system: Numerical study
Distribution of the couplings

P(J) =

{
1 if p

1−p < J < 1
1−p,

0 otherwise.

with p≤ 1
mean value is given by:

J =
1
2

(
1+ p
1− p

)
.

• p > 0 all couplings are random fer-
romagnetic

• p→ 1 we have the pure system

• p < 0 there are also negative bonds

• p =−1 the distribution is symmet-
ric

Numerical pool method

• start with N = 5×106 elements

• first itereation: generate N new
elements

• second iteration: input is taken
from the first iteration pool

• iterate up to n∼ 70−80 steps
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Phase diagram for b = 2 and de f f = 2
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Fixed points

• P: pure system

• RF: random ferromagnet
driving force: temperature

• MC: multicritical (Nishimori)

• Z: zero-temperature (spin-glass)
driving force: frustration
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Ferromagnetic phase

• In grows without limit

• for each bond Imax ≥ Imin > 1

• In+1 = I(1)
n (min)+ I(2)

n (min)

• distribution function:

P′(I) =
∫ I

0
dxP2(x)P2(I− x)

P2(I) = 2P(I)
∫

∞

I dxP(x), I > 1
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• solution

P′(2I + I1) =
1
λ

P(I + I1/λ )

• numerical solution: λ = 1.230091(1)

• scaling behaviour:

I ∼ Lds, I1 = ∆I ∼ Lθ

• exponents:

– ds = de f f −1 = 1

– droplet exponent:

∗ θ = log(λ )/ log(2) = 0.298765(1)

∗ θ is the same as for the di-
rected polymer in the same
lattice.
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Random ferromagnet (RF) fixed point

• scaling to In ≥ 0

• different recursion relations at I =
0 and in the regions 0 < I < 1,
1 < I < 2, and I > 2.

• solution:

P′(I) = P(I)

• p0 = 0.1280795 0 1 2 3 4
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Thermal critical exponent

• Jacobian: J(x,y) = δP′(x)/δP(y)

• eigenvalue problem:∫
dyJ(x,y) fi(y) = λ

RF
i fi(x)

• numerical solution:
λ RF

1 = 1.6994583(1)

• thermal eigenvalue:

yRF
t =

logλ RF
1

log2
= 0.7650750(1)

• correlation length exponent:
νRF = 1/yRF

t = 1.307061(1).

• scaling of I(T ′,L) for T ′ < T ′c :

I(T ′,L) =
[

L
ξav(T ′)

]ds

with: ξav(T ′)∼ (T ′−T ′c)
−νRF.

• scaling of ∆I(T ′,L) for T ′ < T ′c :

∆I(T ′,L) =
[

L
ξvar(T ′)

]θ

and ξvar(T ′)∼ ξav(T ′).
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Zero-temperature (Z) fixed point

• scaling to |In| → ∞

• new scaling variable: in ≡ In/In
and parameter: αn+1 = In+1/In.

• scaling behaviour:

– p > pZ : αn→ b

– p < pZ : αn→ 0

– p = pZ : αn→ αZ

• probability distribution transforms
as:

Π
′(i) = αZΠ(i)

with αZ = 1.10661(1)

• the droplet exponent:

θZ =
logαZ

log2
= 0.14615(1)
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• correlation length exponent:

νZ = 1/yZ
t = 1.72906(1)

•

I(T ′,L) =
Lds

[ξav(T ′)]ds−θZ
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Multicritical (MC) fixed point

• scaling of In = O(1)

• both In > 0 and In < 0

• numerical solution by the pool

method
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• correlation length:

ξ (t)∼ (t lnκ t)−νMC

• exponents: κ ≈ 1.5 and νMC = 3.61.
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Conclusions

• q-state Potts-model on the dia-
mond hierarchical lattice

• numerically exact solution of the
random model for large-q

• ferro & paramagnetic phases -
similarity with directed polymers

• four non-trivial fixed points - sim-
ilarity with the ±J, q = 3 model

• RF fixed point - driving force:
temperature

• Z fixed point - driving force: dis-
order

• MC fixed point - similar to the
Nishimori point

• possible extensions

– larger branching number, b >
2.

– other quantities: magnetiza-
tion, correlations, etc.

– for smaller values of q, 1/q ex-
pansion.
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