

Structure Analysis of Bottle-Brush Polymers: Simulation and Experiment Hsiao-Ping Hsu

Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany

with Wolfgang Paul (Mainz, Halle)

Silke Rathgeber, Kurt Binder (Mainz)

Model and Algorithm

Bond fluctuation model:

- self-avoiding walks on a simple cubic lattice with bond constraints
- 108 bond vectors \$\vec{r}_b\$ are from:
 [2,0,0], [2,1,0], [2,1,1],
 [2,2,1], [3,0,0], [3,1,0]

 $2 \leq r_b \leq \sqrt{10}$

linear polymer chain \Rightarrow bottle-brush polymer

Geometry of bottle-brush polymers:

 $N_{tot} = N_b + n_c N$: total # of monomers $N_b = [(n_c - 1)/\sigma + 1] + 2$: monomers in a backbone N: monomers in a side chain n_c : # of side chains, σ : grafting density

Algorithm:

L26 move, pivot algorithm

Autocorrelation functions c(A, t)

$$c(A,t) = rac{< A(t_0)A(t_0+t) > - < A(t_0) > < A(t+t_0) >}{< A(t_0)^2 > - < A(t_0) >^2}$$
 .

• $A = R_{g,c}^2$: square radius of gyration of side chain monomers • $A = R_{g,b}^2$: square radius of gyration of backbone monomers

Snapshots: $N_b = 131, \sigma = 1$

- backbone chain length N_b , side chain length N
- grafting density $\sigma \sim n_c/N_b$ (n_c : number of side chains)
- solvent quality: temperature, PH, ...

(good solvent)

Structural characterization

Coarse-grained description of a bottle-brush polymer as a flexible spheocylinder: $\square L_{cc}$: length of the axes of the cylinder

- R_{e,bb}: end-to-end vector of the backbone chain
 - R_{cs} : cross-sectional radius
- *l*p: persistence length
- \vec{R}_e : end-to-end vector of the side chain
- $\vec{\ell}_s$: bond vector connecting monomers in the side chains
- $\vec{\ell_b}$: bond vector connecting monomers in the backbone chain

Structure factor $S_w(q)$

The structure factor for the bottle-brush polymers

 $c(ec{r_i})=1$ (0) if $ec{r_i}$ is occupied (unoccupied)

Structure factor $S_w(q)$

The structure factor for the bottle-brush polymers

$$S_w(q) = rac{1}{\mathcal{N}_{tot}} \sum_{i=1}^{\mathcal{N}_{tot}} \sum_{j=1}^{\mathcal{N}_{tot}} < c(ec{r_i}) c(ec{r_j}) > rac{\sin(q \mid ec{r_i} - ec{r_j} \mid)}{q \mid ec{r_i} - ec{r_j} \mid}$$

 $c(ec{r_i})=1$ (0) if $ec{r_i}$ is occupied (unoccupied)

- small q (Guinier regime): $S_w(q)$ $\approx \mathcal{N}_{tot}[1-q^2 < R_{g,bb}^2 > /3]$
 - intermediate q-value: $S_w(q) \propto q^{-1/
 u}, \,
 u = 0.588$

large q: almost rigid segments

• Experimental results: ($\sigma \approx 1$, good solvent) (Rathgeber et. al., J. Chem. 122, 124904 (2005))

 Techniques: static light scattering, small angle neutron scattering, x-ray scattering

Experimental results: $(\sigma \approx 1, \text{ good solvent})$ (Rathgeber et. al., J. Chem. 122, 124904 (2005))

 Techniques: static light scattering, small angle neutron scattering, x-ray scattering

Exp. and sim.: S(q)

• $S^{\mathrm{exp}}(q
ightarrow 0) = 1$

• q
ightarrow qR, $R_{g,bb}^{
m exp} pprox 30.5$ nm (Guinier formula)

Exp. and sim.: S(q)

 ${}$ Exp. (b400s62): $N_b=400,\,N=62,\,R_{g,bb}^{
m exp}=30.5$ nm

• Sim. (b259s48): $N_b = 259$, N = 48, $R_{g,bb} = 115.8$ lattice spacing

 \Rightarrow 1 nm \approx 3.79 lattice spacing

Exp. and sim.: S(q)

 ${}_{m{\bullet}}$ Exp. (b188s58): $N_b = 188,\, N = 58,\, R_{g,bb}^{
m exp} = 21$ nm

• Sim. (b99s24): $N_b = 99$, N = 24, $R_{g,bb} = 46.94$ lattice spacing

 \Rightarrow 1 nm \approx 2.235 lattice spacing

Radial density profile $ho_{ m cs}(r)$

Assumptions in the analysis of experimental data:

• Gaussian profile: $ho_{
m cs}(r) \propto \exp(-r^2/\langle R_{g,cs}^2
angle)$

$$\langle R_{g,cs}^2
angle = 2\pi \int_0^\infty r dr
ho_{
m cs}(r) r^2 \;,\; 2\pi \int_0^\infty r dr
ho_{
m cs}(r) = 1$$

- Decoupling approximations for the scattering data: $S_w(q) pprox S_b(q) S_{
 m cs}(q)$
 - Scattering function of the backbone $S_b(q)$: $S_b(q) = [1 - \chi(q)] S_{\mathrm{SAW\,chain}}(q) + \chi(q) S_{\mathrm{rod}}(q)$
 - Cross sectional scattering $S_{
 m cs}(q)$: $S_{
 m cs}(q) = [2\pi \int_0^\infty dr r
 ho_{
 m cs}(r) J_0(qr)]^2$

 $J_0(r)$: the zeroth order Bessel function

Simulations: $\rho(r)$

backbone: undulating line

- On a coarse-grained scale $l_c \Rightarrow$ cylindrical-like object (straight rigid backbone of $l_c + 1$ monomers)
 - direction $\hat{z} = \frac{1}{l_c} \sum_{i}^{l_c} \hat{e}_i$ going through C.M.
 - ${\scriptstyle ullet}$ length: $R_e^c = \mid\mid ec{r}_{n+l_c} ec{r}_n \mid\mid$
 - Monomers located within this cylinder segment are counted

0.1

0.01

I_c = 130 ----I_c = 64 l_c = 48 ·····*

I_c = 28 ---l_c = 18 ····×···

20

r

30

3 ----⊙--

40

50

$$ho(r) = rac{1}{n_s} \left< \sum_{j=1}^{n_s}
ho_j(r) \right>, \ n_s = rac{N_b}{\ell_c}$$
 0.1
 Ξ 0.01
 $(N_b = 131, N = 48)$ 0.001

For each cylindrical-like object *j*: _ 1e-04 10 0 $ho_j(r) = rac{N(r)}{N_r} \ , \ \sum_r N(r) = N$ N(r): # of monomers in the interval [r, r + dr] N_r : # of lattice sites (x_i, y_i) satisfying the constraint $r^2 = x_i^2 + y_i^2$

 $\Rightarrow \ell_c \sim \ell_p$ (persistence length)

Persistence length of backbone

• $l_p^{(k)}$: the projection of the end-to-end vector, $\vec{R}_{e,b}$, on the segment vector \vec{r}_k : $\vec{R}_{e,b}$

Is: the length over which correlations in the direction of the tangent are lost.

$$egin{aligned} &<\cos heta(s)> &=& \left\langle rac{1}{N_b-1-s}\sum_{i=1}^{N_b-1-s}ec{u}_i\cdotec{u}_{i+s}
ight
angle \ , ec{u}_i=rac{ec{r}_i}{\midec{r}_i\mid} \ &\sim& e^{-s/l_s} \ (ext{worm}- ext{like chain}) \end{aligned}$$

Persistence length ℓ_p :

• Scaling law of mean square end-to-end distance of the backbone: $R^2_{e,b}(N) = 2\ell_p \ell_b N_b^{2\nu}$ as $N_b \to \infty$

⇒ Local intrinsic stiffness of the backbone of bottle-brush polymer

Exp. and Sim.: $S(q), ho_{ ext{cs}}(r), R_{g, ext{cs}}$ and sim.: $S(q), ho_{ ext{cs}}(r), R_{g, ext{cs}}$

• Experiment ($N_b = 400$, N = 62): $R_{g,cs} = 6.30$ nm

• Simulation (N = 259, N = 48): $R_{g,cs} = 5.04$ nm

References:

- How to Define Variation of Physical Properties Normal to an Undulating One-Dimensional Object", phys. rev. lett. 103, 198301 (2009).
- Characteristic Length Scales and Radial Monomer Density Profiles of Molecular Bottle-Brushes: Simulation and Experiment", preprint (2009).
- Standard Definitions of Persistence Length Do Not Describe the Local "Intrinsic" Stiffness of Real Polymer Chains", preprint (2009).

Deutsche Forschungsgemeinschaft (DPG), grant No. SFB 625/A3 European Science Foundation (ESF) under the STIPOMAT program