
Non-markovian global persistence in
phase-ordering kinetics

Malte Henkel

Groupe de Physique Statistique,
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I. Ageing phenomena in simple magnets

consider a simple magnet (ferromagnet, i.e. Ising model,
non-conserved dynamics)

1 prepare system initially at high temperature T ≫ Tc > 0

2 quench to temperature T < Tc → phase-ordering kinetics
(or T = Tc → nonequilibrium critical dynamics)
→ non-equilibrium state

3 fix T and observe dynamics

formation of ordered domains, of linear size L = L(t) ∼ t1/z

dynamical exponent z

Criteria for physical ageing :

1 slow (i.e. non-exponential dynamics)

2 breaking of time-translation-invariance

3 dynamical scaling



Example for ageing : 3D Glauber-Ising model, T < Tc

slow dynamics (non-exponential)
no time-translation invariance

dynamical scaling

C (t, s) : autocorrelation function, quenched to T < Tc

scaling regime : t, s ≫ �micro and t − s ≫ �micro



Scaling behaviour & exponents

single relevant time-dependent length scale L(t) ∼ t1/z

Bray 94, Janssen et al. 92, Cugliandolo & Kurchan 90s, Godrèche & Luck 00, . . .

�(t, r) – space-time-dependent order-parameter (magnetisation)

correlator C (t, s; r) := ⟨�(t, r)�(s, 0)⟩ = s−bfC (t/s, ∣r∣z/(t − s))

response R(t, s; r) :=
�⟨�(t, r)⟩
�h(s, 0)

∣∣∣∣
h=0

= s−1−afR(t/s, ∣r∣z/(t − s))

No fluctuation-dissipation theorem : R(t, s; r)∕=T∂C (t, s; r)/∂s

values of exponents : equilibrium correlator → classes S and L

Ceq(r) ∼
{

exp(−∣r∣/�)

∣r∣−(d−2+�) =⇒
{

class S
class L

=⇒
{

a = 1/z
a = (d − 2 + �)/z

if T < Tc : z = 2 and b = 0 if T = Tc : z = zc and b = a
for y →∞ : fC ,R(y) ∼ y−�C ,R/z , �C ,R independent exponents



II. Persistence probability

consider a different kind of observable : Bray, Derrida, Godrèche, . . . 94

probability that magnetisation has not changed sign up to time t ?

here : global order-parameter in a volume Ω

�̂0(t) :=
1

∣Ω∣1/2

∫
Ω
dr �(t, r)

study the global persistence probability Pg(t)
if natural dynamical scaling, expect for t →∞

Pg(t) ∼ t−�g , �g = global persistence exponent

Majumdar, Bray, Cornell, Sire 96

may also consider dependence of block size
(block persistence) Cueille & Sire 96/97



III. Relationship with Markov processes

aim : derive a scaling relation for the global persistence exponent
�g , for T ≤ Tc , for Markov processes

argument proceeds in 5 steps Majumdar et al. 96, Cueille & Sire 96/97

1. :
after quench, domains correlated up to linear size L(t)≪ ∣Ω∣1/d ,
system consists of (almost) uncorrelated domains, linear size L(t).
=⇒ �̂0(t) is sum over uncorrelated random variables,
with finite moments for each finite time t

(i) ⟨�̂0(t)⟩ = 0 , (ii) ⟨�̂2
0(t)⟩ ∼ L(t)d−bz

apply central limit theorem =⇒ �̂0(t) gaussian process ∀t <∞



2. : scaling analysis for ∣Ω∣ → ∞ and t1 > t2

⟨�̂0(t1)�̂0(t2)⟩ = lim
k→0
⟨�̂k(t1)�̂−k(t2)⟩

= lim
k→0

1

∣Ω∣

∫
Ω2

dr1dr2 e
ik⋅(r2−r1) ⟨�(t1, r1)�(t2, r2)⟩

= lim
k→0

1

∣Ω∣

∫
Ω2

dr1dr2 e−ik⋅(r1−r2) t−b2 fC

(
t1

t2
,

r1 − r2

L(t1 − t2)

)
= lim

k→0

∫
Ω
dr e−ik⋅r t−b2 fC

(
t1

t2
,

r

L(t1 − t2)

)
= t

(d−bz)/z
2

(
t1

t2
− 1

)d/z ∫
Ω
dr fC

(
t1

t2
, r

)
= t

(d−bz)/z
2 f̂

(
t1

t2

)
; where f̂ (y)

y→∞∼ y (d−�C )/z .



3. : define the normalised autocorrelator

N(t1, t2) :=
⟨�̂0(t1)�̂0(t2)⟩√
⟨�̂2

0(t1)⟩⟨�̂2
0(t2)⟩

= f̂N

(
t1

t2

)

=⇒ asymptotics for y →∞ : f̂N(y) ∼ y (d−2�C+bz)/(2z)

New time variable T = ln t, find

N(t1, t2) = N̄(T1,T2) = n(T1 − T2)

=⇒ the gaussian process describing �̂0(T ) is stationary.

Asymptotics for T →∞ :

n(T ) ∼ e−�T , � = (2�C − d − bz)/(2z)



4. : Lemma 1 : (Doob 1942) A gaussian, stationary stochastic
process X (t) with ⟨X (t)⟩ = 0 is markovian, if and only if the
autocorrelator has exactly an exponential form

⟨X (t1)X (t2)⟩ = X0 e
−�∣t1−t2∣.

where � is a constant and X0 a normalisation.
Conclusion : if �̂0(T ) is markovian, one must have exactly
n(T ) = e−�T , with � = (2�C − d − bz)/z .
5. : Lemma 2 : (Slepian 1962) Consider a gaussian and stationary
stochastic process with an autocorrelator ⟨X (T )X (0)⟩ = e−�∣T ∣.
Then the global persistence probability for X (t) is given by

Pg(T ) =
2

�
arcsin

(
e−�T

)
.

Conclusion : for T →∞, and t2 → 1, find Pg(T ) ∼ e−�T ∼ t−�1



Scaling relation for �g

long times : Pg(t) ∼ t−�g , with

�g = � =
(
2�C − d − bz

)
/
(
2z
)

Provided �̂0(t) is a Markov process, have scaling relations :
a) non-equilibrium critical dynamics T = Tc , b = (d − 2 + �)/z

�gz = �C − d + 1− 1

2
�

b) phase-ordering kinetics : T < Tc, z = 2, b = 0

�gz = �C −
d

2
≥ 0

Use these scaling relations to test the Markov property !



Test of the markovian relation �gz = �C − d + 1− �/2, T = Tc

=⇒ generic non-markovian dynamics of global magnetisation
results from many different groups 96-09

�g
model d z �C � Markov numeric
Ising 1 2 1 1 1/4 1/4

2 2.1667 1.588 1/4 0.214(1) 0.237(3)
0.214(1) 0.235(5)

3 2.043 2.78 0.0364 0.374(1) 0.41(2)

Potts-3 2 2.197 1.836 4/15 0.321(2) 0.350(2)
Potts-4 2 2.293 2.15 1/4 0.43(1) 0.474(7)
Blume-Capel 2 2.215 3.17 3/80 0.97(2) 1.080(4)
diluted Ising 3 2.62 2.75 0.037 0.28(2) 0.35(1)

double
exchange 3 1.975 2.05 0.0375 0.017 0.335(9)

spherical < 4 2 3
2d − 2 0 (d − 2)/4 (d − 2)/4

mean-field > 4 2 d 0 1/2 1/2
nekim 1 1.75 1.51 1 0.58(1) 0.67(1)



IV. Numerical results – phase-ordering

consider 2D Glauber-Ising model, Tc ≃ 2.27, quench to T < Tc.
Lattice 400× 400, average over 8 ⋅ 104 initial configurations/noise

find two regimes of power-law decay :

1 for large times, �g = 0.063(2) – averaged over all values of T

2 for short times, effectively critical as long as L(t)≪ �therm
estimates �g (1.8) ≈ 0.18, �g (2.0) ≈ 0.20 ; �g (Tc) = 0.236(3)



Test of the markovian relation �gz = �C − d/2, T < Tc

=⇒ generic non-markovian dynamics of global magnetisation

�g
model d �C Markov numeric

Ising 1 T = 0 1 1/4 1/4 M96

Ising 2 T = 0 1.24(2) 0.12(1) ≃ 0.09 CS97

T = 1.0 1.24(2) 0.12(1) 0.062(2)
T = 1.5 1.24(2) 0.12(1) 0.065(2)

tdgl 2 T = 0 1.24 0.12 ≃ 0.06 CS97

spherical > 2 T < Tc d/2 0 0
spherical, > � T < Tc d/2 0 0
long-range

�g temperature-independent ⇒ confirms that T < Tc irrelevant

observation :

{
�g≥�mark

g ; if T=Tc

�g≤�mark
g ; if 0 < T<Tc

}
why ?

M96 = Majumdar et al. 96 ; CS97 = Cueille & Sire 97



Form of normalised global autocorrelator N(t, s)

2D Glauber-Ising model, quenched to T = 1.5 < Tc

* find dynamical scaling
* observe very long transient towards expected asymptotics
(effective exponent ≈ 0.115, expected 0.125)
* (t/s)1/8N(t, s) is not a constant

=⇒ incompatible with Doob’s lemma for a Markov process



V. Conclusions

1 study long-time behaviour of global persistence Pg(t) ∼ t−�g

2 if Markov process for global order-parameter, then

�gz = �C − d + 1− �/2 at criticality T = Tc

�gz = �C − d/2 at low temperatures T < Tc

3 satisfied in certain solvable models
(1D Glauber-Ising, spherical,. . . )

4 in general broken =⇒ non-markovian dynamics
for global order-parameter, independently of value of z

Some open questions :

find exactly solvable non-markovian, microscopically local,
dynamics

renormalised eqs. of motion non-local in time and space
=⇒ what about dynamical symmetries ?
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MECO conference in Pont-à-Mousson (Lorraine)

The next MECO conference will be held in the historical abbey
of the Prémontrés in Pont-à-Mousson, about in the middle
between Nancy & Metz, Lorraine (France).

Dates : monday the 15th of march 2010 (arrival)
to friday the 19th of march 2010 (departure).
Web site : http ://www.ijl.nancy-universite.fr/meco35

Inscriptions are already open !

The organising comittee
(GPS - DPMM-IJL, CNRS – Nancy Université – UPVM).


