Non-markovian global persistence in phase-ordering kinetics

Malte Henkel

Groupe de Physique Statistique, Département de Physique de la Matière et des Matériaux, IJL, CNRS – Nancy Université, France

collaborator: M. Pleimling (Virginia Tech, E.U.A.)

arXiv:0907.1642 - J. Stat. Mech. (at press)

CompPhys09, Universität Leipzig, 26th of November 2009

- I. Ageing phenomena in simple magnets
- II. Global persistence probability
- III. Relationship with Markov processes
- IV. Numerical results (mainly for phase-ordering)
- V. Conclusions

I. Ageing phenomena in simple magnets

consider a simple magnet (ferromagnet, i.e. Ising model, non-conserved dynamics)

- **()** prepare system initially at high temperature $T \gg T_c > 0$
- ② quench to temperature $T < T_c \rightarrow$ phase-ordering kinetics (or $T = T_c \rightarrow$ nonequilibrium critical dynamics) → non-equilibrium state
- \bigcirc fix T and observe dynamics

formation of ordered domains, of linear size $L = L(t) \sim t^{1/z}$ dynamical exponent z

Criteria for physical ageing :

- **1** slow (i.e. non-exponential dynamics)
- Ø breaking of time-translation-invariance
- Optimized and the second se

Example for ageing : 3D Glauber-Ising model, $T < T_c$

C(t, s) : autocorrelation function, quenched to $T < T_c$ scaling regime : $t, s \gg \tau_{\text{micro}}$ and $t - s \gg \tau_{\text{micro}}$

Scaling behaviour & exponents

single relevant time-dependent length scale $L(t) \sim t^{1/z}$

Bray 94, Janssen et al. 92, Cugliandolo & Kurchan 90s, Godrèche & Luck 00, ...

 $\phi(t, \mathbf{r})$ – space-time-dependent order-parameter (magnetisation)

correlator
$$C(t, s; \mathbf{r}) := \langle \phi(t, \mathbf{r}) \phi(s, \mathbf{0}) \rangle = s^{-b} f_C(t/s, |\mathbf{r}|^z/(t-s))$$

response $R(t, s; \mathbf{r}) := \left. \frac{\delta \langle \phi(t, \mathbf{r}) \rangle}{\delta h(s, \mathbf{0})} \right|_{h=0} = s^{-1-a} f_R(t/s, |\mathbf{r}|^z/(t-s))$

No fluctuation-dissipation theorem : $R(t, s; \mathbf{r}) \neq T \partial C(t, s; \mathbf{r}) / \partial s$ values of exponents : equilibrium correlator \rightarrow classes S and L

$$C_{eq}(\mathbf{r}) \sim \begin{cases} \exp(-|\mathbf{r}|/\xi) \\ |\mathbf{r}|^{-(d-2+\eta)} \end{cases} \Longrightarrow \begin{cases} class \mathbf{S} \\ class \mathbf{L} \end{cases} \Longrightarrow \begin{cases} a = 1/z \\ a = (d-2+\eta)/z \end{cases}$$

if $T < T_c : z = 2$ and $b = 0$ if $T = T_c : z = z_c$ and $b = a$
for $y \to \infty : f_{C,R}(y) \sim y^{-\lambda_{C,R}/z}$, $\lambda_{C,R}$ independent exponents

II. Persistence probability

consider a different kind of observable : BRAY, DERRIDA, GODRÈCHE, ...94 probability that magnetisation has *not* changed sign up to time *t* ?

<u>here</u> : global order-parameter in a volume Ω

$$\widehat{\phi}_{m{0}}(t) := rac{1}{|\Omega|^{1/2}} \int_{\Omega} \mathrm{d} {m{r}} \, \phi(t,{m{r}})$$

study the global persistence probability $P_{\rm g}(t)$ if natural dynamical scaling, expect for $t \to \infty$

$$P_{
m g}(t) \sim t^{- heta_{
m g}}$$
 , $extsf{ heta_{
m g}} = {
m global}$ persistence exponent

MAJUMDAR, BRAY, CORNELL, SIRE 96

may also consider dependence of block size (**block persistence**)

Cueille & Sire 96/97

III. Relationship with Markov processes

aim : derive a scaling relation for the global persistence exponent θ_{σ} , for $T < T_{c}$, for Markov processes

argument proceeds in **5** steps

MAJUMDAR ET AL. 96. CUEILLE & SIRE 96/97

1. :

after quench, domains correlated up to linear size $L(t) \ll |\Omega|^{1/d}$. system consists of (almost) uncorrelated domains, linear size L(t). $\implies \widehat{\phi}_{\mathbf{n}}(t)$ is sum over uncorrelated random variables. with **finite** moments for each finite time t

(i)
$$\langle \widehat{\phi}_{\mathbf{0}}(t) \rangle = 0$$
 , (ii) $\langle \widehat{\phi}_{\mathbf{0}}^2(t) \rangle \sim L(t)^{d-bz}$

apply central limit theorem $\implies \widehat{\phi}_0(t)$ gaussian process $\forall t < \infty$

<u>2.</u>: scaling analysis for $|\Omega| \to \infty$ and $t_1 > t_2$

$$\begin{split} \langle \widehat{\phi}_{\mathbf{0}}(t_{1}) \widehat{\phi}_{\mathbf{0}}(t_{2}) \rangle &= \lim_{\mathbf{k} \to \mathbf{0}} \langle \widehat{\phi}_{\mathbf{k}}(t_{1}) \widehat{\phi}_{-\mathbf{k}}(t_{2}) \rangle \\ &= \lim_{\mathbf{k} \to \mathbf{0}} \frac{1}{|\Omega|} \int_{\Omega^{2}} d\mathbf{r}_{1} d\mathbf{r}_{2} \ e^{i\mathbf{k} \cdot (\mathbf{r}_{2} - \mathbf{r}_{1})} \left\langle \phi(t_{1}, \mathbf{r}_{1}) \phi(t_{2}, \mathbf{r}_{2}) \right\rangle \\ &= \lim_{\mathbf{k} \to \mathbf{0}} \frac{1}{|\Omega|} \int_{\Omega^{2}} d\mathbf{r}_{1} d\mathbf{r}_{2} \ e^{-i\mathbf{k} \cdot (\mathbf{r}_{1} - \mathbf{r}_{2})} t_{2}^{-b} f_{C} \left(\frac{t_{1}}{t_{2}}, \frac{\mathbf{r}_{1} - \mathbf{r}_{2}}{L(t_{1} - t_{2})} \right) \\ &= \lim_{\mathbf{k} \to \mathbf{0}} \int_{\Omega} d\mathbf{r} \ e^{-i\mathbf{k} \cdot \mathbf{r}} \ t_{2}^{-b} f_{C} \left(\frac{t_{1}}{t_{2}}, \frac{\mathbf{r}}{L(t_{1} - t_{2})} \right) \\ &= t_{2}^{(d-bz)/z} \left(\frac{t_{1}}{t_{2}} - 1 \right)^{d/z} \int_{\Omega} d\mathbf{r} \ f_{C} \left(\frac{t_{1}}{t_{2}}, \mathbf{r} \right) \\ &= t_{2}^{(d-bz)/z} \widehat{f} \left(\frac{t_{1}}{t_{2}} \right) ; \quad \text{where} \ \widehat{f}(y) \overset{y \to \infty}{\sim} y^{(d-\lambda_{C})/z}. \end{split}$$

3. : define the normalised autocorrelator

$$\mathcal{N}(t_1, t_2) := rac{\langle \widehat{\phi}_{\mathbf{0}}(t_1) \widehat{\phi}_{\mathbf{0}}(t_2)
angle}{\sqrt{\langle \widehat{\phi}_{\mathbf{0}}^2(t_1)
angle \langle \widehat{\phi}_{\mathbf{0}}^2(t_2)
angle}} = \widehat{f}_{\mathcal{N}}\left(rac{t_1}{t_2}
ight)$$

 \implies asymptotics for $y \rightarrow \infty$: $\hat{f}_N(y) \sim y^{(d-2\lambda_C+bz)/(2z)}$ New time variable $\mathbf{T} = \ln \mathbf{t}$, find

$$N(t_1, t_2) = \bar{N}(T_1, T_2) = n(T_1 - T_2)$$

 \implies the gaussian process describing $\widehat{\phi}_{\mathbf{0}}(\mathcal{T})$ is stationary.

Asymptotics for $T \to \infty$:

$$n(T)\sim e^{-\mu T}$$
 , $\mu=(2\lambda_C-d-bz)/(2z)$

<u>**4.**</u>: Lemma 1 : (Doob 1942) A gaussian, stationary stochastic process X(t) with $\langle X(t) \rangle = 0$ is markovian, if and only if the autocorrelator has exactly an exponential form

$$\langle X(t_1)X(t_2)\rangle = X_0 e^{-\mu|t_1-t_2|}$$

where μ is a constant and X_0 a normalisation. <u>Conclusion</u>: if $\hat{\phi}_0(T)$ is markovian, one must have exactly $n(T) = e^{-\mu T}$, with $\mu = (2\lambda_C - d - bz)/z$. <u>5.</u>: Lemma 2: (Slepian 1962) Consider a gaussian and stationary stochastic process with an autocorrelator $\langle X(T)X(0) \rangle = e^{-\mu|T|}$. Then the global persistence probability for X(t) is given by

$$P_{\mathrm{g}}(T) = rac{2}{\pi} \arcsin\left(e^{-\mu T}
ight).$$

<u>Conclusion</u> : for $T \to \infty$, and $t_2 \to 1$, find $P_{\rm g}(T) \sim e^{-\mu T} \sim t_1^{-\mu}$

long times : $P_{
m g}(t) \sim t^{- heta_g}$, with

$$\theta_{g} = \mu = (2\lambda_{C} - d - bz)/(2z)$$

Provided $\hat{\phi}_0(t)$ is a Markov process, have scaling relations : a) non-equilibrium critical dynamics $T = T_c$, $b = (d - 2 + \eta)/z$

$$\theta_g z = \lambda_C - d + 1 - \frac{1}{2}\eta$$

b) phase-ordering kinetics : $T < T_c$, z = 2, b = 0

$$\theta_g z = \lambda_C - \frac{d}{2} \ge 0$$

Use these scaling relations to test the Markov property !

Test of the markovian relation $\theta_g z = \lambda_c - d + 1 - \eta/2$, $[T = T_c]$ \implies generic **non-markovian** dynamics of global magnetisation

RESULTS FROM MANY DIFFERENT GROUPS 96-09

					θ_{g}	
model	d	Ζ	λ_{C}	η	Markov	numeric
lsing	1	2	1	1	1/4	1/4
	2	2.1667	1.588	1/4	0.214(1)	0.237(3)
					0.214(1)	0.235(5)
	3	2.043	2.78	0.0364	0.374(1)	0.41(2)
Potts-3	2	2.197	1.836	4/15	0.321(2)	0.350(2)
Potts-4	2	2.293	2.15	1/4	0.43(1)	0.474(7)
Blume-Capel	2	2.215	3.17	3/80	0.97(2)	1.080(4)
diluted Ising	3	2.62	2.75	0.037	0.28(2)	0.35(1)
double						
exchange	3	1.975	2.05	0.0375	0.017	0.335(9)
spherical	< 4	2	$\frac{3}{2}d - 2$	0	(d-2)/4	(d - 2)/4
mean-field	> 4	2	d	0	1/2	1/2
NEKIM	1	1.75	1.51	1	0.58(1)	0.67(1)

IV. Numerical results - phase-ordering

consider 2D Glauber-Ising model, $T_c \simeq 2.27$, quench to $T < T_c$. Lattice 400 × 400, average over 8 · 10⁴ initial configurations/noise

find two regimes of power-law decay :

1 for large times, $\theta_g = 0.063(2)$ – averaged over all values of T

2 for short times, effectively critical as long as $L(t) \ll \xi_{\text{therm}}$ estimates $\theta_g(1.8) \approx 0.18$, $\theta_g(2.0) \approx 0.20$; $\theta_g(T_c) = 0.236(3)$ Test of the markovian relation $\theta_g z = \lambda_C - d/2$,

 \implies generic **non-markovian** dynamics of global magnetisation

					θ_{g}
model	d		λ_{C}	Markov	numeric
Ising	1	T = 0	1	1/4	1/4 M96
lsing	2	T = 0	1.24(2)	0.12(1)	$\simeq 0.09$ cs97
		T = 1.0	1.24(2)	0.12(1)	0.062(2)
		T = 1.5	1.24(2)	0.12(1)	0.065(2)
TDGL	2	T = 0	1.24	0.12	$\simeq 0.06$ cs97
spherical	> 2	$T < T_c$	d/2	0	0
spherical,	$> \sigma$	$T < T_c$	d/2	0	0
long-range					

 $\begin{array}{l} \theta_{g} \text{ temperature-independent} \Rightarrow \text{ confirms that } T < T_{c} \text{ irrelevant} \\ \hline \theta_{g} \geq \theta_{g}^{\text{mark}} & ; \text{ if } T = T_{c} \\ \theta_{g} \leq \theta_{g}^{\text{mark}} & ; \text{ if } 0 < T < T_{c} \end{array} \right\} \text{ why ?} \\ \text{M96 = Majumdar et al. 96; CS97 = Cueille \& Sire 97} \end{array}$

Form of normalised global autocorrelator N(t, s)

* find dynamical scaling

* observe **very long transient** towards expected asymptotics (effective exponent ≈ 0.115 , expected 0.125) * $(t/s)^{1/8}N(t,s)$ is **not** a constant

\implies incompatible with Doob's lemma for a Markov process

V. Conclusions

- () study long-time behaviour of global persistence $P_{
 m g}(t) \sim t^{- heta_{
 m g}}$
- 2 if Markov process for global order-parameter, then
 - $\theta_g z = \lambda_C d + 1 \eta/2$ at criticality $T = T_c$
 - $\theta_g z = \lambda_C d/2$ at low temperatures $T < T_c$
- satisfied in certain solvable models (1D Glauber-Ising, spherical,...)
- ④ in general broken ⇒ non-markovian dynamics for *global* order-parameter, independently of value of *z*

Some open questions :

- find exactly solvable non-markovian, microscopically local, dynamics
- renormalised eqs. of motion non-local in time and space
 what about dynamical symmetries?

Vol. 2 – co-author M. **Pleimling** – will treat ageing phenomena in simple magnets and LSI (hopefully finished still in 2009)

The next **MECO conference** will be held in the historical abbey of the Prémontrés in Pont-à-Mousson, about in the middle between Nancy & Metz, Lorraine (France).

Dates : monday the 15th of march 2010 (arrival)
to friday the 19th of march 2010 (departure).
Web site : http ://www.ijl.nancy-universite.fr/meco35

Inscriptions are already open !

The organising comittee (GPS - DPMM-IJL, CNRS – **Nancy** Université – UPVM).