Using kinetic Monte Carlo simulations for investigating
 surface barriers in nanoporous materials

Lars Heinke
Fritz-Haber-Institute of the Max-Planck-Society, Berlin
Jörg Kärger
University Leipzig

Com-Phys-09 Workshop,
Leipzig 26.11.2009

Introduction - nanoporous materials

Nanoporous crystals:

- Periodic, regular structure
- Pore size: few $\AA \AA$ - few nm
- Zeolites and metal-organic frameworks (MOF)

Applications:

- Adsorption (e.g. of water)
- Ion exchange (e.g. water softener)
- Molecular sieve (mass separation, gas purification)

- Catalysts (e.g. in petrochemistry)
\rightarrow Mass transport crucial!

Experimental data - recorded concentration profiles

Best way for studying mass transfer \rightarrow concentration profiles! (Pressure step \rightarrow new equilibrium concentration \rightarrow mass transfer)

Investigated system: propane in MOF Zn(tbip) (one-dimensional pore structure)

\rightarrow Mass transfer often limited by surface barriers! (not only by diffusion in the bulk crystal)

Transport, Maxwell-Stefan and self-diffusivity and surface permeability of propane

Diffusivity and surface permeability $\boldsymbol{\rightarrow}$ same concentration dependence! Furthermore: Ethane, propane and \mathbf{n}-butane $\boldsymbol{\rightarrow}$ same $\boldsymbol{\alpha} / \boldsymbol{D}$

\rightarrow Both facts can not be explained by a smaller pore diameter at surface or by entropic effects!

- Crystal structure \rightarrow lattice (1 pore segment $=1$ lattice site)
- Most pore entrances blocked, molecules enter only via open pore entrances (percentage of open pores $\boldsymbol{p}_{\text {open }}$)
- Parallel pores have cross connections = crystal defects (percentage of cross connections $\boldsymbol{p}_{\boldsymbol{y}}=\boldsymbol{p}_{\boldsymbol{z}}$)
- Gas phase $=$ reservoir with fixed concentration ($\boldsymbol{c}_{\mathbf{e q}}$)

Kinetic Monte-Carlo simulations

Details for simulations:

- Lattice jump model
- Every time step nt \rightarrow every molecule makes jump attempt

- Restriction:
- Each site can be occupied by only one molecule (follows from isotherm)
- jumps in y - or z-direction can only occur when adjacent pores are cross connected
- No interaction between the particles (hard-sphere model) or nearest-neighbour interaction (Reed-Ehrlich model)
- fixed concentration in the reservoir $c_{\text {eq }}$
$c_{\text {eq }}>c_{0} \rightarrow$ adsorption experiment
$c_{\text {eq }}<c_{0} \rightarrow$ desorption experiment
$c_{\text {eq }}=c_{0} \rightarrow$ self-diffusion experiment
Assumption: Jump rate in x, y and z are equal.

Simulated concentration profiles

Concentration profiles along x correspond to solution of diffusion equation with surface barriers. (D and $\alpha=$ const.)

Surface permeability

- constant during transfer process (if diffusivity constant; $\alpha \sim$ jump rate $\sim D$)
- independent of equilibrium concentration
- independent of length of pore system

Resulting surface permeability

Surface permeability depends on

- fraction of open pores ($p_{\text {open }}$)
- probability of cross connections $\left(p_{y}=p_{z}\right)$
$\rightarrow \alpha\left(p_{\text {open }} p_{y}\right)$ and $\alpha / D=$ const.

$$
\alpha \sim \frac{5 \cdot p_{y}}{1+4 \cdot p_{y}} \cdot\left(1-\frac{p_{y}}{2+4 \cdot p_{y}}\right)
$$

Interaction between particles - Reed-Ehrlich model

Now: Interaction between particles \rightarrow Diffusivity concentration dependent

Nearest-neighbour interaction between particles on the lattice
Jump rate $\sim \Phi=\exp \left(\frac{\sum U_{\text {Nearest Neighbour }}}{k_{b} T}\right)$
(Reed-Ehrlich approach)
\rightarrow concentration dependence similar diffusivity

\rightarrow All properties of the surface barriers presented!

Determining $p_{\text {open }}$ in MOF Zn (tbip)

Self-diffusion simulations with concentration $c=0.3$ and $c=0.5 \quad(\Phi=5)$

$\rightarrow p_{y} \approx 0.05$
$p_{\text {open }}$ can be adjusted to fit the experimental data

$$
\left(p_{y}=0.05\right)
$$

\rightarrow Fraction of open surface pores is about 0.033%, i.e. one among 55×55 pores is open!
(Under the assumption of equal jump rates in all directions!)

- Surface barrier represented by a high percentage of totally blocked pores which are cross-connected.
- Influence of different parameters in the model studied by means of kinetic Monte-Carlo simulations.
- All properties of the surface barriers of alkanes in MOF Zn (tbip) are very well represented!
\rightarrow It can be concluded that the surface barriers are caused by this structure!

Acknowledgment

Department of Interface Physics, University Leipzig
Grenzflächenphysik

UNIVERSITAT LEIPZIG

Diffusion In Porous Materials
IRTG "Diffusion in Nanoporous Materials"

Studienstiftung des deutschen Volkes

Atomic-Force-Microscopy group and Chemical Physics department at the Fritz-Haber-Institute

Many thanks for your attention!

Studienstiftung

 des deutschen Volkes

Variation of jump rates

Results are only valid under the assumptions of same jump rate everywhere.

What happens if jump rate in surface plane is smaller?

Jump rate in surface up to 1 order of magnitude smaller \rightarrow no difference!

Comparison with analytical results for continuum system
(Dudko, Berezhkovskii, Weiss, J. Phys. Chem, 2005.))
\rightarrow If lattice can be approximated as continuum, good approximation.

$$
\alpha=2 \frac{D \cdot a}{L^{2}}
$$

Periodic or random distribution of open pores

$$
\begin{gathered}
j_{\text {surf }}=\alpha \cdot\left(c_{\mathrm{eq}}-c_{\text {surf }}\right) \\
\alpha\left(c_{\text {surf }}\right)=\frac{\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\text {centre }}^{\text {surface }}}{c_{\mathrm{eq}}-c_{\text {surf }}} c(t) \mathrm{d} y
\end{gathered}
$$

Crystal structure of MOF Zn (tbip)

Experimental setup of interference microscopy

- Basic principle: optical path length depends on adsorbate concentration.
- Spatial resolution: $0.5 \mu \mathrm{~m} \times 0.5 \mu \mathrm{~m}$

Sticking probability $P_{\text {st }}$
= probability that a gas molecule that hits the crystal surface continues its trajectory in the pore space,
i.e.

$$
P_{\text {st }}=\frac{j_{\text {in }}}{j_{\text {gas on surface }}}
$$

$j_{\text {surf }}=\alpha \cdot\left(c_{\text {eq }}-c_{\text {surf }}\right)=j_{\text {in }}-j_{\text {out }}$
$\xrightarrow[\text { no concentration }]{ } j_{\text {in }}=\alpha \cdot c_{\text {eq }}$ dependence

- desorption to
vacuum: $c_{\text {eq }}=0, j_{\text {in }}=0$

$$
j_{\text {gas on surface }}=\frac{N_{A} \cdot p}{\sqrt{2 \pi \cdot R \cdot T \cdot M}}
$$

From kinetic theory of gases

Sticking probability:

- $P_{\text {st }} \approx 6 \times 10^{-6}$ for methanol in ferrierite
- $P_{\text {st }} \geq 0.01$ for isobutane in silicalite
\rightarrow Varies over many order of magnitude!

