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Motivation, previous studies

@ One-dimensional diffusion-limited coagulation process

@ Particle concentration : c(t) ~ t—1/?
— mean field description : c(t) ~ t~?
— fluctuations D. Toussaint and F. Wilczek, 1983
D. ben Avraham, M. Burschka and C.R. Doering, 1990
@ Correlation function : C(r,t) ~ t=1f(r?/t)
D. ben Avraham, 1998

@ Theoretical prediction confirmed by experiments
@ kinetics of excitons on long polymer chains
R. Kroon, H. Fleurent and R. Sprik, 1993
J. Prasad and R. Kopelman, 1989
@ photoluminescence saturation in carbon nanotubes
A. Srivastava and J. Kuno, 2009
© relaxation of photoexcitations in suspensions of carbon
nanotubes R.M.Russo et al., 2006
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Motivation, previous studies
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@ Influence of initial conditions

@ Perspective : Study of the ageing phenomena
— requires the knowledge of the one-time quantities
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One-interval probability

En(t) : time-dependent probability of having an interval of n
consecutive empty sites at time t
— give access to particle concentration

Two-interval probability

En,.ny.d(t) : time-dependent probability of having two intervals of
ny and np consecutive empty sites at distance d at time t
— give access to correlation function

1004
|- Peschel et al. 1994
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|.1 Differential equation : closed system

Forn>1

OtEn(t) = (2D/a%) (En—1 — 2E, + Ent1).
For n =1, the equation is

8:E1(t) = (2D/ ) [1 —2E(t) + Ez(t)}

This gives the constraint : Eg(t) =1

Equation of motion in the continuum limit

OtE(x,t) = 2D0«E(x,t), and E(0,t)=1.

E(x,t) = /OO dx exp [— i(X - x')z} E(X',0).

—00 \/’TTEO 602
where /g is the scaling length
by == V8Dt

V.
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|.2 General solution

We have to take into account the constraint : Eg(t) = 1.

assume that the differential equation is valid for n < 0

OrEo(t) = (2D/a%) (E_1 — 2Ey + E1) =0

which implies
E_l(t) = 2E0(t) = El(t) =2 El(t)

Redefine the meaning of E(x,0) for negative x such that

En(t)=2-Eq(t)] and  E(—x,t)=2-E(x,1)

E(x,t) = erfe(x/lo)
+o0 /
——FE
0 ﬁfo

1 (X—X')2 - e_eo%(x_,'_xlf

+ (x',0) [e_‘ftT2




|.3 General expression for the particle concentration

c(t) = — OE(x, t)|

x=0

940

o(t) = —2 (1— /O h de(x€0,0)2xe_X2> ’

E(x,0) is related to P(x', t) = Pr(o)
E(x{p,0) :/ P(x', t)dx’
x4
such that when £y is large, E(x{p) < 1 and we obtain

2

+o(1/6p) ~ t~1/?
wlo

c(t) =

independent of initial condition
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|.4 Particle concentration for a special initial condition

p probability of having a particle on a site

discrete case

(1-p)"

4Dt (/0(4Dt) + L (4Dt)

En(0)

c(t)

E(x,0) = exp(—cox)

0.01

— discrete, c0=0.l

— discrete, ¢;=0.5

— discrete, cozl

—— continuum limit, CU:O.l
—— continuum limit, 00:0.5

-~ continuum limit, cO=1
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|.5 Initial conditions

p(x, t) : interparticle distribution functions (IPDF) (probability
that the nearest particle to a given particle is at distance x)

p(x, t)e(t) = 95 E(x, 1)

1
Eo(X) = <1+C0X> Eo(X) = el“fC(\/7>TCOX/2)
CO:OAS
F — exp(-cx)
— (e’ |

— erfc(AcOx) |

c(t)

0.1F0s

001501 " 00
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[I. Correlation funtion

Connected two-point correlation function defined in the discrete
case : probability to have two particles separated by d

Co(d) = Pr(e d o) — Pr(e)Pr(e)

Using Ep, n,,d(t) = Pr([ m |d[ m))

we obtain

G(d) =1 - Eo1(d) — Ero(d) + E11(d) — (1 — E10(d))(1 — Eo,1(d))

Correlator in the continuum limit

Co(2) = O E(x,y,2)|, g, o = HE()| o O EW)] g
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[1.1 Two-intervals probability

Consider Ep, n, d(t) = Pr([ ni |d[ np )

Symmetries and auto-consistency relation

Enl,n2(d7 t) = Enz,nl(da t)
Eno(d,t) = En(t) and Egp,(d,t) = Ep(t)
En17’72(0? t) = En1+nz(t)'

In the continuum limit, setting x = nia, y = npa and z = da

8:E(x,y,2,t) = 2D [83 + 2402 - (axaz + ayaz)] E(x,y,z). J

— subject to boundary and consistency conditions
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I1.4 General solution and compatibility conditions

General solution without any constraint

> dx'dy’dz’

E(x,y,z,t :/ — = " W(x—x,y—y,z—2)E(X,y, 7
Corz)= | EEEWeryyz D)E(Y D)
where the Gaussian kernel W(u, v, w) is given by

1 1
W(u,v,w):expg—z[—(u—i—v—i—w)z—wz—f(u—v)z]
0

2

Correspondence between negative and positive variables in the
continuum limit

E(—x) = 2-E(x),
E(—x,y,z) = 2E(y)— :
E(x,—y,z) = 2E(x)- :
E(—x,—y,z) = 4—-2E(x)—2E(y)+ ,
E(x,y,—z) 2E(x+y—2z)—
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[1.5 General solution

Using the compatibility conditions, we can write E(x, y, z, t) as
E(x,y,2,t) = EO(x,y,2,6) + EN(x,y,2,8) + ED(x,y,2, 1)

where
° E(O)(X,y,z, t) is independent of the initial conditions
o EM(x,y,z,t) depends on the initial one-interval probability
Eo(x)
° E(z)(x,y,z, t) depends on the initial two-intervals probability
Eo(x,y,2)
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[1.6 Contribution independent of the initial conditions

EO(x,y,2,t) = erfe(-Yerfe(L) + exfe( > Yerfe( XL T2
EO EO 60 Eo
—erfc(x + Z)erfc(y it z).
EO EO

@ Full solution for initially completely filled system
@ Shows the required symmetries
o For large z, it decouples : E®)(x,y,z,t) ~ E(x, t)E(y, t)
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[1.7 Other contributions

EM(x,y,2,t) = erfe(Z)(y) + I(x)erfe(>")
0 0

X+ z

—erfe( )I(y+z)—l(x—|—z)erfc(y+z)
ﬁo EO
et e b 0 2) b e Y T
fo ZO
where
/(X) _ < dx! Eo(XI) [e*(x’—Xf/fo2 _ e*(x’+x)2/€02
o lovm
E@(x,y,2,t) = VAR & E(x',y',2')

0 f03ﬁ3
xW(x —x',y —y',z—2Z)Ka(X',y', Z's x, y, 2)

Correction to the leading behaviour in the asymptotic regime
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[1.8 One-time correlation function

Correlation function
C2(Z7 t) - a)%yE(Xay7Za t)‘x:O,y:O - aXE(X7 t)‘x:O 8)’E(Y7 t)|y:0

In the case of an initially completely filled system, E(x,0) =0 and
E(x,y,z,0) =0, we recover the expression

4
C2(Z7 t) = ?02 |:_e—222/€02 + ﬁierfc <Z> e_z2/£02:|

D. ben Avraham, 1998

exact in asymptotic regime for all initial conditions.

Connected correlator

Gz = () et

with f(y) = —e_2y2+ﬁye_y2erfc(y)
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[1.9 One-time correlation function

Gz t) = (wigo)z f(2/t0)

{ —1+my fory<1

with

1 ,—2y?
—352€ Y© fory — o

T T T T
1

— asymptotic
— z=5
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—z=1

— f(y

L8 ~ X @PProx
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Algebraic behaviour when t large |Gy(t)| ~ t~1.
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Conclusion

@ Solvable model through closed equations of motion for
empty-interval probabilities

@ We have extended the technique to find correlations directly,
for arbitrary initial conditions

@ Exact calculation of

@ E(x,t) — exact expression of the particle concentration
— new treatment of the boundary condition
@ E(x,y,z;t) — exact correlation function

@ confirm scaling description from explicit expressions

Perspectives
@ include other reactions : A— A+ A, ) — A, ADA — AAA

@ Link between physical quantities and initial two-interval
probability

@ Two-time quantities and ageing
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