Spin Glasses in the Hypercube

Beatriz Seoane Bartolomé in collaboration with L.A. Fernández, V. Martin-Mayor and G. Parisi preprint arXiv::0911.4667

Departamento de Física Teórica I, Universidad Complutense de Madrid

Leipzig, 27th November 2009

Objective We want to define and study numerically

We want to define and study numerically

1. a mean field model

We want to define and study numerically

1. a mean field model

Why?

- 1. a mean field model
 - □ Highly non trivial in spin glasses

- 1. a mean field model
 - □ Highly non trivial in spin glasses
 - □ We have analytical predictions in equilibrium

- 1. a mean field model
 - □ Highly non trivial in spin glasses
 - □ We have analytical predictions in equilibrium
 - Its non equilibrium behavior is not yet understood

- 1. a mean field model
 - □ Highly non trivial in spin glasses
 - We have analytical predictions in equilibrium
 - □ Its non equilibrium behavior is not yet understood
 - Even at equilibrium, theory cannot explain many of their properties:
 e.g. temperature chaos

- 1. a mean field model
 - □ Highly non trivial in spin glasses
 - We have analytical predictions in equilibrium
 - Its non equilibrium behavior is not yet understood
 - Even at equilibrium, theory cannot explain many of their properties:
 e.g. temperature chaos
- 2. as similar to a 3D system as possible

- 1. a mean field model
 - ☐ Highly non trivial in spin glasses
 - We have analytical predictions in equilibrium
 - Its non equilibrium behavior is not yet understood
 - Even at equilibrium, theory cannot explain many of their properties:
 e.g. temperature chaos
- 2. as similar to a 3D system as possible
 - \square with coordination number z = 6

- 1. a mean field model
 - □ Highly non trivial in spin glasses
 - □ We have analytical predictions in equilibrium
 - □ Its non equilibrium behavior is not yet understood
 - Even at equilibrium, theory cannot explain many of their properties:
 e.g. temperature chaos
- 2. as similar to a 3D system as possible
 - \square with coordination number z = 6
 - with a natural definition of distance

- 1. a mean field model
 - □ Highly non trivial in spin glasses
 - □ We have analytical predictions in equilibrium
 - Its non equilibrium behavior is not yet understood
 - Even at equilibrium, theory cannot explain many of their properties:
 e.g. temperature chaos
- 2. as similar to a 3D system as possible
 - \square with coordination number z = 6
 - □ with a natural definition of distance
 - Spatial correlation functions, coherence lengths

- 1. a mean field model
 - Highly non trivial in spin glasses
 - □ We have analytical predictions in equilibrium
 - Its non equilibrium behavior is not yet understood
 - Even at equilibrium, theory cannot explain many of their properties:
 e.g. temperature chaos
- 2. as similar to a 3D system as possible
 - \square with coordination number z = 6
 - □ with a natural definition of distance
 - Spatial correlation functions, coherence lengths
 - Unusual in mean field

1. EA model and mean field

- 1. EA model and mean field
- 2. Hypercube model

- 1. EA model and mean field
- 2. Hypercube model
- 3. Off-equilibrium results

- 1. EA model and mean field
- 2. Hypercube model
- 3. Off-equilibrium results
- 4. Finite size effects

- 1. EA model and mean field
- 2. Hypercube model
- 3. Off-equilibrium results
- 4. Finite size effects
- 5. Conclusions

Edwards-Anderson Model

Degrees of Freedom

- 1. Dynamical: $\sigma_i = \pm 1$, con i = 1, ..., N,
- 2. Quenched: lattice impurities
 - □ Connectivity matrix: $n_{ik} = n_{ki} = 1, 0$
 - □ Coupling constants: $J_{ik} = J_{ki}$

Edwards-Anderson Model

Degrees of Freedom

- 1. Dynamical: $\sigma_i = \pm 1$, con i = 1, ... N,
- 2. Quenched: lattice impurities
 - □ Connectivity matrix: $n_{ik} = n_{ki} = 1, 0$
 - □ Coupling constants: $J_{ik} = J_{ki}$

Interaction energy

$$\mathcal{H} = -\sum_{i < k} J_{ik} n_{ik} \sigma_i \sigma_k$$

quenched approximation

Edwards-Anderson Model

Degrees of Freedom

- 1. Dynamical: $\sigma_i = \pm 1$, con i = 1, ... N,
- 2. Quenched: lattice impurities
 - □ Connectivity matrix: $n_{ik} = n_{ki} = 1, 0$
 - □ Coupling constants: $J_{ik} = J_{ki}$

Interaction energy

$$\mathcal{H} = -\sum_{i < k} J_{ik} n_{ik} \sigma_i \sigma_k$$

quenched approximation

Mean Field

The exact solution in mean field approx. is known (Parisi, 1983): $n_{ik} = 1 \ \forall i, k, J_{ik}$ gaussian random var. $(\overline{J} = 0 \text{ and } \overline{J^2} = 1/N)$

- Infinite degenerate states
- Ultrametric organization

Bethe Lattices

oh Aller

Spins are located on the nodes of a Poisson graph

Bethe Lattices

Spins are located on the nodes of a Poisson graph

1. Spin i is connected in average with z spins \Rightarrow Energy calculation O(N)

Spins are located on the nodes of a Poisson graph

- Spin i is connected in average with z spins ⇒ Energy calculation O(N)
- 2. $P(n_{ik}=1) = \frac{z}{N-1} \Rightarrow z_i$ follows a Poisson distribution.

Spins are located on the nodes of a Poisson graph

- 1. Spin *i* is connected in *average* with *z* spins \Rightarrow Energy calculation O(N)
- 2. $P(n_{ik}=1) = \frac{z}{N-1} \Rightarrow z_i$ follows a Poisson distribution.
- 3. Local tree topology \Rightarrow the Bethe approximation is fulfilled in the TL (closed finite loops $O(\log N)$)

T And And

Spins are located on the nodes of a Poisson graph

- 1. Spin *i* is connected in *average* with *z* spins \Rightarrow Energy calculation O(N)
- 2. $P(n_{ik}=1) = \frac{z}{N-1} \Rightarrow z_i$ follows a Poisson distribution.
- 3. Local tree topology \Rightarrow the Bethe approximation is fulfilled in the TL (closed finite loops $O(\log N)$)

Poisson graphs still lack a notion of distance!

1. Spins are distributed on the vertex of a *D*-dimensional hypercube

1. Spins are distributed on the vertex of a *D*-dimensional hypercube

- 1. Spins are distributed on the vertex of a *D*-dimensional hypercube
- 2. Each spin is connected in average with z=6 spins. We take $n_{ik}=1$ with probability z/D

- 1. Spins are distributed on the vertex of a *D*-dimensional hypercube
- 2. Each spin is connected in average with z=6 spins. We take $n_{ik}=1$ with probability z/D

- 1. Spins are distributed on the vertex of a *D*-dimensional hypercube
- 2. Each spin is connected in average with z = 6 spins. We take $n_{ik} = 1$ with probability z/D
- 3. Local tree topology. Length of the closed loops is O(D)

- 1. Spins are distributed on the vertex of a *D*-dimensional hypercube
- 2. Each spin is connected in average with z=6 spins. We take $n_{ik}=1$ with probability z/D
- 3. Local tree topology. Length of the closed loops is O(D)

Bethe Approximation

Ferromagnet

$$K_{\rm c}^{\rm FM} = {\rm atanh} rac{1}{\langle z
angle_1 - 1}$$

(1)

$$K_{\rm c}^{\rm SG} = \operatorname{atanh} \frac{1}{\sqrt{\langle z \rangle_{\rm c} - 1}},$$
 (

SG

Ferromagnet:
$$B = \frac{\overline{\langle \mathcal{M}^4 \rangle}}{\overline{\langle \mathcal{M}^2 \rangle}^2}$$
, $\mathcal{M} = \sum_i \sigma_i$

Random connectivity model

$$\langle z \rangle_1 = 1 + z - \frac{z}{D}$$

Fixed connectivity model

$$z = 6$$

Ferromagnet:
$$B = \frac{\overline{\langle \mathcal{M}^4 \rangle}}{\overline{\langle \mathcal{M}^2 \rangle}^2}$$
, $\mathcal{M} = \sum_i \sigma_i$

Random connectivity model

Fixed connectivity model

Generation of fixed connectivity graphs

Dynamic Monte Carlo method

Time correlation function tells about the memory at $t+t_{\rm w}$ of the configuration at $t_{\rm w}$

$$C(t,t_{
m w}) = rac{1}{N} \overline{\sum_i \sigma_i(t+t_{
m w}) \sigma_i(t_{
m w})} \Rightarrow egin{cases} C = 1 & \longrightarrow {\sf same config.} \ C = 0 & \longrightarrow {\sf no memory} \end{cases}$$

Time correlation function tells about the memory at $t+t_{\rm w}$ of the configuration at $t_{\rm w}$

$$C(t, t_{\mathrm{w}}) = \frac{1}{N} \overline{\sum_{i} \sigma_{i}(t + t_{\mathrm{w}}) \sigma_{i}(t_{\mathrm{w}})} \Rightarrow egin{cases} C = 1 & \longrightarrow \mathsf{same config.} \\ C = 0 & \longrightarrow \mathsf{no memory} \end{cases}$$

$$0 = \lim_{t_{\mathsf{w}} \to \infty} \lim_{t \to \infty} C(t, t_{\mathsf{w}}) \neq \lim_{t \to \infty} \lim_{t_{\mathsf{w}} \to \infty} C(t, t_{\mathsf{w}}) = q_{\mathsf{EA}}$$

Time correlation function tells about the memory at $t+t_{\rm w}$ of the configuration at $t_{\rm w}$

$$C(t,t_{
m w}) = rac{1}{N} \overline{\sum_i \sigma_i(t+t_{
m w}) \sigma_i(t_{
m w})} \Rightarrow egin{cases} C=1 & \longrightarrow {\sf same config.} \ C=0 & \longrightarrow {\sf no memory} \end{cases}$$

$$0 = \lim_{t_{\mathsf{w}} \to \infty} \lim_{t \to \infty} C(t, t_{\mathsf{w}}) \neq \lim_{t \to \infty} \lim_{t_{\mathsf{w}} \to \infty} C(t, t_{\mathsf{w}}) = q_{\mathsf{EA}}$$

For t_w fixed $C(t, t_w) \sim M(t, t_w)$: thermoremanent magnetization

experimentally
$$M(t,t_{\rm w}) \sim f\left(\frac{t}{t_{\rm w}}\right)$$
 (Full Aging)

No Full Aging

Many time-sectors $C(t,t_{\mathrm{w}}) = \sum_{i} f_{i} \left(h_{i}(t_{\mathrm{w}}) / h_{i}(t+t_{\mathrm{w}}) \right) ! !$

Yes, Bertin-Boucheaud scaling

Infinite spectrum of time-sectors!!

Time correlation function tells about the memory at $t+t_{\rm w}$ of the configuration at $t_{\rm w}$

$$C(t,t_{
m w}) = rac{1}{N} \overline{\sum_i \sigma_i(t+t_{
m w}) \sigma_i(t_{
m w})} \Rightarrow egin{cases} C = 1 & \longrightarrow {\sf same config.} \ C = 0 & \longrightarrow {\sf no memory} \end{cases}$$

Link correlation function

$$C_{\mathrm{link}}(t, t_{\mathrm{w}}) = \frac{1}{DN} \overline{\sum_{ik} n_{ik} \sigma_i(t + t_{\mathrm{w}}) \sigma_k(t + t_{\mathrm{w}}) \sigma_i(t_{\mathrm{w}}) \sigma_k(t_{\mathrm{w}})}$$

Time correlation function tells about the memory at $t+t_{\rm w}$ of the configuration at $t_{\rm w}$

$$C(t,t_{
m w})=rac{1}{N}\overline{\sum_{i}\sigma_{i}(t+t_{
m w})\sigma_{i}(t_{
m w})}\Rightarrow egin{cases} C=1 & \longrightarrow {\sf same \ config.} \ C=0 & \longrightarrow {\sf no \ memory} \end{cases}$$

Link correlation function

$$C_{\mathrm{link}}(t, t_{\mathrm{w}}) = rac{1}{DN} \overline{\sum_{ik} n_{ik} \ \sigma_i(t + t_{\mathrm{w}}) \sigma_k(t + t_{\mathrm{w}}) \sigma_i(t_{\mathrm{w}}) \sigma_k(t_{\mathrm{w}})}$$

In Sherrington-Kirkpatrick $C_{
m link}(t,t_{
m w})=C^2(t,t_{
m w})$

Spatial correlation function

$$c_{4}(\mathbf{r}, t_{w}) = \frac{1}{N} \sum_{\mathbf{x}} \sigma_{\mathbf{x}}^{(1)}(t_{w}) \sigma_{\mathbf{x}+\mathbf{r}}^{(1)}(t_{w}) \sigma_{\mathbf{x}+\mathbf{r}}^{(2)}(t_{w}) \sigma_{\mathbf{x}+\mathbf{r}}^{(2)}(t_{w})$$

$$c_{4}(\mathbf{r}, t_{w}) = \frac{1}{N_{r}} \sum_{\mathbf{r}, |\mathbf{r}| = r} c_{4}(\mathbf{r}, t_{w})$$

$$D = 22$$

$$D = 20$$

$$D = 18$$

$$D = 16$$

$$D = 16$$

$$D = 16$$

10⁻⁵

4

SG susceptibility

$$\chi_{
m SG}(t_{
m w})=N\overline{q^2(t_{
m w})}$$
 where $q(t_{
m w})=\sum_i\sigma_i^{(1)}(t_{
m w})\sigma_i^{(2)}(t_{
m w})$

Spatial correlation function

Spatial correlation function

$$c_4(r, t_{w}) = \frac{1}{N} \sum_{\mathbf{x}} \sigma_{\mathbf{x}}^{(1)} \sigma_{\mathbf{x}+\mathbf{r}}^{(1)} \sigma_{\mathbf{x}+\mathbf{r}}^{(2)} \sigma_{\mathbf{x}+\mathbf{r}}^{(2)}$$

Coherence length

$$\hat{\mathcal{C}}_4(r,t_{\mathrm{w}}) = \sum_{m{r},|m{r}|=r} c_4(m{r},t_{\mathrm{w}})$$

$$\xi_{0,1}(t_{
m w}) = rac{\int_0^\infty {
m d} r \; r \; \hat{C}_4(r,t_{
m w})}{\int_0^\infty {
m d} r \; \hat{C}_4(r,t_{
m w})}$$

Finite size effects

Finite size effects

1. We have defined and studied a new mean field model in the *D*-dimensional unit hypercube

- 1. We have defined and studied a new mean field model in the *D*-dimensional unit hypercube
- 2. This model has a natural notion of spatial distance: we can study spatial correlations

- 1. We have defined and studied a new mean field model in the *D*-dimensional unit hypercube
- 2. This model has a natural notion of spatial distance: we can study spatial correlations
- 3. We have studied the nonequilibrium dynamics:

- We have defined and studied a new mean field model in the D-dimensional unit hypercube
- 2. This model has a natural notion of spatial distance: we can study spatial correlations
- 3. We have studied the nonequilibrium dynamics:
 - Aging consists in the growth of coherence length

- 1. We have defined and studied a new mean field model in the *D*-dimensional unit hypercube
- 2. This model has a natural notion of spatial distance: we can study spatial correlations
- 3. We have studied the nonequilibrium dynamics:
 - ☐ Aging consists in the growth of coherence length
 - □ The scaling of two times correlation function implies many time-sectors

- We have defined and studied a new mean field model in the D-dimensional unit hypercube
- 2. This model has a natural notion of spatial distance: we can study spatial correlations
- 3. We have studied the nonequilibrium dynamics:
 - Aging consists in the growth of coherence length
 - The scaling of two times correlation function implies many time-sectors
- We have studied finite size effects, finding that data follow a naive finite size scaling ansatz