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Objective
We want to define and study numerically

1. a mean field model

� Highly non trivial in spin glasses
� We have analytical predictions in equilibrium
� Its non equilibrium behavior is not yet understood
� Even at equilibrium, theory cannot explain many of their properties:

e.g. temperature chaos

2. as similar to a 3D system as possible

� with coordination number z = 6
� with a natural definition of distance

� Spatial correlation functions, coherence lengths
� Unusual in mean field
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Overview

1. EA model and mean field
2. Hypercube model
3. Off-equilibrium results
4. Finite size effects
5. Conclusions
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Edwards-Anderson Model

Degrees of Freedom
1. Dynamical: σi = ±1, con i =1, . . .N,
2. Quenched : lattice impurities

� Connectivity matrix: nik =nki =1, 0
� Coupling constants: Jik =Jki

Mean Field

The exact solution in mean field approx. is known (Parisi, 1983):
nik =1 ∀ i , k , Jik gaussian random var. (J = 0 and J2 = 1/N)

� Infinite degenerate states
� Ultrametric organization
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Bethe Lattices

Spins are located on the nodes of a Poisson graph

1. Spin i is connected in average with z spins ⇒ Energy calculation
O(N)

2. P(nik =1) = z
N−1 ⇒ zi follows a Poisson distribution.

3. Local tree topology ⇒ the Bethe approximation is fulfilled in the
TL (closed finite loops O(logN))
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2. P(nik =1) = z
N−1 ⇒ zi follows a Poisson distribution.

3. Local tree topology ⇒ the Bethe approximation is fulfilled in the
TL (closed finite loops O(logN))

Poisson graphs still lack a notion of distance!
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Hypercube Model

1. Spins are distributed on the vertex of a
D-dimensional hypercube

2. Each spin is connected in average with z = 6
spins. We take nik = 1 with probability z/D

3. Local tree topology. Length of the closed
loops is O(D)

Bethe Approximation

Ferromagnet

KFM
c = atanh

1
〈z〉1 − 1

(1)

SG

KSG
c = atanh

1√
〈z〉1 − 1

, (2)
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Ferromagnet: B = 〈M4〉
〈M2〉

2 , M =
∑

i σi

Random connectivity model

〈z〉1 =1 + z − z
D

Fixed connectivity model

z = 6
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Generation of fixed connectivity graphs

Dynamic Monte Carlo method
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Off-equibrium results

Time correlation function
tells about the memory at t + tw of the configuration at tw

C (t, tw) =
1
N

∑
i

σi (t + tw)σi (tw)⇒

{
C = 1 −→ same config.
C = 0 −→ no memory

Link correlation function

Clink(t, tw) =
1

DN

∑
ik

nik σi (t + tw)σk(t + tw)σi (tw)σk(tw)
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No Full Aging
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Yes, Bertin-Boucheaud scaling
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C = 0 −→ no memory

Link correlation function

Clink(t, tw) =
1

DN

∑
ik
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In Sherrington-Kirkpatrick Clink(t, tw) = C 2(t, tw)
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Clink vs. C 2
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Spatial correlation function

c4(r , tw) =
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N
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SG susceptibility

χSG(tw) = Nq2(tw) where q(tw) =
∑

i σ
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Finite size effects

 0

 0.2

 0.4

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6

ξ/
D

log tw/D

D = 22
D = 20
D = 18

   4

   8

  12

100 101 102 103 104 105

ξ

tw

D = 22
D = 20
D = 18

ξD=∞(tw) ∝ log tw

11 / 12



Finite size effects
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Conclusions

1. We have defined and studied a new mean field model in the
D-dimensional unit hypercube

2. This model has a natural notion of spatial distance: we can study
spatial correlations

3. We have studied the nonequilibrium dynamics:

� Aging consists in the growth of coherence length
� The scaling of two times correlation function implies many

time-sectors

4. We have studied finite size effects, finding that data follow a naive
finite size scaling ansatz
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