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Its non equilibrium behavior is not yet understood

Even at equilibrium, theory cannot explain many of their properties:
e.g. temperature chaos
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2. as similar to a 3D system as possible

O with coordination number z =6
O with a natural definition of distance

B Spatial correlation functions, coherence lengths
® Unusual in mean field
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Edwards-Anderson Model

Degrees of Freedom
1. Dynamical: o; : :l:.1, cor.1 ./:1, ..N, = ZJiknikUiUk
2. Quenched: lattice impurities

i<k
O Connectivity matrix: nx=n=1,0
O Coupling constants: Jix = Jy;

Interaction energy

quenched approximation

Mean Field

The exact solution in mean field approx. is known (Parisi, 1983):
nix=1V i, k, Ji gaussian random var. (J =0 and J2 = 1/N)
® |nfinite degenerate states

m Ultrametric organization
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1. Spin / is connected in average with z spins = Energy calculation

O(N)
2. P(ni=1) = %1 = z follows a Poisson distribution.

3. Local tree topology = the Bethe approximation is fulfilled in the
TL (closed finite loops O(log N))

Poisson graphs still lack a notion of distance!
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Hypercube Model

1.

. Each spin is connected in average with z = 6

. Local tree topology. Length of the closed

Spins are distributed on the vertex of a
D-dimensional hypercube

spins. We take nj = 1 with probability z/D

loops is O(D)

Bethe Approximation

Ferromagnet SG
KEM — atanh# (1) K5G = atanh; . (2
(z); -1 (z); -1
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Ferromagnet: B = <<ML;>>E , M= Zio'i

Random connectivity model Fixed connectivity model

V4
<Z>1:1+Z_E Z:6
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Ferromagnet: B = <</<\:2:>2 , M=o

Random connectivity model Fixed connectivity model

016 02 0.4 028 1016 02 0.04 0.28
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Generation of fixed connectivity graphs

Dynamic Monte Carlo method

J(i+v,u
i+v ( )i+u+vq

i+v i+u+v
e
J J*
J(i,v)| J* J*U(i+u,v) J J
J J*
i : i+u i i+u
J(i,u)
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Off-equibrium results

Time correlation function
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C=1 —— same config.

C(t, ty) = %Zo—,—(t + tw)oi(tw) = {
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Time correlation function
tells about the memory at t + t, of the configuration at t,

C=1 —— same config.

C(t, tw) = %Z O'i(t + tw)ai(tw) = {

C=0 — no memory

0= limtwﬁoolimt_,oo C(t, tw) # limt_wolimtw_)oo C(t, tw) = gEA

For t, fixed C(t,ty) ~ M(t, ty): thermoremanent magnetization

experimentally M(t, t,) ~ f (%) (Full Aging)
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Many time-sectors C(t, tw) = Y, fi (hi(tw)/hi(t + t))!!
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Yes, Bertin-Boucheaud scaling

0.7%. 0.5k ‘ E

logt/logt,
Infinite spectrum of time-sectors!!
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Off-equibrium results

Time correlation function
tells about the memory at t + t,, of the configuration at t,

C(t, ty) = %Z oi(t + tw)oi(tw) =

i

{C =1 — same config.

C=0 —— no memory

Link correlation function

Chnk(t tw Nzk: Nk UI t+ tw )Uk(t+t )UI( )Uk(tW)

In Sherrington-Kirkpatrick Gink(t, tw) = C3(t, tw)
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Spatial correlation function

C4(r tW = Za(l)(tw x+r(tw) )(tw) )((242r(tW)

1
Ca(r,tw) = o > alr, ty)

r|rl=r




SG susceptibility

Xsa(ty) = Ng2(ty) where q(te) = 3,00 (t)0® (tw)




Spatial correlation function
1 2
I’ t )_ NE ( )r 2) ( )r

Ca(r te) = > calr, ty)

rlr|=r

3
10 w \
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Spatial correlation function

_ 2) (2)
(r tw) = NZ X+’ Txtr Coherence length
Glrnt) = 3 alrt) fon(tw) = fooodr r Ca(r, t)
rlrl=r Joodr Ca(r, t)
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Finite size effects
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Finite size effects
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Conclusions

1. We have defined and studied a new mean field model in the
D-dimensional unit hypercube

2. This model has a natural notion of spatial distance: we can study
spatial correlations
3. We have studied the nonequilibrium dynamics:

O Aging consists in the growth of coherence length
O The scaling of two times correlation function implies many
time-sectors

4. We have studied finite size effects, finding that data follow a naive
finite size scaling ansatz
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