Exact ground states of the random-field Ising magnet around the upper critical dimension

Björn Ahrens, Alexander K. Hartmann

27. November 2009

Random-field Ising magnets (RFIM)

$\mathcal{H}=-J \sum_{\langle i, j\rangle} s_{i} s_{j}-h \sum_{i} \sigma_{i} s_{i}-\sum_{i} H s_{i}$

- dimensional hyper cubic lattice
- ferromagnetically coupled Ising spins $s_{i}= \pm 1$
- quenched random local field $h \sigma_{i}$ on each site
- small external field H
- phase transition at $h=h_{c}$
- upper critical dimension $d_{u} \geq 6$ [Tasaki, 1989]; mean-field behavior is believed

Phase diagram

RNG flow in the phase diagram
[Nattermann, 1997]

- mean field theory: second order phase transition along PB
- saddle point \mathbf{R} is attractive to RNG flow on the phase boundary (PB) for $T>0$
- critical behavior at $T=0$ is equal to that along PB

magnetisation as function of disorder in $d=5$

Method

- map random field to edge weights of a graph
- calculate maximum flow in polynomial time: $\sim \mathcal{O}\left(n^{2 / 3} m \log \left(n^{2} / m\right)\right.$ [Goldberg and Rao, 1997]
- obtain exact groundstate

Definition of the critical exponents

Magnetization

$$
\begin{array}{ll}
m \sim\left|h-h_{c}\right|^{\beta} & \beta=1 \\
\chi \sim\left|h-h_{c}\right|^{-\gamma} & \gamma=1 \\
C \sim\left|h-h_{c}\right|^{-\alpha} & \alpha=0
\end{array}
$$

Suceptibility
Specific heat
Correlation length

$$
\xi \sim\left|h-h_{c}\right|^{-\nu} \nu=1 / 2
$$

Exponents obey inequalities \Rightarrow domains of allowed values.

$$
\begin{aligned}
& y_{J}=d-\frac{2-\alpha}{\nu} \\
& \theta:=d-\beta / \nu
\end{aligned}
$$

Definition

$$
g(L, h)=\frac{1}{2}\left(3-\frac{\left[\left\langle m^{4}\right\rangle\right]_{h}}{\left[\left\langle m^{2}\right\rangle\right]_{h}^{2}}\right)
$$

- $g(L, h)$ governed by L / ξ, with correlation length ξ
- crossing for all $g(L, h)$ at $h=h_{c}$

For special distributions, like double-delta the binder cumulant is negative

Susceptibility

Definition: $\chi(h)=\left.\frac{\mathrm{d} m}{\mathrm{~d} H}\right|_{H=0}$ therefore aditionally simulations at $H=\left\{0, H_{1}, 2 H_{1}, 3 H_{1}\right\}$

Peaks of susceptibility

Scaling law: $\chi(h, L) \sim L^{-\gamma / \nu} \tilde{\chi}\left(\left(h-h_{c}\right) L^{-1 / \nu}\right)$
scaling of the peak position scaling of the peak height

$$
\begin{aligned}
& h^{*}(L)=h_{c}+c L^{-1 / \nu^{*}} \\
& h_{c}=7.817(1), c= \\
& \nu^{*}=-3.43(15)
\end{aligned}
$$

$$
\chi_{\max }(L)=s_{0} L^{\gamma / \nu}
$$

$$
h_{c}=7.817(1), c=21(4), \quad s_{0}=0.052(1), \gamma / \nu=2.36(1)
$$

Scaling of susceptibility

data collapse with: $\nu / \gamma=0.484 / 1.152=2.381$

Specific heat*

Specific heat at $T=0$:
$\mathcal{C}=\frac{\partial}{\partial h}\left(\frac{\partial E}{\partial J}\right)$
E is the total energy. Using $\frac{\partial E}{\partial h}=E_{h}$ in
$\frac{\partial E}{\partial h}=J \frac{\partial E_{J}}{\partial h}+h \frac{\partial E_{h}}{\partial h}+E_{h}$
$J \frac{\partial E_{J}}{\partial h}+h \frac{\partial E_{h}}{\partial h}=0$
same scaling in both terms: choose the first, so

$$
C\left(\frac{h_{1}+h_{2}}{2}\right)=\frac{\left[E_{J}\left(h_{1}\right)\right]_{h}-\left[E_{J}\left(h_{2}\right)\right]_{h}}{h_{1}-h_{2}}
$$

Peaks of specific heat

Scaling law: $C_{\text {max }}^{*}(h, L) \sim \log (L / L 0)^{e_{2}} \tilde{C}\left(\left(h-h_{c}\right) L^{-1 / \nu}\right)$ scaling of the peak position scaling of the peak height

$$
\begin{aligned}
& h_{\max }(L)=h_{\infty}+A L^{-1 / \nu} \\
& \nu=0.53(12), h_{\infty}=7.75(3) \\
& A=-4.0(2.2)
\end{aligned}
$$

$$
C_{\max }(L)=C_{0} \log (L / L 0)^{e_{2}}
$$

$$
e_{2}=0.39(2), \quad C_{0}=2.58(3)
$$

$$
L_{0}=2.07(7)
$$

Scaling of specific heat

data collapse with log-corrections does not work so far:

Summary

- $\alpha=0$ for $d=5,6,7$
- $\nu=0.48 \ldots 0.53$ fits well to the MF theory
- γ is close to MF predictions
- scaling of peaks does not collapse the data
- corrections to scaling still unknown

