

Exact ground states of the random-field Ising magnet around the upper critical dimension

Björn Ahrens, Alexander K. Hartmann

27. November 2009

$$\mathcal{H} = -J\sum_{\langle i,j \rangle} s_i s_j - h\sum_i \sigma_i s_i - \sum_i H s_i$$

- *d* dimensional hyper cubic lattice
- ferromagnetically coupled lsing spins $s_i = \pm 1$
- quenched random local field $h\sigma_i$ on each site
- small external field H
- phase transition at $h = h_c$
- upper critical dimension *d_u* ≥ 6 [Tasaki, 1989]; mean-field behavior is believed

Phase diagram

RNG flow in the phase diagram [Nattermann, 1997]

- mean field theory: second order phase transition along PB
- saddle point **R** is attractive to RNG flow on the phase boundary (PB) for *T* > 0
- critical behavior at T = 0 is equal to that along PB

Phase transition

magnetisation as function of disorder in d = 5

- map random field to edge weights of a graph
- calculate maximum flow in polynomial time: $\sim O(n^{2/3}m\log(n^2/m)$ [Goldberg and Rao, 1997]
- obtain exact groundstate

 $\begin{array}{ll} \mbox{Magnetization} & m \sim |h - h_c|^{\beta} & \beta = 1 \\ \mbox{Suceptibility} & \chi \sim |h - h_c|^{-\gamma} & \gamma = 1 \\ \mbox{Specific heat} & C \sim |h - h_c|^{-\alpha} & \alpha = 0 \\ \mbox{Correlation length} & \xi \sim |h - h_c|^{-\nu} \nu = 1/2 \\ \end{array}$

Exponents obey inequalities \Rightarrow domains of allowed values.

Binder parameter

g(m(h))

Definition

$$g(L,h) = \frac{1}{2} \left(3 - \frac{\left[\langle m^4 \rangle \right]_h}{\left[\langle m^2 \rangle \right]_h^2} \right)$$

- g(L, h) governed by L/ξ , with correlation length ξ
- crossing for all g(L, h) at h = h_c

For special distributions, like double-delta the binder cumulant is negative

D=5; L=6

Susceptibility

therefore aditionally simulations at $H = \{0, H_1, 2H_1, 3H_1\}$

Peaks of susceptibility

data collapse with: $u/\gamma = 0.484/1.152 = 2.381$

data collapse with log-corrections does not work so far:

- $\alpha = 0$ for d = 5, 6, 7
- $\nu = 0.48...0.53$ fits well to the MF theory

Summary

- γ is close to MF predictions
- scaling of peaks does not collapse the data
- corrections to scaling still unknown