Kagome lattice structures with charge degrees of freedom

Aroon O’Brien
Max Planck Institute for the Physics of Complex Systems, Dresden

Frank Pollmann, University of California, Berkeley
Masaaki Nakamura, MPI-PKS, Dresden

Peter Fulde, MPI-PKS, Dresden, Asian Pacific Center for the Theoretical Physics, Pohang
Michael Schreiber, TU Chemnitz

NTZ CompPhys08, Nov28 2008
Outline

• Introduction-Frustration and Fractionalization
• A theoretical model of frustration
• Analysing the model
• Current approaches and Outlook
Fractionalization

• First theoretical model supporting fractional excitations-spin-charge separation in polyacetylene molecules [1,2]
• Ground state - idealized chain molecule:

A bond (= -2e) is removed from either ground state - we obtain two defects both with charge +e and spin 0 (spin charge-separation):

One excitation-decays into two collective excitations

Fractionalization

- Similarly - removed bond would with charge $-e$ would give rise to fractional charges with charge $e/2+!$

- Similarly - add/remove one charged particles on a frustrated lattice - gives two fractionally charged excitations

One excitation-decays into two collective excitations

- Fractionalization-observed experimentally in Fractional Quantum Hall Effect [3]

Geometric Frustration

• Fractional charges - arise also in theoretical models of geometrically frustrated systems [1]

• Occur in lattice structures where it is impossible to minimize the energy of all local interactions:

• Characterised by a macroscopic ground-state degeneracy - high density of low-lying excitations:

Geometric Frustration in nature

- Spinel minerals form **pyrochlore** structures:

 - $M_3H(XO_4)$ forms a **kagome lattice** structure:

  ```plaintext
  possible position of proton
  \[ \text{XO}_4 \text{ tetrahedron (downward)} \]
  \[ \text{XO}_4 \text{ tetrahedron (upward)} \]
  \( M = \text{Rb, Cs} \quad \text{X = S, Se} \)
  \text{M atoms are omitted for simplicity}
  ```
Fractionalised charges due to geometrical frustration

What we know already…

- There are models of 2D lattice structures supporting fractional excitations [5].
- These approaches so far yield fractional excitations that are confined [6].
- 3D lattices have been shown to support deconfined phases [7,8]

Fractionalised charges due to geometrical frustration

What we would like to know…!

- Kagome lattice models—can we investigate the dynamics of systems exhibiting charge fractionalization? Can we determine the **confinement/deconfinement** of the excitations?
- Do these fractionalized excitations exhibit **fractionalised statistics**? What are they?
- Can we use such models to **explain experimental observations** in real materials with such structures?
A model of fractionalization

- Consider a model of spinless fermions on the kagome lattice
- Extended Hubbard model with charge degrees of freedom

\[H = -t \sum_{\langle i, j \rangle} (c_i^\dagger c_j + H.c.) + V \sum_{\langle i, j \rangle} n_i n_j \]

- Consider 1/3 filling
- At \(t=0, V>0 \), macroscopic number of ground states
A model of fractionalization

• **Strong correlation limit** (large nearest-neighbour repulsions V) -> **local constraint** of 1 particle per triangle on the lattice -> “triangle rule”

• Finite hopping of fractional charges in strongly correlated limit where $0 < |t| \ll V$

• Add one particle -> increase system energy by $2V$
A model of fractionalization

- One particle with charge e is added to the system - it can decay into two defects each carrying the charge $e/2$ -> \textbf{2 fractional charges are created}

One excitation decays into two collective excitations
A model of fractionalization

• Large Hilbert space sizes -> limit numerical investigation

 Derive an effective model Hamiltonian encapsulating behaviour in the strong correlation limit

• Lowest order hopping process lifting degeneracy - particle hopping around hexagons:
A model of fractionalization

$$H = -t \sum_{\langle i,j \rangle} (c_i^\dagger c_j + H.c.) + V \sum_{\langle i,j \rangle} n_i n_j$$

$$H_{\text{eff}} = -g \sum_{\langle \rangle} (|\text{sixed} \rangle \langle \text{sixed}| + H.c.)$$

Where $g = \frac{12t^3}{V^2}$
Effective model...

- Exact in the limit of infinitely large V
- Reduces drastically Hilbert space size

Example: No. of configurations for a 147-site cluster at 1/3 filling:

\[
\binom{147}{49} \approx 10^{39}
\]

No. of configurations for a 147-site cluster at 1/3 filling subject to the triangle rule:

\[
\approx 10^{11}
\]

- Has no fermionic sign problem!

\[
\langle \text{final} \| \cdots \rangle \langle \cdots | \text{initial} \rangle \rightarrow -1
\]
Effective model...

- Is equivalent to a hard-core bosonic model!
- Can be mapped to a Quantum Dimer Model!

-> kagome lattice model at 1/3 filling maps to honeycomb dimer covering
Mapping to Quantum Dimer Model
Quantum Dimer Mapping

- Mapping-effective Hamiltonian to ‘plaquette phase’ ($\mu=0$) of known system [8]:

$$H_{QDM} = \sum -g(|\begin{array}{c}\textcircled{1}\end{array}\rangle\langle\begin{array}{c}\textcircled{2}\end{array}| + H.c) + \mu(|\begin{array}{c}\textcircled{1}\end{array}\rangle\langle\begin{array}{c}\textcircled{2}\end{array}| + |\begin{array}{c}\textcircled{3}\end{array}\rangle\langle\begin{array}{c}\textcircled{4}\end{array}|)$$

- Numerically confirmed - exact diagonalisation gives ground-states energies
- Distance between defects $1/#$ flippable hexagons

Investigating dynamical properties...

- With a ‘doped system’-consider dynamical properties - add extra term to Hamiltonian

\[H_{doped} = H_{eff} - t \sum_{i,j} P(c_i^\dagger c_j + H.c.) P \]

Original effective Hamiltonian

Projected hopping operator

Describes a system at 1/3 filling +/- one particle
Numerical Methods

• Model Hamiltonian basis transformation -> Lanczos recursion method [9]
• Analyse finite clusters from 25-75 sites
• Direct insight into system dynamics- from spectral function calculations

Spectral function - \(A(k, \omega) \) gives probability for adding (+) or removing (-) a particle with momentum \(k \) and energy \(\omega \) to the system…

\[
A(k, \omega) = A^-(k, \omega) + A^+(k, \omega)
\]

Density of states- sum over all \(k \) - space contributions:

\[
D(\omega) = \frac{1}{N_k} \sum_k A(k, \omega)
\]

How good is the model?

- Exact and effective models on a 27-site cluster are compared...

Density of States - a comparison

- Hole contribution
- Particle contribution
Density of states figures show that finite-size effects decrease markedly with system size:
Results

• Hole contribution is symmetric; the eigenspectrum for the 1/3 filled system in the presence of one hole defect is symmetric:

Hole contribution to the density of states

→ Underlying **bipartiteness** for the particle hopping in the presence of one hole defect!

→ A **gauge transformation** that changes the sign of each hopping process must exist...!
Results

Eigenspectrum symmetry

Bipartiteness

Bipartite hopping on kagome lattice

expressible in terms of a gauge transformation

Example - 2D Square Lattice

\[|\tilde{b}_i\rangle = (-1)^{\sum_A n_i} |b_i\rangle \]

\[\implies \tilde{H}_{hop} = -H_{hop} \]

\[\implies \text{Eig}[H_{hop}] = \text{Eig}[-H_{hop}] \]
Results

• Large peak in particle contribution - at zero momentum- full spectral weight of flat band contained in a single delta peak:

→ GS wavefunction exact eigenfunction of the effective Hamiltonian, in the limit of \(t/V \to 0 \).

→ This can be shown analytically…

\[
|\tilde{\psi}^{N+1}\rangle = c_{k=0,\text{band 1}}^\dagger |\psi_0\rangle
\]

\[
H|\tilde{\psi}^{N+1}\rangle = (\epsilon(k = 0, \text{band 1}) + 2V + E_0)|\tilde{\psi}^{N+1}\rangle
\]
Do such models model real systems?

- Materials which may provide the answer…$\text{MH}_3(\text{XO}_4)_2$
- Here protons act as particles at 1/3 filling
Do such models model real systems?

- Model gives three possible charge-ordered states - material shows just two of these at different temperatures!
- Goal-to obtain a phase diagram of the model to compare with that of corresponding real materials
- Apply Random Phase Approximation to calculate charge susceptibilities; calculate spectral functions in the limit of small V
Conclusion and Outlook

• With exact diagonalisation on finite size clusters we are able to analyse the dynamics of kagome lattice models at specific fillings
 • Understand most prominent features of spectrum - what is the physical interpretation?
 • Compare -bosonic and fermionic dynamics
 • Effective model is bipartite in nature-how can we understand this through a gauge transformation?
 • QDM mapping -> we have a confined ground state- evidence of this in the spectral function results?

• RPA treatment of Hubbard model/spectral function calculations - hope to compare the results of our theoretical model with real materials

Thank you!
Fractionalization

- Fractional excitations exhibit fractional statistics [a]:

\[\psi(1, 2) \rightarrow \psi'(1, 2) = e^{i\nu \Delta \varphi} \psi(1, 2) \]

3D -> fermionic/bosonic statistics

2D -> possibility of anyonic statistics!