Cold Denaturation in Proteins.

Olivier Collet

LPM, Nancy-Université

CompPhys07
Leipzig, Nov. 2007
Plan

1. Introduction.

2. The Problem.

3. Model.

4. Results 1. : Two-states phase diagram.

5. Results 2 : Four-states phase diagram.

6. Conclusion.
Amino-acids and Bond between amino acids.
Proteins are large and linear chains made of amino acids
Put into water proteins fold in a unique compact structure.

Main folding force is the **Temperature Dependent** Hydrophobic Effect\(^a\).

\(^a\)Kauzmann 1959, Balwin 1987, Pratt-Pohorille 2002
Warm and Cold Denaturations\(^1\).

\[T(C) \]

\[\text{pH} \]

Denat

\(^1\) Privalov, 1989
Statistical Physics approach.

\[\mathcal{H}_{\text{mic}} = E_{\text{intr}}^{(m)} + E_{\text{solv}}^{(mm')} \]

\[\Rightarrow Z(T) = \sum_{m=1}^{\Omega} \sum_{m' = 1}^{\Omega'} \exp \left(-\frac{E_{\text{intr}}^{(m)} + E_{\text{solv}}^{(mm')}}{T} \right) \]

\[\sum_{m' = 1}^{\Omega'} \exp \left(-\frac{E_{\text{solv}}^{(mm')}}{T} \right) = z_{\text{solv}}^{(m)}(T) = \exp \left(-\frac{F_{\text{solv}}^{(m)}(T)}{T} \right) \]

\[\Rightarrow Z(T) = \sum_{m=1}^{\Omega} \exp \left(-\frac{\mathcal{H}_{\text{eff}}^{(m)}(T)}{T} \right) \]

with \[\mathcal{H}_{\text{eff}}^{(m)}(T) = E_{\text{intr}}^{(m)} + F_{\text{solv}}^{(m)}(T) \]
Effective hamiltonian.

\[\Delta_{ij}^{(m)} = 1 \text{ if } i \text{ and } j \text{ are first neighbors.} \]

\[B_{ij} : \text{coupling between } i \text{ and } j \]

\[n_i^{(m)} : \text{number of cells around } i \]

\[f_i(T) : \text{free energy of this solvent cell.} \]

\[n_s^{(m)} : \text{total number of solvent cells} \]

\[f_s(B_s, T) : \text{free energy of neat solvent} \]

\[\mathcal{H}_{\text{eff}}^{(m)} = \sum_{i > j + 1} B_{ij} \Delta_{ij}^{(m)} + \sum_i n_i^{(m)} f_i(T) + 2n_s^{(m)} f_s(B_s, T) \]

More complicated form than the usual: \(\mathcal{H}_{\text{eff}}^{(m)} = \sum_{i > j + 1} B_{ij} \Delta_{ij}^{(m)} \)

Constant of the model.

Total lattice links: \(\sum_i \sum_j \Delta_{ij}^{(m)} + \sum_i n_i^{(m)} + n_s^{(m)} = K_1 \)

Links of monomer \(i \): \(\sum \Delta_{ij}^{(m)} + n_i^{(m)} = 4 \)
Effective hamiltonian.

\[\Delta_{ij}^{(m)} = 1 \text{ if } i \text{ and } j \text{ are first neighbors.} \]

\[B_{ij} : \text{coupling between } i \text{ and } j \]

\[n_i^{(m)} : \text{number of cells arround } i \]

\[f_i(T) : \text{free energy of this solvent cell.} \]

\[n_s^{(m)} : \text{total number of solvent cells} \]

\[f_s(B_s, T) : \text{free energy of neat solvent} \]

\[
\mathcal{H}_\text{eff}^{(m)} = \sum_{i>j+1} B_{ij} \Delta_{ij}^{(m)} + \sum_i n_i^{(m)} f_i(T) + 2n_s^{(m)} f_s(B_s, T)
\]

More complicated form than the usual: \[\mathcal{H}_\text{eff}^{(m)} = \sum_{i>j+1} B_{ij} \Delta_{ij}^{(m)} \]

Constant of the model.

Total lattice links: \[\sum_i \sum_j \frac{1}{2} \Delta_{ij}^{(m)} + \sum_i n_i^{(m)} + n_s^{(m)} = K_1 \]

Links of monomer \(i \): \[\sum \Delta_{ij}^{(m)} + n_i^{(m)} = 4 \]
Effective hamiltonian.

\[
\begin{cases}
 n_i^{(m)} = 4 - \sum_j \Delta_{ij}^{(m)} \\
n_s^{(m)} = \frac{1}{2} \sum_i \sum_j \Delta_{ij}^{(m)} + K_1 - 4N
\end{cases}
\]

\[
\mathcal{H}_{\text{eff}}^{(m)} = \sum_{i>j+1} B_{ij} \Delta_{ij}^{(m)} + \sum_i n_i^{(m)} f_i(T) + 2n_s^{(m)} f_s(B_s, T)
\]

Effective Couplings.

\[
\mathcal{H}_{\text{eff}}^{(m)}(B_s, T) = \sum_i \sum_{j>i} B_{ij}^{\text{eff}}(B_s, T) \Delta_{ij}^{(m)}
\]

with \(B_{ij}^{\text{eff}}(B_s, T) = B_{ij} - f_i(T) - f_j(T) + 2f_s(B_s, T) \)

- takes a simple form
- which forms for \(f_i(T) \) and \(f_s(B_s, T) \) ?
Effective hamiltonian.

\[
\begin{aligned}
 n_i^{(m)} &= 4 - \sum_j \Delta_{ij}^{(m)} \\
 n_s^{(m)} &= \frac{1}{2} \sum_i \sum_j \Delta_{ij}^{(m)} + K_1 - 4N \\
 \mathcal{H}_{\text{eff}}^{(m)} &= \sum_{i>j+1} B_{ij} \Delta_{ij}^{(m)} + \sum_i n_i^{(m)} f_i(T) + 2n_s^{(m)} f_s(B_s, T)
\end{aligned}
\]

Effective Couplings.

\[
\begin{aligned}
 \mathcal{H}_{\text{eff}}^{(m)}(B_s, T) &= \sum_i \sum_{j>i} B_{ij}^{\text{eff}}(B_s, T) \Delta_{ij}^{(m)} \\
 \text{with } B_{ij}^{\text{eff}}(B_s, T) &= B_{ij} - f_i(T) - f_j(T) + 2f_s(B_s, T)
\end{aligned}
\]

- takes a simple form
- which forms for \(f_i(T) \) and \(f_s(B_s, T) \)?
Solvation Model

\[f_s(B_s, T) = B_s - \alpha T \ln N_s \]

Small \(B_s \) ⇒ bad solvent
Large \(B_s \) ⇒ good solvent

\[n(B_i) = \frac{2N_s \exp \left(-\frac{B_i^2}{2\sigma^2} \right)}{\sigma \sqrt{2\pi} \text{ erfc} \left(\frac{B_{i \min}}{\sigma \sqrt{2}} \right)} \]

\[z_i(T) = \int_{B_{i \min}}^{\infty} n(B_i) \exp \left(-\frac{B_i}{T} \right) dB_i \]

\[f_i(T) = -\frac{\sigma^2}{2T} - T \ln \left(N_s \frac{\text{erfc} \left(\frac{B_{i \min}}{\sigma \sqrt{2}} - \frac{\sigma \sqrt{2}}{2T} \right)}{\text{erfc} \left(\frac{B_{i \min}}{\sigma \sqrt{2}} \right)} \right) \]
Solvation Model

\[f_s(B_s, T) = B_s - \alpha T \ln N_s \]

Small \(B_s \) \(\Rightarrow \) bad solvent
Large \(B_s \) \(\Rightarrow \) good solvent

\[n(B_i) = \frac{2N_s \exp\left(-\frac{B_i^2}{2\sigma^2}\right)}{\sigma \sqrt{2\pi} \ \text{erfc}\left(\frac{B_{i \min}}{\sigma \sqrt{2}}\right)} \]

\[z_i(T) = \int_{B_{i \min}}^{\infty} n(B_i) \exp\left(-\frac{B_i}{T}\right) dB_i \]

\[f_i(T) = -\frac{\sigma^2}{2T} - T \ln \left(N_s \frac{\text{erfc}\left(\frac{B_{i \min}}{\sigma \sqrt{2}} - \frac{\sigma \sqrt{2}}{2T}\right)}{\text{erfc}\left(\frac{B_{i \min}}{\sigma \sqrt{2}}\right)} \right) \]
Solvation Model

\[f_s(B_s, T) = B_s - \alpha T \ln N_s \]

Small \(B_s \) ⇒ bad solvent
Large \(B_s \) ⇒ good solvent

\[n(B_i) = \frac{2N_s \exp\left(-\frac{B_i^2}{2\sigma^2}\right)}{\sigma \sqrt{2\pi} \text{erfc}\left(\frac{B_i^{\text{min}}}{\sigma \sqrt{2}}\right)} \]

\[z_i(T) = \int_{B_i^{\text{min}}}^{\infty} n(B_i) \exp\left(-\frac{B_i}{T}\right) \, dB_i \]

\[f_i(T) = -\frac{\sigma^2}{2T} - T \ln \left(N_s \frac{\text{erfc}\left(\frac{B_i^{\text{min}}}{\sigma \sqrt{2}} - \frac{\sigma \sqrt{2}}{2T}\right)}{\text{erfc}\left(\frac{B_i^{\text{min}}}{\sigma \sqrt{2}}\right)} \right) \]
The Chain and the Statistical averages.

The chain.

16-mers in 2D lattice
802 075 conformations
116 579 extended conformations
69 more maximally compact conf

Statistical average $\langle X(T) \rangle = \sum_{m=1}^{\Omega} X^{(m)}(T) P_{eq}^{(m)}(T)$ with

$P_{eq}^{(m)}(T) = \frac{1}{Z(T)} \exp \left(- \frac{H_{eff}^{(m)}}{T} \right)$.

Compactness: $\langle N_c(B_s, T) \rangle$
Order parameter: $\langle Q(B_s, T) \rangle$
Chain entropy, S_{ch}: $-\langle \ln P_{eq}^{(m)}(B_s, T) \rangle$

where

$N_c^{(m)} = \frac{1}{9} \sum_{i>j}^{N} \Delta_{ij}^{(m)}$
$Q^{(m)} = \frac{1}{9} \sum_{i>j}^{N} \Delta_{ij}^{(m)} \Delta_{ij}^{Nat}$

Olivier Collet (LPM, Nancy-Université)
Cold Denaturation in Proteins.
CompPhys07 Leipzig, Nov. 2007
The Chain and the Statistical averages.

The chain.

16-mers in 2D lattice
- 802,075 conformations
- 116,579 extended conformations
- 69 more maximally compact configurations

Statistical average
\[\langle X(T) \rangle = \sum_{m=1}^{\Omega} X^{(m)}(T) P_{eq}^{(m)}(T) \]
with
\[P_{eq}^{(m)}(T) = \frac{1}{Z(T)} \exp \left(-\frac{H_{eff}^{(m)}}{T} \right). \]

Compactness:
\[\langle N_c(B_s, T) \rangle \]
where
\[N_c^{(m)} = \frac{1}{9} \sum_{i>j} \Delta_{ij}^{(m)} \]

Order parameter:
\[\langle Q(B_s, T) \rangle \]
where
\[Q^{(m)} = \frac{1}{9} \sum_{i>j} \Delta_{ij}^{(m)} \Delta_{ij}^{Nat} \]

Chain entropy, \(S_{ch} \):
\[-\langle \ln P_{eq}^{(m)}(B_s, T) \rangle \]
Results 1. Two-states phase diagram

- Graph (c) shows a three-dimensional phase diagram with axes labeled C, Bs, and T.
- Graph (d) illustrates another phase diagram with axes labeled <Q>, Bs, and T.
- Graph (e) depicts a line graph with points labeled Nat and Denat, illustrating a transition between states.
Results 1. Two-states phase diagram

![Diagram showing two-states phase diagram with pH on the x-axis and T(C) on the y-axis. The diagram illustrates the transition between native (Nat) and denatured (Denat) states at different pH values.]

![Diagram showing a different aspect of the phase diagram with Bs on the x-axis and the transition phase on the y-axis. The diagram highlights the denatured state (Denat) at varying Bs values.]
$\alpha = 0.5 \rightarrow 0.9$
Results 2: Four-states phase diagram.

\[\langle N_c \rangle \]

\[S_{ch} \]

\[\tau dS_{ch} / dT \]

\(T_s = 0 \)
\(T_s = 2 \)
\(T_s = 4 \)
\(T_s = 6 \)
Result 2: Four-states phase diagram.
Conclusions.

Calculation of $H_{\text{eff}}^{(m)}(T)$ also simple than $E_{\text{intr}}^{(m)}$
Cold Denaturation due to hydrophobic effect

Realistic couplings must take into account of the temperature dependence of the hydrophobic effect.
Conclusions.

Calculation of $H_{\text{eff}}^{(m)}(T)$ also simple than $E_{\text{intr}}^{(m)}$

Cold Denaturation due to hydrophobic effect

Realistic couplings must

take into account of the temperature dependence of the hydrophobic effect.
Effective Couplings as function of T.

Figure: Curves of the different contributions to the effective coupling between the monomers 1 and 4 as function of the temperature for several values of the solvent quality. The two temperatures for which the coupling vanishes are shown for $B_s = -6.0$.

$$B_{ij}^{\text{eff}}(B_s, T) = B_{ij} - f_i(T) - f_j(T) + 2f_s(B_s, T)$$ may be:

- positive at low T
- negative at medium T
- positive at high T
Effective Couplings as function of T.

Figure: Curves of the different contributions to the effective coupling between the monomers 1 and 4 as function of the temperature for several values of the solvent quality. The two temperatures for which the coupling vanishes are shown for $B_s = -6.0$.

\[
B_{ij}^{\text{eff}}(B_s, T) = B_{ij} - f_i(T) - f_j(T) + 2f_s(B_s, T)
\]

may be:

- positive at low T
- negative at medium T
- positive at high T