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Abstract

The Ising model is one of the most fundamental conceptual models when it
comes to describing the connection of macroscopic properties caused by micro-
scopic changes in lattices. A basic variation of the Ising model assumes only
interaction between nearest neighbouring lattice sites and simple spin states
(either up or down). Despite its simpleness the simulation of such a system
gets out of hand quickly, already with small lattice sizes. While larger cen-
tral processing unit (CPU) cluster computers have been used for some time to
tackle these kinds of problems, the use of graphical processing units (GPUs)
has provided a new tool to significantly reduce computation times in this field
of science. In combination with smart concepts like multiplication sampling the
analysis of critical behaviour of such kinds of systems has become feasible. One
tool to conduct the mentioned simulations is cudamuca—an Ising lattice simu-
lation software running on CUDA-ready GPUs (Gross et al. 2017). This report
represents the documentation accompanying the efforts of creating a functional
equivalent implementation of cudamuca in OpenCL.



0.1 Introduction

The context of this report’s subject is the simulation of spin lattices, their be-
haviour at critical points and the computation of associated physical quantities.
This first sections are intended to provide a quick introduction into the mod-
elling of such systems. For the understanding of later sections it is particularly
interesting to gain an understanding how the prototypical two-dimensional Ising
model can be simulated. The middle and later parts are concerned with actual
computation of 2d Ising lattices on GPUs. Based on the an implementation
of multicanonical simulations in CUDA, a port was created in OpenCL and its
capabilities compared to the original implementation.

TODO: ein bisschen ausführlicher, Redundanz mit Abstract vermeiden oder
mit Abstract mergen und dann Introduction raus

0.2 The Ising Model

Assume a quadratic lattice with edge length L ∈ N and V = L2 sites. We assign
a value σi ∈ {−1, 1} to each lattice point. The value of σi indicates the direction
of a magnetic spin in a simplified model of a two-dimensional ferromagnetic ma-
terial, corresponding to a parallel (σi = 1) or anti-parallel (σi = −1) alignment
with the z-axis (perpendicular to the lattice plane). Summing over all lattice
sites we find that the Hamiltonian in presence of an external magnetic field B
parallel to the z-axis is given by

H = −B
V∑
i=0

σi −
∑
ij

Jijσiσj (1)

such that the energy is determined by the spin direction with respect to
the magnetic field and by the coupling constant Jij which describes the mutual
influence of two spins at the sites i and j, respectively.

At a temperature T we find with β = 1/kBT the lattice magnetisation as

M =
∑
i,j

exp(−βH(σij))∑
i,j exp(−βH(σij))

(
V∑
i=0

σi

)
. (2)

With the partition function

Z =
∑
σ

exp(−βH(σ)) (3)

we can provide an expression for the probability of a given spin lattice con-
figuration σ:

w(σ) =
exp(−βH(σ))

Z
, (4)

which in turn leads to the average energy of the configuration:
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E =
∑
σ

w(σ)H(σ). (5)

Several basic quantities can be derived in a straightforward way. We find
the internal energy per site as

u =
U

V
, (6)

with

U = −d lnZ/db = 〈H〉 (7)

and the specific heat

C =
du

dT
= β2

〈
E2
〉
− 〈E〉2

V
= β2V

(〈
e2
〉
− 〈e〉2

)
, (8)

where H ≡ E = eV .
Two simplifications are often made when it comes to simulating Ising lattices:

(i) B = 0 and (ii) the coupling constant Jij is considered to be short range in the
sense that only direct spin neighbours interact. Both assumptions then simplify
the Hamiltonian to

H = −J
∑
〈ij〉

σiσj , (9)

where 〈ij〉 means the that the summation is restricted only to the nearest
neighbour spin pairs.

Despite such simplifications the Ising model is an important utility to under-
stand real-world physical phenomena, for instance phase transitions. As simple
as the concept is, the state space of already small lattices is overwhelmingly
large, making straightforward simulations a hard-to-solve problem.

0.3 Simulation of the Ising model

The straightforward approach to Ising model simulations is provided by a com-
puter program which changes binary values representing spins in accordance to
the previously described model. In practice, this requires a data structure for
the storage of the spins. The elementary type of such structure has to represent
at least two values—one for the up-spin and one for the down-spin. A boolean
type would be sufficient for that basic model, however signed integers are more
useful because with those translation between the integer representation of a
boolean variable (true ≡ 1, false ≡ 0) and the spin representations (up ≡ 1,
down ≡ −1) is not necessary.

Once the memory-related issues have been coped with, the dynamics of
the spin interactions have to be modeled and implemented. In particular, a
process for the transition between spin states, with which the system evolves
has to be created. It is necessary to consider which intermediate states of the
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simulated system resembles meaningful physical states in real-world systems.
Trying to answer questions in that domain quickly leads to the insight that
naive implementations are not feasible solutions because of the sheer size of
possible configurations.

For instance, the state space of a two-dimensional Ising lattice of the size
20 by 20 has 2400 possible spin configurations. Solving the partition function
via simple iteration over the possible states is virtually impossible —even for
such comparably small lattices. A random sampling with data extrapolation is
hard to accomplish either since the interesting and meaningful states occupy a
narrow region in the vast state space. In order to still be able to practically
work with the model a sampling bias in the shape of the Boltzmann weight can
be introduced:

P({σi}) =
e−βH({σi})

Z
, (10)

where {σi} represents a sampled spin configuration. Sampling in this manner
runs under the term importance sampling. Each sample {σi}′ depends only on
its predecessor {σi}, however not directly on the development that led to this
state (Markov Chain). The probability W for the transition from one state to
the next has to satisfy the following conditions

w({σi} → {σi}′) ≥ 0,∀{σi}, {σi}′ (11)∑
{σi}′W ({σi} → {σi}′) = 1,∀{σi}, {σi}′ (12)∑
{σi}′W ({σi} → {σi}′)P({σi}) = P({σi}′),∀{σi}′ (13)

These generic rules can be satisfied by a variety of update rules, e.g. the
heat bath algorithm, the Glauber algorithm or the Metropolis algorithm. The
simulations discussed in this report make use of the latter i.e. the update (flip)
of a spin is dependent on the energies of the spin configuration before (Et−1)
and after (Et) an update:

ω({σi}t−1 → {σi}t) =

{
1 if Et < Et−1

exp (−β(Et − Et−1)) if Et ≥ Et−1

i.e. for a proposed update of one randomly picked spin, the update is always
accepted if the energy of the new state is lower than the energy before the up-
date. Consequently, the proposed update is accepted with a certain probability
dependent on the energy difference between the two states for updates possibly
leading to a higher energy.

In actual implementations this decision is based on comparison between a
state’s normalised energy measure and a number r ∈ [0, 1) generated by a
uniform random number generator. If W ≤ r the update is performed leading
to a new state. Otherwise the test is conducted with another randomly picked
spin. The procedure has to be repeated necessarily often between measurements
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of observables. Otherwise the short-interval measurements would ineffectively
refer to almost identical states. A complete sequence of spin-flip-choices is called
a sweep. Complete is meant in the sense that on average an update for all degrees
of freedom (or spins) was proposed.

It is important to be aware of the fact that we cannot generally assume
equivalence of physically meaningful states and snapshots of the simulated sys-
tem. It is particularly crucial to let the systems settle during a thermalisation
process. Such an initial phase after the start of the Markov chain with an arbi-
trary lattice configuration is supposed to result in an equilibrium in which we
can estimate the expectation value 〈O〉 of an observable O as the arithmetic
mean

〈O〉 =
∑

{σi}O({σi})Peq({σi}) ≈ O =
1

N

N∑
j=1

Oj (14)

where Oj = O({σi}j) is the measurement value of the jth configuration and
N is the number of measurements.

Why is this necessary? Imagine an initial state with complete randomized
spin orientations. Physically, this compares to a relatively high temperature,
at least higher than the critical temperature Tc. Consequently a simulation
at temperature T > Tc will approach an equilibrium state in a quick way.
Simulations conducted at T . Tc however, can be considered significantly lower
than the corresponding initial state. Virtually forcing the system into the lower
temperature is considered a quench. Here a thermalisation phase of long enough
duration is necessary to reach a states with the characteristic domains of equal
spin direction. The typical relaxation time for equilibrium scales as

τrelax ∼ Lz, (15)

where L is the system length and z ≈ 2 the critical exponent

0.3.1 From single to multi histogram techniques

Simulating canonical ensembles at a defined temperature T0 generates physical
relevant data for only this temperature. Usually however, the intent of such
simulations is to make statements for a wider parameter range. This can be
achieved by combining the data of several overlapping energy histograms at
different β0 < βi < βN mit i,N ∈ N which opens up the possibility to reweight
all histograms to a common reference β. With the surplus of generated data and
under the condition that neighbouring histograms have a large enough overlap,
the correlated data sets can be combined in a common histogram and reweighted
to another β ∈ [β0, βN ] (Janke 2008).

Let Ω(E) the number of states at energy E. Then we can write the partition
function for a defined β0 = 1/kBT0 as:

Z(β0) =
∑
{σi}

e−β0H({σi}) =
∑
E

Ω(E)e−β0E ∝
∑
E

Pβ0(E), (16)
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where Pβ0(E) represents the unnormalized energy histogram. Consequently,

Ω(E)e−β0E ∝ Pβ0
(E) (17)

With a histogram generated in the course of a Monte-Carlo simulation at
an inverse temperature β0, we can calculate Pβ0

(E). The histogram for an
arbitrary β can be determined by weighting the histogram at β0 with the factor
exp [−(β − β0)E], i.e.

Pβ(E) ∝ Ω(E)e−βE = Ω(E)e−β0Ee−(β−β0)E ∝ Pβ0(E)e−(β−β0)E . (18)

The useful β-range is limited by the statistical errors in the numerical cal-
culation of Pβ0 in the Monte Carlo simulations. Particularly because the outer
fringes of the histogram, where the statistical errors are most significant, are
also the most important contributors for the calculation of Pβ if β and β0 are
distant from one another. A rough criterion for the reweighability of a certain
histogram is that the peak location of the resulting histogram does not exceed
the point where the input histogram’s energy has decreased to a value in the
order of 30 to 50 percent of its peak.

In order to overcome this limiting factor it is advisable to combine the in-
formation from several, say m, Monte Carlo simulations at βi, i = 1 . . .m with
Ni measurements. Then, all resulting histograms are reweighted to a common
reference β0. Combine all such reweighted histograms into one by computing
error weighted averages. In this way we get a superimposed version of all single
simulation runs which can be reweighted to virtually any β (within the already
described limits).

0.3.2 The multicanonical approach

Multicanonical sampling addresses the problems of classical multi-histogram
sampling by the use of weight vectors which artificially equalize the sampling
probability of virtually all possible transition states. This is equivalent to the
procedure described in the previous sections. The new part is that the weight
vectors are adjusted in an iterative manner. This process is shaped in such a
way that the configuration of the next sampling iteration becomes more suitable
to sample similar numbers of data points in each area of the histogram, instead
of sampling according to the physical energy state distribution. To this end the
canonical Boltzmann distribution

Pcan({σ}) ∝ e−βH({σ}) (19)

is replaced by the multicanonical distribution

Pmuca({σ}) ∝W (Q({σ}))e−βH({σ}) ≡ e−βHmuca({σ}) (20)

with the multicanonical weight factor W (Q). Q is to be understood as a
macroscopic observable, for instance the energy of magnetization of the observed
system. From equation 20 we infer the multicanonical hamiltonian
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Hmuca = H− lnW (Q)

β
(21)

While this seems counter intuitive at first glance, the advantages of this
method become quickly clear —making statements about physical behaviour
with small numbers of data points is always inconvenient. Creating larger
amounts of data also for the rare states gives much better statistics for analysis.
This is in particular useful as soon as a system is expected to change from one
probable state to another via a lower-probability region in state space.

0.4 Running Computations on GPUs

GPUs are the modern tool of choice for computation of highly parallelizable
tasks. While these devices have been used for quiet some time as support for
graphics intensive applications in 3d visualisation or computer gaming, they
are heavily used for scientific computation nowadays. Already ten years ago
Owens et al. (2008) named the Foldig@home project in biophysics as well as
molecular dynamics or electrostatic field simulations as successful examples.
The development of GPU hardware and its use in science has not declined since
then. On the contrary, the use of GPUs can be observed in almost every domain
of physics.1

Since at least the development and adoption of computational purpose pro-
gramming languages for GPUs like OpenCL and CUDA and of abstraction
layers in Mathematica, Matlab or Python are GPUs established tools in sci-
ence. Meanwhile dedicated computation devices can be purchased which not
even possess graphics output interfaces anymore.

GPUs were originally optimised to solve computer graphics problems. These
kinds of problems did in many cases not require the high accuracy as the more
general purpose CPUs. For this reason GPUs used to know about data types
with rather unconventional bit widths as for instance 9 or 12 bits. Wider data
types as 32 bit integers or floats are rather new innovations for such devices.
64 bit data types or implementations of mathematical functions for such data
types are still missing in some hardware (for example the low end Intel GPUs).
However, high end devices and devices developed for scientific use implement
these functions in hardware and programming application programming inter-
faces (APIs) to make these necessary types easily accessible.

GPUs are usually connected to the host computer via standard interfaces
as PCIe. The data transfer rates through these connectors are quiet small
compared to the computational throughput of the GPUs. For that reason it is
worth thinking about parallelizability and whether it makes sense and in which
way data is transferred to and from the video memory on the graphics card.

1 https://arxiv.org/find/all/1/ti:+GPU/0/1/0/all/0/1
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0.4.1 GPU architecture and workflow

The big advantage of GPUs over CPUs is the abundance of specialised purpose
processing units. In particular, GPUs feature hardware for the storage and
manipulation of vectors and matrices. Many operations on such objects can
be broken down into quick-to-solve tiny problems, the results of which can be
combined to the result of a superior problem. Exactly this is the strength of
GPUs.

Figure 1 illustrates the concept on a basic level. Input data is copied from
the computer’s main memory to the GPU’s memory (1). The host computer
instructs the GPU, how to conduct computations (2). The GPU uses the data
in its memory to simultaneously compute many results (3). These are then
copied back to the host memory for further examination (4).

Figure 1: CUDA processing flow as an example for GPU processing, numbers
indicating order of application flow, source: wikimedia commons / Tosaka

The computational problems are solved by several hundreds to thousands
GPU cores (or compute units), which feature problem specific sub units or pro-
cessing elements as arithmetic and logic units (ALUs), for instance. A problem
that is supposed to be solved on a GPU is optimally divided into a number
of independent sub problems and implemented in so called kernels—functions
which are applied to a certain set of input data. Kernel instances optimally
run in parallel on the compute units of a GPU. Their most important property
is the independence of execution order—so-called kernels ingest input values
and output a computation result which later might be integrated into a more
general solution. Usually this is accomplished by not only modeling problem
sub units but also providing sub-chunks of the overall data set in parallel which
the kernels can be applied to. In order to provide the input data in an efficient
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manner understanding of the data flow from and to and also within a GPU is
crucial.

The size of random access memory (RAM) on upper end GPUs matches in
orders of magnitude (i.e. several GB) with what is known from conventional
workstation RAM only recently. The available memory is provided in several
levels of hierarchy. There is a large area of shared memory, accessible by all
compute units at any time. Compute units have their own local memory areas
and so have single kernel instances, too. Access times to the global address
space are generally the slowest, accesses to memory close to the computations
are significantly faster. While sharing of memory is to be avoided if possible, it is
sometimes necessary to exchange information between parallel processes at one
time or another. Using globally accessible memory may be a way to accomplish
this. However, memory being used by all kernels simultaneously raises the
issue of race conditions when two or more compute units have potential write
access to common memory areas. To prevent out-of-sync computations and
race conditions it is necessary to write-access memory in an atomic manner.
Atomicity in turn goes hand in hand with longer run times. One design pattern
to work around such problems is to provide the compute units with dedicated
caches with sizes of several tens of kilobytes on recent GPUs. Since access
is constrained to one particular computational unit, this allows to operate on
memory without regard of operations in other compute units. Although the size
of the caches does not seem very large, the significantly faster access can lead
to much faster program execution. For instance, repeated incrementation of an
integer in the local cache of many compute units and adding up all integers later
is much faster than atomic incrementation of a single integer by every compute
unit in global memory. Finer grain can be accomplished by using the memory
unique to single kernel instances which run parallel on a compute unit.

With the basic knowledge we can map a path to a program running on a
GPU. As always it is advisable to formulate and analyse the nature of the ques-
tion. This helps in breaking down the problem in independent computational
tasks which can be run in parallel. The concept of parallel computing requires
to think about the available and generated data and in which way data access
can be partitioned, too. Some parts of the data can be local to kernels or com-
pute units, some have to be globally accessible. If atomicity is kept in mind
programming with most of the data globally accessible might be less complex
in some cases. However, in the spirit of performance optimisation accesses to
global memory should be minimized. Caching mechanisms internal to the hard-
ware architecture might not be obvious, but performance critical. Thus, it is
advisable to think about the data layout in memory to make use of caching and
prevent cache misses.

0.4.2 CUDA

CUDA is the proprietary programming interface for NVIDIA GPUs. It allows
to interact with the hardware by allocation of video memory, the transfer of data
from and to the GPU and its processing. As a disadvantage of CUDA can be
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seen that it can be run only on hardware with NVIDIA chips. The upside of the
same fact might be that CUDA and GPU drivers can be optimized to best per-
formance, which might not be the case for more generic approaches. There are
CUDA bindings for a variety of programming languages with different distance
to the hardware level, for instance C/C++, Fortran or Python. In addition to
solid-programming-language bindings, there are wrappers for certain scripting
languages and computer algebra systems (CAS’s) which provide an easy access
to parallel computations. However, with regard to the topic described in this
report I will keep to describing the CUDA in the context of the native C/C++
interface.

As described earlier it is characteristic for GPU programming to break down
problems in many sub units which can be approached independently. The small-
est such unit in CUDA terminology is the thread, which computes a result from
some input data. The actual algorithm that is executed in a thread has to be
implemented in a kernel. A thread, together with 31 other threads comprises
a warp—a unit sparsely used in literature. More common is the subsumma-
tion of threads in blocks, the number of which is problem dependent and to be
determined by the developer within certain limits. Several blocks are formally
collected in grids. The CUDA runtime’s task is to distribute the threads over
the available hardware resources.

The basic concept of the GPU memory hierarchy as described in section 0.4.1
is of course existent in CUDA. Each of the threads can make use of private local
memory. Threads comprising a thread block share memory during the lifetime
of the block. Global memory can be accessed simultaneously by all threads. Two
more types of memory are the constant memory and the texture memory. While
the former increases performance by splitting serial read-only memory accesses
into parallell requests, the latter caches data for reads caused by several (many
at best) thread requests. Memory operations generally are faster with lower
hierarchy level and in read-only mode.

Let us have a look at simple CUDA program for illustration. I took an
introductory example out of the NVIDIA developer resources2 for the purpose
of a short primer. Let us first start with classical inclusion of libraries:

#inc lude <iostream>
#inc lude <math . h>

We then define the part that is supposed to do computations on the GPU
hardware. The keyword global indicates that the defined function is a CUDA
kernel:

// Kernel f unc t i on to add the e lements o f two ar rays
g l o b a l

void add ( i n t n , f l o a t ∗x , f l o a t ∗y )
{

f o r ( i n t i = 0 ; i < n ; i++)
y [ i ] = x [ i ] + y [ i ] ;

2 https://devblogs.nvidia.com/even-easier-introduction-cuda/
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}

Next, we define the classical C++ main() function—the programs actual
entry point. In this function GPU memory is allocated with cudaMallocManaged

() which gets an address and the amount of bytes to be stored as parameters.
In the following codefor loop the memory is initialized with ones and twos as
floating point numbers.

i n t main ( void )
{

i n t N = 1<<20;
f l o a t ∗x , ∗y ;

// A l l o ca t e Un i f i ed Memory − a c c e s s i b l e from CPU or GPU
cudaMallocManaged(&x , N∗ s i z e o f ( f l o a t ) ) ;
cudaMallocManaged(&y , N∗ s i z e o f ( f l o a t ) ) ;

// i n i t i a l i z e x and y ar rays on the host
f o r ( i n t i = 0 ; i < N; i++) {

x [ i ] = 1 .0 f ;
y [ i ] = 2 .0 f ;

}

After the preparation is finished the previously defined kernel function add()

is run on the NVIDIA device. Afterwards we wait for the GPU to finish compu-
tations with cudaDeviceSynchronize(), then evaluate the results of the computations
and do memory janitoring before gracefully exiting the program.

// Run ke rne l on 1M elements on the GPU
add<<<1, 1>>>(N, x , y ) ;

// Wait f o r GPU to f i n i s h be f o r e a c c e s s i n g on host
cudaDeviceSynchronize ( ) ;

// Check f o r e r r o r s ( a l l va lue s should be 3 .0 f )
f l o a t maxError = 0 .0 f ;
f o r ( i n t i = 0 ; i < N; i++)
maxError = fmax ( maxError , f abs ( y [ i ]−3.0 f ) ) ;
s td : : cout << ”Max e r r o r : ” << maxError << std : : endl ;

// Free memory
cudaFree ( x ) ;
cudaFree ( y ) ;

r e turn 0 ;
}

A similar structure can be expected from all moderately simple CUDA pro-
grams. There is a definition of one or several kernels, i.e. functions supposed
to run on graphics hardware, there is memory allocation on the GPU and the
host and there is copying of memory from and to the GPU.
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0.4.3 OpenCL

OpenCL offers an interface for distributed computing on different kinds of hard-
ware, among which are GPUs. In this way OpenCL combines the abilities of
computation frameworks as MPI3, which allows to distribute computational
tasks over several dedicated devices, with the GPU programming abstraction.
In that sense, OpenCL can be seen as a more generic approach than CUDA,
which however will not be of further interest in this context. That OpenCL
is still similar to CUDA in regard to GPU programming becomes clear when
we try to relate their terminologies. Technically the better part of the CUDA
concepts can be found in OpenCL, too. CUDA’s thread is OpenCL’s work item,
a thread block is equivalent to a work group, which consist of several work items.
A grid is an NDRange. The same mirroring can be found with memory types:
CUDA’s shared memory corresponds to OpenCL’s local memory, the constant
memory has the same name in both cases and texture memory is equivalent to
the image. (Du et al. 2012)

An OpenCL program usually consist of two parts. One part runs on the
host and is responsible for the organising tasks, as resource dispatching, GPU
memory allocation and data transfer between different types of memory. The
other part is implemented in the so-called OpenCL kernel, which in the best
case contains the complete heavy-load-logic and is executed by the computation
device (the GPU in our case).

The existence of OpenCL bindings and wrappers for a number of program-
ming languages (e.g. C++, Fortran, .NET, Erlang oder Python) makes it possi-
ble to write the glue code in a language of choice. The performance critical part
however (kernel) conventionally had to be written in a C flavour (only recently
a kind of C++ has become usable, too). These C/C++ subsets feature some
problem specific or hardware specific extensions, but have significant constraints
when compared with classical C/C++ (for instance no recursion, no function
pointers, no dynamic arrays).

Let us examine the simple adding program from the previous section in
OpenCL syntax.

TODO: equ iva l en t openc l code

Upon closer examination of the two implementations of the example add
program it becomes obvious that CUDA and OpenCL do not only have dif-
ferences in terms of style. The most important probably being the selection
of a platform and devices within the platform. This reflects the more generic
concept of OpenCL which could employ other computing devices than GPUs.
Another one is that OpenCL requires the setup of an environment on the host
computer in preparation for the kernel execution on the GPU. In particular the
dedicated compilation of the kernel is eye-catching. This is different in CUDA
which allows a seamless integration of the GPU related programming with the
rest of the workflow. Something similar is true for memory management. While

3 http://mpi-forum.org/
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we can handle video memory in CUDA almost just like host RAM, this is dif-
ferent in OpenCL. There, we have to create buffers and much more explicitly
copy data back and forth between the video and the host RAM in order to start
computations and evaluate results on the CPU.

0.5 Cudamuca

Cudamuca is available in two flavours4. There is a reference implementation in
C++ running on multi-core CPU machines. And there is an implementation
in CUDA intended to be run on GPUs. Both implementations are supposed
to generate identical results if the random number generators (RNGs) and al-
gorithms are fed with identical seeds and parameters. Since the main focus of
this report is GPU related I will not give attention to the conservative CPU ap-
proach. Instead, I will describe the CUDA implementation first in a moderately
abstracted level in order to show the basic ideas behind the implementation. I
will later cover the differences of the OpenCL implementation.

0.5.1 The original (CUDA-) implementation

The conceptual ideas cudamuca is based on are provided by Gross et al. (2017).
Their article combined with the corresponding source code provides the basis
of this section. In the following I will not provide source code listings. However
it might make sense to have the sources at hand because this report refers to
certain functions or parts of the code. I will mainly follow the process of main()

and cover the tasks accomplished by subroutines where it seems appropriate.

Includes

Cudamuca includes and makes use of the 3rd-party library random1235 for
generating pseudo random numbers. The employed RNG algorithm is stateless
and counter based and in this way avoids the necessity of data transfer between
the involved compute units (Salmon et al. 2011). The two includes of muca.hpp

and ising2d io .hpp make helper functions for data analysis, benchmarking and
command line parsing available. Apart from that the included libraries are basic
system libraries for data I/O, mathematical functions and time stamping.

Memory

A distinction between two fundamentally different types of memory has to be
made, which is reflected by a certain variable naming scheme: memory in the
host computer’s RAM is referenced by variables with name prefixes h , while
memory on the GPU is referenced by variables with name prefixes d . Apart from
the variables storing trivial values as lattice size, loop counters or computation

4 https://github.com/CQT-Leipzig/cudamuca
5 https://www.thesalmons.org/john/random123/releases/1.09/docs/
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constants, there are several crucial data structures representing the spin lattice,
the energy histograms and the reweighing vectors computed by the program.
For these structures memory is reserved in the host computers RAM, which
might be initialized and afterwards copied to video RAM represented. After
computations on the GPU have manipulated the data, memory might be copied
back to the host’s RAM for further analysis or manipulation.

The spin lattice is mapped to a continuous memory area of 8 bit wide signed
integers. The number of elements this memory holds is calculated as the product
of the WORKER (CUDA threads) count and the number of lattice sites. As a
result the allocated memory represents as many lattices as there are WORKERs.
All lattice sites are randomly initialized with values out of {-1, 1} using random
numbers generated by the RNG library. All of the crucial operations on the
lattice are conducted in the graphics device’s memory. The lattice is only copied
to the GPU and never back to the host.

The overall energies of individual lattices are computed for each worker.
Memory globally accessible by all threads of the size WORKERS ∗ sizeof(int) is
allocated on the device and initialized by code running on the GPU for that
purpose.

For the iterative approach of multicanonical simulations, weights are nec-
essary for rescaling the probability of parts of the energy landscape. To this
end, cudamuca sets up a global weight array as well as a histogram array of
length N = L2, both of which are initialised with zero float and integer values,
respectively.

Based on benchmarking Gross et al. (2017) decided to store the histogram
not in local or private memory of the block or work items, respectively. These
memory types seem to be predestined to be chosen for their generally higher
speed, compared to global memory. After experimenting with different varia-
tions of memory use the decision was made in favour of the global histograms
and weights for performance reasons. A disadvantage accompanying this choice
is that mutating parallel operations on this global memory have to be atomic
to prevent faulty results. Otherwise flawed computations must be expected, for
instance when several threads increase the value of the energy bins simultane-
ously. Parallel writes which are to be considered by design may then lead to
the situation where one write destroys the effects of another write. Take for
instance, the incrementation of the energy bins in the energy histograms. If
more than one thread increases the value of a bin at the same time only one of
the incrementations survives and manifests in the histogram.

The naive approach to storing data in global memory needed by all threads
would be to put the spin configurations in linear order next to each other. As
Gross et al. (2017) point out, however, it is much more efficient to put “all
the first spins next to each other, then all the second spins” and so on. As
a result, access of parallel running threads to the same lattice sites require
only one physical access to global memory. Successive accesses are accelerated
by caching mechanisms. Since the selection of the spin flip order is (pseudo-)
random, it is necessary that all threads use the same order of spins, in order for
the described coalescing memory access to work. Operations on global memory
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always cause a transfer of at least one cache line (128 bytes).6

Another memory related optimization was achieved by using texture mem-
ory 7 for the weights stored in GPU memory. Texture memory is classically used
in actual graphics software for rendering surfaces. It includes caching methods
which, in some cases, can generate significant performance benefits. CUDA con-
tains an API to make use of texture memory in general purpose computations.
In cudamuca this is accomplished by creating a texture memory object (instead
of just using global memory) for the weights vector and using the corresponding
texture access functions. Because of the caching, threads reading the weights in
parallel get the requested data faster than they would with conservative reads
from global memory.

Logic

After the data structures are set up on the host and copied to the CUDA de-
vice, the simulation is started (function call mucaIteration (...) ). In the spirit of
multicanonical simulations this happens in several iterations, each of which be-
gins with a thermalisation phase of the lattices in order to start measurements
with a realistic energy distribution. Once the thermalization is finnished the
Markow-chain-driven spin flipping is conducted for a predefined number of up-
dates. Each of such updates results in an overall lattice energy which in turn
corresponds to an energy bin in the histogram. Accordingly, the appropriate
bins in each worker’s individual histogram are incremented. After all updates
were conducted, the resulting energy of the overall histogram is stored for each
worker.

The computation of the energy of an individual lattice is done by iterating
over the lattice sites and computing

-Value at i * (Value at RIGHT + Value at LEFT + Value at ABOVE +
Value at BELOW),

where RIGHT, LEFT, ABOVE and BELOW represent the spins at the
respective sites relative to the spin at i. These results are summed up to the
overall energy. Where necessary, the lattice is extended by wrapping around the
edges in order to fulfill continuous boundary conditions.

After one such iteration the histograms are copied back to the host RAM
and undergo analysis which reveals a certain probability distribution of energy
states used to compute the weight vectors for the next iteration steps. Then
the process starts again with a new set of weight vectors unless the histogram
has approached a flatness determined by the Kullback–Leibler –divergence8, in
which case the program terminates.

In summary, first many lattices are initialized and thermalized, then the
simulation is run. Each simulation step is conducted by every worker. The

6 https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-memory-
3-0

7 https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#texture-memory
8 https://en.wikipedia.org/wiki/Kullback-Leibler divergence

14

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-memory-3-0
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#global-memory-3-0
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#texture-memory
https://en.wikipedia.org/wiki/Kullback-Leibler_divergence


number of particular occurring energy states of the lattices determines the en-
ergy probability distribution used for recomputing the weight vectors for the
next simulation step.

The simulation produces statistics about the computation performance and
more importantly the data describing the energy state development of the Ising
lattice. Using this data the reweighing for example to the Boltzman energy
distribution can be done as described in section ??.

Production run

After weight vectors are computed in the described fashion a production run
can be started, where the system undergoes thermalisation as described earlier.
In this mode iterations are not used to reconfigure the weight vectors, but the
weight vectors of the initial training phase are assumed to correspond to the
intended sampling bias. Then cudamuca employs jack knifing, dividing the
number of spin updates in 100 sub sets. From the resulting 100 histograms
state density can be deduced and error analysis conducted.

Hardware parameters

It is performance critical to correctly determine the number of GPU workers. In
particular thread block size (variable WORKERS PER BLOCK) is an important
choice as it heavily impacts the number of concurrent computations (latency
hiding). Additionally, the hardware can transparently put idling threads to
work while others, waiting for I/O, would decrease computational efficiency.
Picking the right number being crucial, Gross et al. (2017) chose to follow rec-
ommendations from the CUDA developer resources.

Based on the architecture communicated via the macro CUDA ARCH 9 cud-
amuca determines the minimum number of blocks resident on the GPU (variable
MY KERNEL MIN BLOCKS). MY KERNEL MIN BLOCKS and WORKERS PER BLOCK

are provided for performance optimisation via the launch bounds qualifier.10

Both kernel functions in cudamuca, computeEnergies(...) and mucaIteration (...) are
defined in this way.

Random number generation

The required random numbers are generated with the framework Random 123,
an implementation of Salmon et al. (2011). Random numbers are need at two
code parts in the algorithm: (i) for finding the next spin to flip and (ii) for the
decision whether to flip a spin or not, i.e. the importance sampling. For both
purposes the underlying C function u01fixedpt open open 32 24() is used, which
returns uniformly distributed numbers with the type float with 24 bit mantissa,
in the open interval (0, 1). Such a number is well suited to be compared to a
probability distribution, i.e. for the importance sampling. The use of a floating

9 https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#cuda-arch
10 https://docs.nvidia.com/cuda/cuda-c-programming-guide/#launch-bounds
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point number for picking the integer index of the spin to flip is less obvious. To
that account the floating point number is multiplied by the overall spin count
and the result converted to an integer. In this way, spins are picked uniformly
from the whole lattice.

0.5.2 OpenCL implementation

The main task underlying this report is the implementation of cudamuca to
OpenCL. As described earlier in section 0.4.3 most CUDA concepts can be
translated one-to-one on OpenCL. The OpenCL implementation of the original
CUDA code had to be written in OpenCL C—a language much more similar
to C than to C++. As a result the crucial simulation code is written in C,
rather than C++. For instance, the C API functions of the RNG were used in
those parts of the code, instead of the C++ classes. Also, the use of standard
C++ classes were not possible in the OpenCL GPU kernel part. Nonetheless,
the ported code is intended to match the original implementation in so many
aspects as possible. This can be assumed to be achieved since basically all
CUDA functions could be replaced with OpenCL equivalents. The following
sections describe how the port was approached and at which points difficulties
were faced and which parts have a very idiosynchratic OpenCL character.

Includes

The included libraries for the host part of the port are basically identical to the
CUDA implementation. Some of the includes are removed because of redundant
inclusion in header files. The only real difference lies in the inclusion of the
OpenCL headers via #include <CL/cl.hpp>.

OpenCL provides several extensions for the support of data types and op-
erations on these types. The OpenCL kernel code requires the inclusion of two
such extension. First, there is the requirement of double precision floating point
numbers. Therefore the extension cl khr fp6411 is enabled. Since the energy bin
counts in cudamuca easily exceed unsigned 32 bit integer limits, operations on
64 bit integers are inevitable. These have to be atomic where several threads
have write access to the same counters. Atomic operations on large integers is
provided by the extension cl khr int64 base atomics.12

Janitoring

A main difference between CUDA and OpenCL is the handling of device spe-
cific code. While in CUDA this is done in an almost subtle way where de-
vice functions are just defined with certain keywords and are then available to
the program, the intertwining of C/C++ and OpenCL code is less close. In
OpenCL a kernel is written, compiled during runtime and loaded to the device

11 https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/cl khr fp64.html
12 https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/

cl khr int64 base atomics.html
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for execution. Let me be more specific and pick the crucial parts from the cu-
damuca OpenCL port. First, a choice has to be made in regard to the used
hardware. This is accomplished by finding the available computing platforms
with cl :: Platform::get (...) 13 and then picking one among the found (for instance
NVIDIA, AMD, Intel, Mesa). The platform corresponds to the vendor-specific
OpenCL implementation. Within a platform exist valid choices for devices,
which can be made by a call to cl :: Platform::getDevices (...) ;. Examples for de-
vices would be GPUs in the case of the NVIDIA platform and GPUs or CPUs
in case of Intel or AMD. Software for listing available platform and devices
are abundant on Github.14 Once, a platform has been chosen the actual com-
puting devices are framed within in a cl :: Context15 object. The use of this is
implementation specific and not important in this case since we only use the
GPU for computing, anyways. The context is used as a parameter to a cl ::

CommandQueue16 object, which handles the dispatching of function calls to the
compute kernel. For the existence of a valid kernel, an instance of the class
cl :: Kernel17 has to be created and provided with the source code of the program
supposed to run on the GPU. Next, the parameters that will be expected by
the kernel code are set via cl :: Kernel.setarg(). Only then can the GPU-code be
run via cl :: enqueueNDRangeKernel()18 which puts a task into the command queue
of the context.

We saw that the execution limits in CUDA were set in a quiet straightforward
way (section 0.5.1). This also is accomplished in a more explicit way in OpenCL
by calling cl :: CommandQueue::enqueueNDRangeKernel(...) with the overall number
of work items and the number of work items in the work group, i. e. we tell the
device how much work there is to do and ho many tasks we expect to be dealt
with in parallel. OpenCL deduces hardware parameters from the workload.
This differs from CUDA where we set the hardware parameters and the tasks
are distributed accordingly.

It is hard to argue against the statement that this whole procedure seems
quiet cumbersome. However the complexity might be justified by the much more
generic OpenCL approach in terms of compute device variability and vendor
agnostics.

Memory

In CUDA, memory on the device is allocated using the function cudaMalloc()

which returns a pointer to memory on the GPU. There is a very similar func-
tion in OpenCL made available through cl :: Buffer(), an object which upon con-
struction allocates and then represents memory on the GPU of the given size
and read/write access privileges. In the OpenCL port of cudamuca the memory

13 https://github.khronos.org/OpenCL-CLHPP/classcl 1 1 platform.html
14 e.g. https://gist.github.com/courtneyfaulkner/7919509
15 https://github.khronos.org/OpenCL-CLHPP/classcl 1 1 context.html
16 https://github.khronos.org/OpenCL-CLHPP/classcl 1 1 command queue.html
17 https://github.khronos.org/OpenCL-CLHPP/classcl 1 1 kernel.html
18 https://github.khronos.org/OpenCL-CLHPP/classcl 1 1 command queue.html
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for the lattice, the lattice energies and the histograms is allocated using this
interface. The code structure is—apart from the different syntax identical to
the original implementation. As in the CUDA case, memory representing the
lattice is initialized in host RAM and then copied to the GPU using the function
cl :: enqueueWriteBuffer(). Also, energies and histograms are generated and copied
to the GPU in the very same way as in the CUDA implementation, just with
OpenCL functions. Unfortunately, there is no way to profit from the texture
memory caching as is provided in CUDA. There is the supposedly correspondig
OpenCl image2d, which I did not use for the implementation. (TODO: das
kann ich doch noch machen. Siehe hier und hier)

Several C++ style type casts can be found in the original cudamuca imple-
mentation. Unfortunately, in OpenCL C we cannot cast types in the C++ way.
There is, however, a set of functions convert destType(sourceVar), where destType
and sourceVar had to be plugged in.19

It is necessary to take care of the right choice of variable types. OpenCL
provides a list of type specifiers for the appropriate type, signedness and width20.
The recommended way to work with these is to use the OpenCL types like char,
ulong, code and so on in kernel code. If a kernel variable is referred to in the
application code the type name is to be prefixed with cl in order to prevent
confusion programmer wise as well as compiler wise. A good example for the
usage of this would be the allocation of memory on the GPU from the host.
The amount of required memory could then be determined by a call to sizeof(

cl ulong). Consequently most data types were renamed in the port according to
the list in table 1.

cudamuca Opencl type OpenCL type
original type in application in kernel

unsigned cl ulong ulong

float cl float float

int8 t cl char char

int cl int int

Table 1: Equivalent choices of types in CUDA (original implementation),
OpenCL host application and OpenCL kernel of the port; first, second, third
column, respectively

Random123 in OpenCL

While CUDA allows to make use of C++ syntax this is not the case for OpenCL.
As a consequence, the C++ wrappers of the Random123 library could not
be used. However, there are C equivalents in Random123 for all underlying
functions used in cudamuca which can be expected to generate the same results
in the OpenCL kernel. In order to make sure C++ and C functions would

19 https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/convert T.html
20 https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/scalarDataTypes.html
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create the same lists of random numbers two simple programs were written for
testing purposes.21 In a later step, the functions were also included in CUDA
and OpenCL programmes and were run on the GPU with the same seeds to
generate lists of several 10 thousand random numbers. Afterwards the lists
were compared and found identical.

Data processing

The most important part of the port is the one contained in the kernel, i.e.
functions prefixed with global or device in the original CUDA implemen-
tation. The former are called from the host and can be seen as entry points
to GPU operations while the latter are functions which are called only from
code running on the GPU. An equivalent syntax is provided by OpenCL via the
differentiation between function definitions prefixed by kernel (called from the
host when starting a kernel) and plain C function definitions which can be called
only from within a kernel. There are two kernel functions provided by the decla-
rations kernel void computeEnergies(...) and kernel void mucaIteration(...), where
... represents function parameters. Functions which can be called from within
kernels only are EBIN(...), localE (...) , calculateEnergy (...) and mucaUpdate(...).

A basic difference between CUDA and OpenCL must be made when it comes
to handling function parameters that are submitted from the host but used
in function calls within a kernel. The CUDA implementation of cudamuca
accomplishes this in two ways, (i) via parameters in the kernel function calls
and (ii) via globally accessible memory on the GPU. The former is the normal
way in OpenCL to provide the functions running on the GPU with parameters,
however the latter is not within OpenCL specs. This leads to the necessity to
pass every constant down through all functions. For example, the function EBIN

(...) needs the parameter of d N, which has to be passed down the call tree in
the OpenCL implementation while it is a device wide global constant in CUDA.
This is why most functions in the OpenCL port expect more parameters than
in the CUDA implementation. Fortunately, because the parameters are passed
and named accordingly, the function internals could be left as in the CUDA
implementation almost entirely.

The original cudamuca implementation makes use of the CUDA math func-
tion expf().22 The corresponding function in OpenCL is exp().23 During initial
tests it became clear, that both functions do not generate identical output from
all input. While the random number generator creates identical lists of numbers
the value of the expf() in CUDA and exp() in OpenCL often differs in the last
digit. This leads to slightly diverging simulations, i.e. the qualitative behaviour
of the OpenCL implementation is equivalent to the CUDA implementation. The
differences become visible however, when energy histograms are plotted a while
into the simulation (see section 0.6.2).

21 https://git.bloerg.de/studium/test-rng
22 https://docs.nvidia.com/cuda/cuda-c-programming-guide/#intrinsic-functions
23 https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/exp.html

19

https://git.bloerg.de/studium/test-rng
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#intrinsic-functions
https://www.khronos.org/registry/OpenCL/sdk/1.2/docs/man/xhtml/exp.html


Optimization strategies

0.6 Results

0.6.1 Port

The original implementation of cudamuca could be ported from CUDA to
OpenCL. The sources can be found at https://git.bloerg.de/studium/clmuca.

0.6.2 exp() 6= expf()

Initial simulation runs with the ported cudamuca implementation revealed slightly
different numeric results despite the qualitative behaviour of the simulation
seemed appropriate. An error due to differing generation of random numbers
could be ruled out. After some research the cause was found in the differing ac-
curacy of the single precision expf() function used in the CUDA implementation
and the single precision exp() function used in OpenCL. While the former is the
cmath implementation24, the latter is a dedicated implementation for OpenCL25.
Table 2 contains records from a list of 100 000 random numbers and the corre-
sponding results of the cmath expf() and the OpenCL exp(), respectively. The
upper half of the table lists rows with differing results for the function calls,
whereas the lower half lists lines where the results are identical. Where the
numbers differ, a clear tendency towards the smaller number can be observed
in OpenCL. This allows to suspect that the cause lies within different ways of
rounding. A thorough analysis of the CUDA and the OpenCL implementa-
tion of the math functions should reveal whether this is true, was however not
conducted in this context.

Code for generating exemplary lists can be found in the exp-issue repo.26

0.6.3 Impact of the exp-issue

The issue raised in the previous section does not seem to influence the simula-
tions in a qualitative way. Though, effects are clearly visible in the energy his-
tograms as can be expected because the comparison of the exp()/expf() functions
to a random number controls whether an energy histogram update is conducted
or not. Of course, the outcome of this conditional can be one way or the other,
depending on a single digit. In figure 2 can be seen, that in the first few training
iterations the blue (OpenCL) and green (CUDA) graphs have exactly the same
coordinates. With increasing count of generated random numbers the probabil-
ity to stumble over a random number the exponential function results of which
differ, increases. In the illustrating example, starting with iteration four, the
graphs diverge slightly but remain very similar for the whole simulation run.

24 http://en.cppreference.com/w/c/numeric/math/exp
25 https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/exp.html
26 https://git.bloerg.de/studium/exp-issue

20

https://git.bloerg.de/studium/clmuca
http://en.cppreference.com/w/c/numeric/math/exp
https://www.khronos.org/registry/OpenCL/sdk/1.0/docs/man/xhtml/exp.html
https://git.bloerg.de/studium/exp-issue


random number r expf(r) (CUDA) exp(r) (OpenCL)

0.462963 1.58878 1.58877
0.839878 2.31609 2.31608
0.645550 1.90704 1.90703
0.318770 1.37544 1.37543
0.518338 1.67924 1.67923
0.842220 2.32152 2.32151
0.853306 2.34740 2.34739
0.790821 2.20521 2.20520
0.635833 1.88860 1.88859
0.358126 1.43065 1.43064
0.487836 1.62879 1.62879
0.243214 1.27534 1.27534
0.267595 1.30682 1.30682
0.773415 2.16715 2.16715
0.72402 2.06271 2.06271
0.859754 2.36258 2.36258
0.408421 1.50444 1.50444
0.411015 1.50835 1.50835
0.174236 1.19034 1.19034
0.576942 1.78059 1.78059

Table 2: Intentionally picked lines from longer list of unsorted random floats r

and exponential function results for cmath’s expf(r) and OpenCL exp(r). Lines
in the upper half show minor difference in the last digit of the function result.
Lower half lines from the same list do not.

0.6.4 Qualitative equivalence of the port

For the purpose of basic functionality testing, an L = 8 2d Ising lattice was sim-
ulated with both the original cudamuca implementation and with the OpenCl
implementation. The final histogram of the production run was compared to
the exact solution for an L = 8 lattice provided by Beale.27 Figure 3 illustrates
the very close similarity of both implementations with the exact solution. This
becomes more clear, when the deviations of the simulation results from the ex-
act solution are plotted next to each other. Figure 4 shows the difference of the
logarithm of the Beale solution state density and the logarithm of the simula-
tion’s state densities. It is obvious that the OpenCL simulation is at least as
close as the CUDA simulation.

0.7 Benchmark

TODO: run-time-Vergleich OpenCL - CUDA: 8, 16, 32?

27 http://spot.colorado.edu/ beale/, http://www.physik.uni-leipzig.de/ janke/teach-
ing/beale 8x8.html
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0.8 Discussion

Ausarbeiten:

• The issue with exp/expf was found. It can be expected that its impact is
of minor importance. Already the use of higher accuracy data types could
cause similar behaviour.

• The OpenCL implementation is slower than the CUDA implementation.
This could be caused by not having textures, insufficient exploiting of
caching.

• Performance gains maybe by using OpenCL image (not tried), use of local
memory for histograms, weights.
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Figure 2: lnΩ(E) of an Ising lattice with L = 16 during training iteration step
indicated in upper left of the diagrams. At iterations with lower numbers, his-
tograms of CUDA implementation (green graph) and OpenCL implementation
(blue graph) are identical, then start to diverge slightly. TODO: Achsen schön
machen.
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Figure 3: Logarithm of the density of states of the simulated 2d Ising model
in comparison to exact Beale solution (L = 8). Data points mark simulation
results for original CUDA implementation (left hand side) and OpenCL port
(right hand side). Simulated values are normalized with respect to maximum
in Beale’s solution.

Figure 4: Difference of the Logarithms of the density of states of the exact Beale
solution and the CUDA/OpenCL simulation for an L = 8 lattice.
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