Heat flux and Casimir forces in non-equilibrium scenarios

Adrián E. Rubio López IQOQI, Innsbruck Dispersion forces and dissipation – Nov 2017

Outline

- Introduction
- Model, equations of motion and long-time limit
- Expectation values of the energy-momentum tensor
- Two plates configuration
- Casimir force
- Heat flux: Some cases
- Heat flux: Numerics
- Conclusions

Introduction

2 – AERL, Poggi P. M., Lombardo F. C., Giannini V., arXiv:1709.09277 (Oct2017). Submitted to PRA.

$$\mathcal{L} = \mathcal{L}_{\phi} + \mathcal{L}_{S} + \mathcal{L}_{\phi-S} + \mathcal{L}_{B} + \mathcal{L}_{S-B}$$

$$= \frac{1}{2} \mathcal{Q}_{\mu} \phi \partial^{\mu} \phi + 4\pi \eta \left(\frac{1}{2} m \dot{r}_{x}^{2}(t) - \frac{1}{2} m \omega_{0}^{2} r_{x}^{2}(t) \right) + 4\pi \eta \phi (x, t) \dot{r}_{x}(t)$$

$$+ 4\pi \eta \sum_{n} \left(\frac{1}{2} m_{n} \dot{q}_{n,x}^{2}(t) - \frac{1}{2} m_{n} \omega_{n}^{2} q_{n,x}^{2}(t) \right) - 4\pi \eta \sum_{n} \lambda_{n} q_{n,x}(t) r_{x}(t)$$

$$(u, v) = 0$$

$$(u, v) =$$

$$\mathcal{L} = \mathcal{L}_{\phi} + \mathcal{L}_{S} + \mathcal{L}_{\phi-S} + \mathcal{L}_{B} + \mathcal{L}_{S-B}$$
$$= \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + 4\pi \eta \left(\frac{1}{2} m \dot{r}_{x}^{2}(t) - \frac{1}{2} m \omega_{0}^{2} r_{x}^{2}(t)\right) + 4\pi \eta e \phi(x, t) \dot{r}_{x}(t)$$

$$+4\pi\eta\sum_{n}\left(\frac{1}{2}m_{n}\dot{q}_{n,x}^{2}(t)-\frac{1}{2}m_{n}\omega_{n}^{2}q_{n,x}^{2}(t)\right)-4\pi\eta\sum_{n}\lambda_{n}q_{n,x}(t)r_{x}(t)$$

- Interactions begin at t = t₀
- For $t < t_0$, each part is free
- Canonical quantization (Heisenberg equations)
- Composite Hilbert space: $H = H_{\phi} \otimes H_{A} \otimes H_{B}$
- Uncorrelated initial state:

 $\hat{\rho}(t_0) = \hat{\rho}_{\rm IC}(t_0) \otimes \hat{\rho}_{\rm A}(t_0) \otimes \hat{\rho}_{\rm B}$

• Effective field equation (1+1):

$$\Box \hat{\phi} + \frac{\partial^{2}}{\partial t^{2}} \left[\int_{t_{0}}^{t} d\tau \chi_{x}(t-\tau) \hat{\phi}(x,\tau) \right] = 4\pi \eta e C(x) \left[\dot{G}_{1}(t-t_{0}) \hat{r}_{x}(t_{0}) + \dot{G}_{2}(t-t_{0}) \frac{\hat{p}_{x}(t_{0})}{m} + \int_{t_{0}}^{t} d\tau \dot{G}_{2}(t-\tau) \frac{\hat{p}_{x}(t_{0})}{m} \right]$$
$$+ \int_{t_{0}}^{t} d\tau \dot{G}_{2}(t-\tau) \frac{\hat{F}_{x}(\tau-t_{0})}{m} \right]$$
$$\hat{\phi}(x,t_{0}) = \int dk \left[\frac{1}{\omega_{k}} \right]^{\frac{1}{2}} \hat{a}_{k}(t_{0}) e^{i(kx-\omega_{k}t_{0})} + \hat{a}_{k}^{\dagger}(t_{0}) e^{-i(kx-\omega_{k}t_{0})})$$
$$\dot{\phi}(x,t_{0}) = \int dk \left[\frac{1}{\omega_{k}} \right]^{\frac{1}{2}} i \omega_{k}(-\hat{a}_{k}(t_{0}) e^{i(kx-\omega_{k}t_{0})} + \hat{a}_{k}^{\dagger}(t_{0}) e^{-i(kx-\omega_{k}t_{0})})$$

$$\mathcal{L} = \mathcal{L}_{\phi} + \mathcal{L}_{S} + \mathcal{L}_{\phi-S} + \mathcal{L}_{B} + \mathcal{L}_{S-B}$$
$$= \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + 4\pi \eta \left(\frac{1}{2} m \dot{r}_{x}^{2}(t) - \frac{1}{2} m \omega_{0}^{2} r_{x}^{2}(t)\right) + 4\pi \eta e \phi(x, t) \dot{r}_{x}(t)$$

$$+4\pi\eta \sum_{n} \left(\frac{1}{2}m_{n}\dot{q}_{n,x}^{2}(t) - \frac{1}{2}m_{n}\omega_{n}^{2}q_{n,x}^{2}(t)\right) - 4\pi\eta \sum_{n}\lambda_{n}q_{n,x}(t)r_{x}(t)$$

- Interactions begin at t = t₀
- For $t < t_0$, each part is free
- Canonical quantization (Heisenberg equations)
- Composite Hilbert space: $H = H_{\phi} \otimes H_{A} \otimes H_{B}$
- Uncorrelated initial state:

 $\hat{\rho}(t_0) = \hat{\rho}_{\mathrm{IC}}(t_0) \otimes \hat{\rho}_{\mathrm{A}}(t_0) \otimes \hat{\rho}_{\mathrm{B}}$

• Effective field equation (1+1):

$$\hat{b}(x,t) = -\int dx' \hat{\mathbf{G}}_{\text{Ret}}(x,x',t-t_0) \widehat{\phi(x',t_0)} - \int dx' \mathbf{G}_{\text{Ret}}(x,x',t-t_0) \frac{\partial \phi}{\partial t}(x',t_0) - \int_{t_0}^t dt' \int dx' \mathbf{G}_{\text{Ret}}(x,x',t-t') 4\pi \eta e C(x') \left(\dot{G}_1(t'-t_0) \hat{r}_{x'}(t_0) + \dot{G}_2(t'-t_0) \frac{\hat{p}_{x'}(t_0)}{m} \right) - \int_{t_0}^t dt' \int dx' \mathbf{G}_{\text{Ret}}(x,x',t-t') 4\pi \eta e C(x') \int_{t_0}^{t'} d\tau \dot{G}_2(t'-\tau) \frac{\hat{F}_{x'}(\tau-t_0)}{m},$$

Retarded Green function

$$\mathcal{L} = \mathcal{L}_{\phi} + \mathcal{L}_{S} + \mathcal{L}_{\phi-S} + \mathcal{L}_{B} + \mathcal{L}_{S-B}$$
$$= \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + 4\pi \eta \left(\frac{1}{2} m \dot{r}_{x}^{2}(t) - \frac{1}{2} m \omega_{0}^{2} r_{x}^{2}(t)\right) + 4\pi \eta e \phi(x, t) \dot{r}_{x}(t)$$

$$+4\pi\eta \sum_{n} \left(\frac{1}{2}m_{n}\dot{q}_{n,x}^{2}(t) - \frac{1}{2}m_{n}\omega_{n}^{2}q_{n,x}^{2}(t)\right) - 4\pi\eta \sum_{n}\lambda_{n}q_{n,x}(t)r_{x}(t)$$

- Interactions begin at t = t₀
- For $t < t_0$, each part is free
- Canonical quantization (Heisenberg equations)
- Composite Hilbert space: $H = H_{\phi} \otimes H_{A} \otimes H_{B}$
- Uncorrelated initial state:

 $\hat{\rho}(t_0) = \hat{\rho}_{\mathrm{IC}}(t_0) \otimes \hat{\rho}_{\mathrm{A}}(t_0) \otimes \hat{\rho}_{\mathrm{B}}$

• Effective field equation (1+1):

 $\hat{\phi}(x,t) = \hat{\phi}_{\mathrm{IC}}(x,t) \otimes \mathbb{I}_{\mathrm{A}} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \hat{\phi}_{\mathrm{A}}(x,t) \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \mathbb{I}_{\mathrm{A}} \otimes \hat{\phi}_{\mathrm{B}}(x,t)$ $t_{0} \rightarrow -\infty \text{ and poles analysis}$ $\hat{\phi}^{\infty}(x,t) = \hat{\phi}_{\mathrm{IC}}^{\infty}(x,t) \otimes \mathbb{I}_{\mathrm{A}} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \hat{\phi}_{\mathrm{A}}^{\infty} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \mathbb{I}_{\mathrm{A}} \otimes \hat{\phi}_{\mathrm{B}}^{\infty}(x,t)$

$$\mathcal{L} = \mathcal{L}_{\phi} + \mathcal{L}_{S} + \mathcal{L}_{\phi-S} + \mathcal{L}_{B} + \mathcal{L}_{S-B}$$

= $\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + 4\pi \eta \left(\frac{1}{2} m \dot{r}_{x}^{2}(t) - \frac{1}{2} m \omega_{0}^{2} r_{x}^{2}(t)\right) + 4\pi \eta e \phi(x, t) \dot{r}_{x}(t)$

$$+4\pi\eta \sum_{n} \left(\frac{1}{2}m_{n}\dot{q}_{n,x}^{2}(t) - \frac{1}{2}m_{n}\omega_{n}^{2}q_{n,x}^{2}(t)\right) - 4\pi\eta \sum_{n}\lambda_{n}q_{n,x}(t)r_{x}(t)$$

- Interactions begin at *t* = *t*₀
- For $t < t_0$, each part is free
- Canonical quantization (Heisenberg equations)
- Composite Hilbert space: $H = H_{\phi} \otimes H_{A} \otimes H_{B}$
- Uncorrelated initial state:

 $\hat{\rho}(t_0) = \hat{\rho}_{\mathrm{IC}}(t_0) \otimes \hat{\rho}_{\mathrm{A}}(t_0) \otimes \hat{\rho}_{\mathrm{B}}$

Effective field equation (1+1):

 $\hat{\phi}(x,t) = \hat{\phi}_{\mathrm{IC}}(x,t) \otimes \mathbb{I}_{\mathrm{A}} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \hat{\phi}_{\mathrm{A}}(x,t) \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \mathbb{I}_{\mathrm{A}} \otimes \hat{\phi}_{\mathrm{B}}(x,t)$ $\hat{\phi}^{\infty}(x,t) = \hat{\phi}_{\mathrm{IC}}^{\infty}(x,t) \otimes \mathbb{I}_{\mathrm{A}} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \hat{\phi}_{\mathrm{A}}^{\infty} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \mathbb{I}_{\mathrm{A}} \otimes \hat{\phi}_{\mathrm{B}}^{\infty}(x,t)$ $\stackrel{\text{Independent of x and t}}{\text{(damped dynamics of r)}}$ NO contribution to $T_{\mu\nu}$

$$\mathcal{L} = \mathcal{L}_{\phi} + \mathcal{L}_{S} + \mathcal{L}_{\phi-S} + \mathcal{L}_{B} + \mathcal{L}_{S-B}$$

= $\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi + 4\pi\eta \left(\frac{1}{2}m\dot{r}_{x}^{2}(t) - \frac{1}{2}m\omega_{0}^{2}r_{x}^{2}(t)\right) + 4\pi\eta e\phi(x,t)\dot{r}_{x}(t)$

$$+4\pi\eta \sum_{n} \left(\frac{1}{2}m_{n}\dot{q}_{n,x}^{2}(t) - \frac{1}{2}m_{n}\omega_{n}^{2}q_{n,x}^{2}(t)\right) - 4\pi\eta \sum_{n}\lambda_{n}q_{n,x}(t)r_{x}(t)$$

- Interactions begin at *t* = *t*₀
- For $t < t_0$, each part is free
- Canonical quantization (Heisenberg equations)
- Composite Hilbert space: $H = H_{\phi} \otimes H_{A} \otimes H_{B}$
- Uncorrelated initial state:

 $\hat{\rho}(t_0) = \hat{\rho}_{\rm IC}(t_0) \otimes \hat{\rho}_{\rm A}(t_0) \otimes \hat{\rho}_{\rm B}$

• Effective field equation (1+1):

Inhomogeneous solution in FQED framework

$$\mathcal{L} = \mathcal{L}_{\phi} + \mathcal{L}_{S} + \mathcal{L}_{\phi-S} + \mathcal{L}_{B} + \mathcal{L}_{S-B}$$

= $\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + 4\pi \eta \left(\frac{1}{2} m \dot{r}_{x}^{2}(t) - \frac{1}{2} m \omega_{0}^{2} r_{x}^{2}(t)\right) + 4\pi \eta e \phi(x, t) \dot{r}_{x}(t)$

$$+4\pi\eta\sum_{n}\left(\frac{1}{2}m_{n}\dot{q}_{n,x}^{2}(t)-\frac{1}{2}m_{n}\omega_{n}^{2}q_{n,x}^{2}(t)\right)-4\pi\eta\sum_{n}\lambda_{n}q_{n,x}(t)r_{x}(t)$$

- Interactions begin at t = t₀
- For $t < t_0$, each part is free
- Canonical quantization (Heisenberg equations)
- Composite Hilbert space: $H = H_{\phi} \otimes H_{A} \otimes H_{B}$
- Uncorrelated initial state:

 $\hat{\rho}(t_0) = \hat{\rho}_{\rm IC}(t_0) \otimes \hat{\rho}_{\rm A}(t_0) \otimes \hat{\rho}_{\rm B}$

• Effective field equation (1+1):

 $\hat{\phi}(x,t) = \hat{\phi}_{\mathrm{IC}}(x,t) \otimes \mathbb{I}_{\mathrm{A}} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \hat{\phi}_{\mathrm{A}}(x,t) \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \mathbb{I}_{\mathrm{A}} \otimes \hat{\phi}_{\mathrm{B}}(x,t)$ $\hat{\phi}^{\infty}(x,t) = \hat{\phi}_{\mathrm{IC}}^{\infty}(x,t) \otimes \mathbb{I}_{\mathrm{A}} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \hat{\phi}_{\mathrm{A}}^{\infty} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \mathbb{I}_{\mathrm{A}} \otimes \widehat{\phi}_{\mathrm{B}}^{\infty}(x,t)$ $\overset{\mathrm{Baths' fluctuations}}{\overset{\mathrm{generate field}}{\overset{\mathrm{generate field}}{\overset{\mathrm{genera$

$$\mathcal{L} = \mathcal{L}_{\phi} + \mathcal{L}_{S} + \mathcal{L}_{\phi-S} + \mathcal{L}_{B} + \mathcal{L}_{S-B}$$

= $\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi + 4\pi\eta \left(\frac{1}{2}m\dot{r}_{x}^{2}(t) - \frac{1}{2}m\omega_{0}^{2}r_{x}^{2}(t)\right) + 4\pi\eta e\phi(x,t)\dot{r}_{x}(t)$

$$+4\pi\eta \sum_{n} \left(\frac{1}{2}m_{n}\dot{q}_{n,x}^{2}(t) - \frac{1}{2}m_{n}\omega_{n}^{2}q_{n,x}^{2}(t)\right) - 4\pi\eta \sum_{n}\lambda_{n}q_{n,x}(t)r_{x}(t)$$

- Interactions begin at t = t₀
- For $t < t_0$, each part is free
- Canonical quantization (Heisenberg equations)
- Composite Hilbert space: $H = H_{\phi} \otimes H_{A} \otimes H_{B}$
- Uncorrelated initial state:

 $\hat{\rho}(t_0) = \hat{\rho}_{\rm IC}(t_0) \otimes \hat{\rho}_{\rm A}(t_0) \otimes \hat{\rho}_{\rm B}$

• Effective field equation (1+1):

 $\hat{\phi}(x,t) = \hat{\phi}_{\mathrm{IC}}(x,t) \otimes \mathbb{I}_{\mathrm{A}} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \hat{\phi}_{\mathrm{A}}(x,t) \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \mathbb{I}_{\mathrm{A}} \otimes \hat{\phi}_{\mathrm{B}}(x,t)$ $t_{0} \rightarrow -\infty \text{ and poles analysis}$ $\hat{\phi}^{\infty}(x,t) = \underbrace{\hat{\phi}_{\mathrm{IC}}^{\infty}(x,t)}_{\mathrm{IC}} \otimes \mathbb{I}_{\mathrm{A}} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \hat{\phi}_{\mathrm{A}}^{\infty} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \mathbb{I}_{\mathrm{A}} \otimes \hat{\phi}_{\mathrm{B}}^{\infty}(x,t)$ Depends on the material configuration Infinite-size "dissipationless" Dissipation VS. free fluctuations in the different regions

$$\mathcal{L} = \mathcal{L}_{\phi} + \mathcal{L}_{S} + \mathcal{L}_{\phi-S} + \mathcal{L}_{B} + \mathcal{L}_{S-B}$$

= $\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + 4\pi \eta \left(\frac{1}{2} m \dot{r}_{x}^{2}(t) - \frac{1}{2} m \omega_{0}^{2} r_{x}^{2}(t)\right) + 4\pi \eta e \phi(x, t) \dot{r}_{x}(t)$

$$+4\pi\eta \sum_{n} \left(\frac{1}{2}m_{n}\dot{q}_{n,x}^{2}(t) - \frac{1}{2}m_{n}\omega_{n}^{2}q_{n,x}^{2}(t)\right) - 4\pi\eta \sum_{n}\lambda_{n}q_{n,x}(t)r_{x}(t)$$

- Interactions begin at t = t₀
- For $t < t_0$, each part is free
- Canonical quantization (Heisenberg equations)
- Composite Hilbert space: $H = H_{\phi} \otimes H_{A} \otimes H_{B}$
- Uncorrelated initial state:

 $\hat{\rho}(t_0) = \hat{\rho}_{\rm IC}(t_0) \otimes \hat{\rho}_{\rm A}(t_0) \otimes \hat{\rho}_{\rm B}$

• Effective field equation (1+1):

 $\hat{\phi}(x,t) = \hat{\phi}_{\mathrm{IC}}(x,t) \otimes \mathbb{I}_{\mathrm{A}} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \hat{\phi}_{\mathrm{A}}(x,t) \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \mathbb{I}_{\mathrm{A}} \otimes \hat{\phi}_{\mathrm{B}}(x,t)$ $t_{0} \rightarrow -\infty \text{ and poles analysis}$ $\hat{\phi}^{\infty}(x,t) = \hat{\phi}_{\mathrm{IC}}^{\infty}(x,t) \otimes \mathbb{I}_{\mathrm{A}} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \hat{\phi}_{\mathrm{A}}^{\infty} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \mathbb{I}_{\mathrm{A}} \otimes \hat{\phi}_{\mathrm{B}}^{\infty}(x,t)$ Depends on the material configuration in the free field modes to the presence of the bodies

$$\mathcal{L} = \mathcal{L}_{\phi} + \mathcal{L}_{S} + \mathcal{L}_{\phi-S} + \mathcal{L}_{B} + \mathcal{L}_{S-B}$$

= $\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + 4\pi \eta \left(\frac{1}{2} m \dot{r}_{x}^{2}(t) - \frac{1}{2} m \omega_{0}^{2} r_{x}^{2}(t)\right) + 4\pi \eta e \phi(x, t) \dot{r}_{x}(t)$

$$+4\pi\eta \sum_{n} \left(\frac{1}{2}m_{n}\dot{q}_{n,x}^{2}(t) - \frac{1}{2}m_{n}\omega_{n}^{2}q_{n,x}^{2}(t)\right) - 4\pi\eta \sum_{n}\lambda_{n}q_{n,x}(t)r_{x}(t)$$

- Interactions begin at t = t₀
- For $t < t_0$, each part is free
- Canonical quantization (Heisenberg equations)
- Composite Hilbert space: $H = H_{\phi} \otimes H_{A} \otimes H_{B}$
- Uncorrelated initial state:

solution

 $\hat{\rho}(t_0) = \hat{\rho}_{\rm IC}(t_0) \otimes \hat{\rho}_{\rm A}(t_0) \otimes \hat{\rho}_{\rm B}$

• Effective field equation (1+1):

 $\hat{\phi}(\boldsymbol{x},t) = \hat{\phi}_{\mathrm{IC}}(\boldsymbol{x},t) \otimes \mathbb{I}_{\mathrm{A}} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \hat{\phi}_{\mathrm{A}}(\boldsymbol{x},t) \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \mathbb{I}_{\mathrm{A}} \otimes \hat{\phi}_{\mathrm{B}}(\boldsymbol{x},t)$

 $t_0 \rightarrow -\infty$ and poles analysis

 $\hat{\phi}^{\infty}(x,t) = \underbrace{\hat{\phi}_{\rm IC}^{\infty}(x,t)}_{\rm IC} \otimes \mathbb{I}_{\rm A} \otimes \mathbb{I}_{\rm B} + \mathbb{I}_{\phi} \otimes \hat{\phi}_{\rm A}^{\infty} \otimes \mathbb{I}_{\rm B} + \mathbb{I}_{\phi} \otimes \hat{\phi}_{\rm B}^{\infty}(x,t)$ $\underbrace{\int dk \left[\frac{1}{\omega_k}\right]^{\frac{1}{2}}}_{\rm Homogeneous} \hat{a}_k(-\infty) e^{-i\omega_k t} \Phi_k(x) + \hat{a}_k^{\dagger}(-\infty) e^{i\omega_k t} (\Phi_k(x))^*]$ Homogeneous

$$\mathcal{L} = \mathcal{L}_{\phi} + \mathcal{L}_{S} + \mathcal{L}_{\phi-S} + \mathcal{L}_{B} + \mathcal{L}_{S-B}$$

= $\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi + 4\pi\eta \left(\frac{1}{2}m\dot{r}_{x}^{2}(t) - \frac{1}{2}m\omega_{0}^{2}r_{x}^{2}(t)\right) + 4\pi\eta e\phi(x,t)\dot{r}_{x}(t)$

$$+4\pi\eta \sum_{n} \left(\frac{1}{2}m_{n}\dot{q}_{n,x}^{2}(t) - \frac{1}{2}m_{n}\omega_{n}^{2}q_{n,x}^{2}(t)\right) - 4\pi\eta \sum_{n}\lambda_{n}q_{n,x}(t)r_{x}(t)$$

- Interactions begin at t = t₀
- For $t < t_0$, each part is free
- Canonical quantization (Heisenberg equations)
- Composite Hilbert space: $H = H_{\phi} \otimes H_{A} \otimes H_{B}$
- Uncorrelated initial state:

 $\hat{\rho}(t_0) = \hat{\rho}_{\rm IC}(t_0) \otimes \hat{\rho}_{\rm A}(t_0) \otimes \hat{\rho}_{\rm B}$

• Effective field equation (1+1):

 $\hat{\phi}(x,t) = \hat{\phi}_{\mathrm{IC}}(x,t) \otimes \mathbb{I}_{\mathrm{A}} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \hat{\phi}_{\mathrm{A}}(x,t) \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \mathbb{I}_{\mathrm{A}} \otimes \hat{\phi}_{\mathrm{B}}(x,t)$ $t_{0} \rightarrow -\infty \text{ and poles analysis}$ $\hat{\phi}^{\infty}(x,t) = \hat{\phi}_{\mathrm{IC}}^{\infty}(x,t) \otimes \mathbb{I}_{\mathrm{A}} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \hat{\phi}_{\mathrm{A}}^{\infty} \otimes \mathbb{I}_{\mathrm{B}} + \mathbb{I}_{\phi} \otimes \mathbb{I}_{\mathrm{A}} \otimes \hat{\phi}_{\mathrm{B}}^{\infty}(x,t)$ $\bigoplus \text{ Defined in the free field Hilbert space}$ Homogeneous solution

$$\mathcal{L} = \mathcal{L}_{\phi} + \mathcal{L}_{S} + \mathcal{L}_{\phi-S} + \mathcal{L}_{B} + \mathcal{L}_{S-B}$$
$$= \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + 4\pi \eta \left(\frac{1}{2} m \dot{r}_{x}^{2}(t) - \frac{1}{2} m \omega_{0}^{2} r_{x}^{2}(t)\right) + 4\pi \eta e \phi(x, t) \dot{r}_{x}(t)$$

$$+4\pi\eta\sum_{n}\left(\frac{1}{2}m_{n}\dot{q}_{n,x}^{2}(t)-\frac{1}{2}m_{n}\omega_{n}^{2}q_{n,x}^{2}(t)\right)-4\pi\eta\sum_{n}\lambda_{n}q_{n,x}(t)r_{x}(t)$$

- Interactions begin at t = t₀
- For $t < t_0$, each part is free
- Canonical quantization (Heisenberg equations)
- Composite Hilbert space: $H = H_{\phi} \otimes H_{A} \otimes H_{B}$
- Uncorrelated initial state:

 $\hat{\rho}(t_0) = \hat{\rho}_{\rm IC}(t_0) \otimes \hat{\rho}_{\rm A}(t_0) \otimes \hat{\rho}_{\rm B}$

• Effective field equation (1+1):

- Each part of the system with undamped dynamics contribute
- Non-thermal initial states can be considered for each part, defined at the initial time, when all the parts are not interacting

Two plates configuration

Initial scenario:

• 1+1

• Initial state field: Modes traveling from right to left (k<0) $\langle \hat{a}_k(-\infty)\hat{a}_{k'}(-\infty) \rangle_{\phi} = 0$ Modes traveling from left to right (k>0) $\langle \hat{a}_k^{\dagger}(-\infty)\hat{a}_{k'}(-\infty) \rangle_{\phi} = [\Theta(k) \underbrace{N_{\phi,L}(\omega_k)} + \Theta(-k) \underbrace{N_{\phi,R}(\omega_k)}] \delta(k-k')$

Two plates configuration

Retarded Green function $\mathfrak{G}_{\text{Ret}}$

- 1+1
- Initial state field:

 $\left\langle \widehat{a}_{k}(-\infty)\widehat{a}_{k'}(-\infty) \right\rangle_{\phi} = 0$ $\left\langle \widehat{a}_{k}^{\dagger}(-\infty)\widehat{a}_{k'}(-\infty) \right\rangle_{\phi} = \left[\Theta(k) \ N_{\phi,\mathrm{L}}(\omega_{k}) + \Theta(-k) \ N_{\phi,\mathrm{R}}(\omega_{k}) \right] \delta(k-k')$

Two plates configuration

 $F_{\rm C} = \left(\widehat{T}_{xx}^{\rm Free}\right) - \langle \widehat{T}_{xx}^{\rm IC,\infty} \rangle_{\phi}^{\rm Int}[a, d_{\rm L}, d_{\rm R}, \beta_{\phi,{\rm L}}, \beta_{\phi,{\rm R}}] - \langle \widehat{T}_{xx}^{\rm B,\infty} \rangle_{\rm B}^{\rm Int}[a, d_{\rm L}, d_{\rm R}, \beta_{\rm B,{\rm L}}, \beta_{\rm B,{\rm R}}]$

 $Q_{\infty} \equiv \left\langle \widehat{S}_{x}^{\infty} \right\rangle = -\left\langle \widehat{T}_{x0}^{\infty} \right\rangle = Q_{\infty}^{\mathrm{IC}}(a, d_{\mathrm{L}}, d_{\mathrm{R}}, \beta_{\phi, \mathrm{L}}, \beta_{\phi, \mathrm{R}}) + Q_{\infty}^{\mathrm{B}}(a, d_{\mathrm{L}}, d_{\mathrm{R}}, \beta_{\mathrm{B, L}}, \beta_{\mathrm{B, R}})$

• Initial state field:

 $\left\langle \widehat{a}_{k}(-\infty)\widehat{a}_{k'}(-\infty) \right\rangle_{\phi} = 0$ $\left\langle \widehat{a}_{k}^{\dagger}(-\infty)\widehat{a}_{k'}(-\infty) \right\rangle_{\phi} = \left[\Theta(k) \ N_{\phi,\mathrm{L}}(\omega_{k}) + \Theta(-k) \ N_{\phi,\mathrm{R}}(\omega_{k}) \right] \delta(k-k')$

 $F_{\rm C} = \langle \widehat{T}_{xx}^{\rm Free} \rangle_{\phi} - \langle \widehat{T}_{xx}^{{\rm IC},\infty} \rangle_{\phi}^{\rm Int} - \langle \widehat{T}_{xx}^{{\rm B},\infty} \rangle_{\rm B}^{\rm Int}$

 $\operatorname{Im}(n_i) \equiv 0$

		Reg. IC	IC	В	F _{TOTAL}
NO dissipation	Eq.	≠ 0 Eq.	≠0	0	Lifshitz Finite
	Non-Eq.	≠ 0 Non-Eq	≠ 0	0	Non-Eq. Finite

		Reg. IC	IC	В	F _{TOTAL}
NO dissipation	Eq.	≠ 0 Eq.	≠ 0		Lifshitz Finite
	Non-Eq.	≠ 0 Non-Eq	≠0	0	Non-Eq. Finite
$d_{\rm L,R} \rightarrow + \infty$	Eq.	≠0 Eq.	0	≠0	Lifshitz
	Non-Eq.	≠ 0 Non-Eq.	0	≠0	Non-Eq. Lifshitz

 $F_{\rm C} = \langle \widehat{T}_{xx}^{\rm Free} \rangle_{\phi} - \langle \widehat{T}_{xx}^{{\rm IC},\infty} \rangle_{\phi}^{\rm Int} - \langle \widehat{T}_{xx}^{{\rm B},\infty} \rangle_{\rm B}^{\rm Int}$

 $F_{\rm C} = \langle \widehat{T}_{xx}^{\rm Free} \rangle_{\phi} - \langle \widehat{T}_{xx}^{{\rm IC},\infty} \rangle_{\phi}^{\rm Int} - \langle \widehat{T}_{xx}^{{\rm B},\infty} \rangle_{\rm B}^{\rm Int}$

		Reg. IC	IC	В	F _{TOTAL}
NO dissipation	Eq.	≠0 Eq.	≠0		Lifshitz Finite
	Non-Eq.	≠ 0 Non-Eq	≠0	Non-Eq. Finite	
$d_{\rm L,R} \rightarrow + \infty$	Eq.	≠ 0 Eq.	0	≠0	Lifshitz
	Non-Eq.	≠0 Non-Eq.	U	≠0	Non-Eq. Lifshitz
d _{L,R}	Non-Eq.	≠ 0 Non-Eq.	≠0	≠0	

		Q _{IC}	Q _B	Q _{TOTAL}
Eq.	$T_{\rm B,j} = T_{\phi,k}$	≠ 0	≠ 0	0

$$Q_{\infty} \equiv \left\langle \widehat{S}_{x}^{\infty} \right\rangle = -\left\langle \widehat{T}_{x0}^{\infty} \right\rangle = Q_{\infty}^{\mathrm{IC}}(a, d_{\mathrm{L}}, d_{\mathrm{R}}, \beta_{\phi, \mathrm{L}}, \beta_{\phi, \mathrm{R}}) + Q_{\infty}^{\mathrm{B}}(a, d_{\mathrm{L}}, d_{\mathrm{R}}, \beta_{\mathrm{B}, \mathrm{L}}, \beta_{\mathrm{B}, \mathrm{R}})$$

		Q _{IC}	Q _B	Q _{TOTAL}
Eq.	$T_{\mathrm{B,j}} = T_{\phi,\mathrm{k}}$	≠ 0	≠0	0
d = 0		≠0	0	≠ 0 <mark>(L)</mark>

$$Q_{\infty} \equiv \left\langle \widehat{S}_{x}^{\infty} \right\rangle = -\left\langle \widehat{T}_{x0}^{\infty} \right\rangle = Q_{\infty}^{\mathrm{IC}}(a, d_{\mathrm{L}}, d_{\mathrm{R}}, \beta_{\phi, \mathrm{L}}, \beta_{\phi, \mathrm{R}}) + Q_{\infty}^{\mathrm{B}}(a, d_{\mathrm{L}}, d_{\mathrm{R}}, \beta_{\mathrm{B}, \mathrm{L}}, \beta_{\mathrm{B}, \mathrm{R}})$$

$$\left< \widehat{S}_x^{\text{Free}} \right>_{\phi} \neq 0$$
(\constraints - \constraints)

		Q _{IC}	Q _B	Q _{TOTAL}
Eq.	$T_{\mathrm{B,j}} = T_{\phi,\mathrm{k}}$	≠ 0	≠ 0	0
d = 0		≠0	0	≠ 0 <mark>(L)</mark>
NO diss.		≠0	0	≠ 0 (LC)

$$Q_{\infty} \equiv \left\langle \widehat{S}_{x}^{\infty} \right\rangle = -\left\langle \widehat{T}_{x0}^{\infty} \right\rangle = Q_{\infty}^{\mathrm{IC}}(a, d_{\mathrm{L}}, d_{\mathrm{R}}, \beta_{\phi, \mathrm{L}}, \beta_{\phi, \mathrm{R}}) + Q_{\infty}^{\mathrm{B}}(a, d_{\mathrm{L}}, d_{\mathrm{R}}, \beta_{\mathrm{B}, \mathrm{L}}, \beta_{\mathrm{B}, \mathrm{R}})$$

$$\operatorname{Im}(n_i) \equiv 0$$

For which situations, Q_{TOTAL} is Landauer-like?

		Q _{IC}	Q _B	Q _{TOTAL}
Eq.	$T_{\mathrm{B,j}} = T_{\phi,\mathrm{k}}$	≠ 0	≠ 0	0
d = 0		≠0	0	≠ 0 <mark>(L)</mark>
NO diss.		≠ 0	0	≠ 0 (LC)
	$T_{\rm B,L} = T_{\rm B,R}$	≠ 0	0	≠ 0 <mark>(L)</mark>
Identical				

$$Q_{\infty} \equiv \left\langle \widehat{S}_{x}^{\infty} \right\rangle = -\left\langle \widehat{T}_{x0}^{\infty} \right\rangle = Q_{\infty}^{\mathrm{IC}}(a, d_{\mathrm{L}}, d_{\mathrm{R}}, \beta_{\phi, \mathrm{L}}, \beta_{\phi, \mathrm{R}}) + Q_{\infty}^{\mathrm{B}}(a, d_{\mathrm{L}}, d_{\mathrm{R}}, \beta_{\mathrm{B}, \mathrm{L}}, \beta_{\mathrm{B}, \mathrm{R}})$$

 $n_{\rm L} = n_{\rm R}$

		Q _{IC}	Q _B	Q _{TOTAL}
Eq.	$T_{\mathrm{B,j}} = T_{\phi,\mathrm{k}}$	≠ 0	≠ 0	0
d = 0		≠0	0	≠ 0 <mark>(L)</mark>
NO diss.		≠0	0	≠ 0 (LC)
	$T_{\rm B,L} = T_{\rm B,R}$	≠ 0	0	≠ 0 <mark>(L)</mark>
Identical	$T_{\phi,L} = T_{\phi,R}$	0	≠0	≠ 0 <mark>(L)</mark>

$$Q_{\infty} \equiv \left\langle \widehat{S}_{x}^{\infty} \right\rangle = -\left\langle \widehat{T}_{x0}^{\infty} \right\rangle = Q_{\infty}^{\mathrm{IC}}(a, d_{\mathrm{L}}, d_{\mathrm{R}}, \beta_{\phi, \mathrm{L}}, \beta_{\phi, \mathrm{R}}) + Q_{\infty}^{\mathrm{B}}(a, d_{\mathrm{L}}, d_{\mathrm{R}}, \beta_{\mathrm{B}, \mathrm{L}}, \beta_{\mathrm{B}, \mathrm{R}})$$

 $n_{\rm L} = n_{\rm R}$

		Q _{IC}	Q _B	Q _{TOTAL}
Eq.	$T_{\mathrm{B,j}} = T_{\phi,\mathrm{k}}$	≠ 0	≠ 0	0
d = 0		≠0	0	≠ 0 <mark>(L)</mark>
NO diss.		≠ 0	0	≠ 0 (LC)
	$T_{\rm B,L} = T_{\rm B,R}$	≠ 0	0	≠ 0 <mark>(L)</mark>
Identical	$T_{\phi,L} = T_{\phi,R}$	0	≠ 0	≠ 0 <mark>(L)</mark>
	$T_{\mathrm{B,j}} \neq T_{\phi,\mathrm{k}}$	≠ 0	≠ 0	≠ 0 (LC)

$$Q_{\infty} \equiv \left\langle \widehat{S}_{x}^{\infty} \right\rangle = -\left\langle \widehat{T}_{x0}^{\infty} \right\rangle = Q_{\infty}^{\mathrm{IC}}(a, d_{\mathrm{L}}, d_{\mathrm{R}}, \beta_{\phi, \mathrm{L}}, \beta_{\phi, \mathrm{R}}) + Q_{\infty}^{\mathrm{B}}(a, d_{\mathrm{L}}, d_{\mathrm{R}}, \beta_{\mathrm{B}, \mathrm{L}}, \beta_{\mathrm{B}, \mathrm{R}})$$

 $n_{\rm L} = n_{\rm R}$

		Q _{IC}	Q _B	Q _{TOTAL}
Eq.	$T_{\mathrm{B,j}} = T_{\phi,\mathrm{k}}$	≠ 0	≠ 0	0
d = 0		≠0	0	≠ 0 <mark>(L)</mark>
NO diss.		≠0	0	≠ 0 (LC)
	$T_{\rm B,L} = T_{\rm B,R}$	≠ 0	0	≠ 0 <mark>(L)</mark>
Identical	$T_{\phi,L} = T_{\phi,R}$	0	≠ 0	≠ 0 <mark>(L)</mark>
	$T_{\rm B,j} \neq T_{\phi,\rm k}$	≠ 0	≠0	≠ 0 (LC)
$d \rightarrow + \infty$		0	≠0	≠ 0 <mark>(L)</mark>

$$Q_{\infty} \equiv \left\langle \widehat{S}_{x}^{\infty} \right\rangle = -\left\langle \widehat{T}_{x0}^{\infty} \right\rangle = Q_{\infty}^{\mathrm{IC}}(a, d_{\mathrm{L}}, d_{\mathrm{R}}, \beta_{\phi, \mathrm{L}}, \beta_{\phi, \mathrm{R}}) + Q_{\infty}^{\mathrm{B}}(a, d_{\mathrm{L}}, d_{\mathrm{R}}, \beta_{\mathrm{B}, \mathrm{L}}, \beta_{\mathrm{B}, \mathrm{R}})$$

		Q _{IC}	Q _B	Q _{TOTAL}
Eq.	$T_{\mathrm{B,j}} = T_{\phi,\mathrm{k}}$	≠ 0	≠ 0	0
d = 0		≠0	0	≠ 0 <mark>(L)</mark>
NO diss.		≠ 0	0	≠ 0 (LC)
	$T_{\rm B,L} = T_{\rm B,R}$	≠ 0	0	≠ 0 <mark>(L)</mark>
Identical	$T_{\phi,L} = T_{\phi,R}$	0	≠ 0	≠ 0 <mark>(L)</mark>
	$T_{\mathrm{B,j}} \neq T_{\phi,\mathrm{k}}$	≠ 0	≠0	≠ 0 (LC)
$d \rightarrow + \infty$		0	≠0	≠ 0 <mark>(L)</mark>
General		≠ 0	≠0	≠ 0

$$Q_{\infty} \equiv \left\langle \widehat{S}_{x}^{\infty} \right\rangle = -\left\langle \widehat{T}_{x0}^{\infty} \right\rangle = Q_{\infty}^{\mathrm{IC}}(a, d_{\mathrm{L}}, d_{\mathrm{R}}, \beta_{\phi, \mathrm{L}}, \beta_{\phi, \mathrm{R}}) + Q_{\infty}^{\mathrm{B}}(a, d_{\mathrm{L}}, d_{\mathrm{R}}, \beta_{\mathrm{B}, \mathrm{L}}, \beta_{\mathrm{B}, \mathrm{R}})$$

Identical plates:

- Same (dissipative) material
- Same thickness d
- 2 "THERMAL SIDES"

Identical plates:

- Same (dissipative) material
- Same thickness d
- 2 "THERMAL SIDES"

Convergence $d \approx 1$ cm = 10^5 a(greater than for F)

Identical plates:

- Same (dissipative) material
- Same thickness d
- 2 "THERMAL SIDES"
- MINIMUM

Competition of contributions (SHIELDING vs. RADIATION)

Identical plates:

- Same (dissipative) material
- Same thickness d
- 2 "THERMAL SIDES"
- MINIMUM (5-10 %)

d d

Competition of contributions (SHIELDING vs. RADIATION)

Can this attenuation be stronger???

Identical plates:

- Same (dissipative) material
- Same thickness d
- 2 "THERMAL SIDES"
- MINIMUM

d d

Competition of contributions (SHIELDING vs. RADIATION)

Can this attenuation be stronger??? YES. Increasing the reflectivity. (enhance shielding)

YES.

Identical plates:

- Same (dissipative) material
- Same thickness d ٠
- 2 "THERMAL SIDES" ٠
- MINIMUM (5-60 %) •

 $T_{\phi R} = T_R = 300 K^{\circ}$ Total Heat *Q/Q(d* → 0) 500 570 570 0.75 Can this attenuation be stronger??? 0.5 Increasing the reflectivity. (enhance shielding)

d

gap

d

 $\omega_P = 10/a$

 $\omega_P = 20/a$ $\omega_P = 30/a$ $\omega_P = 40/a$

10³

0

10

Competition of contributions

(SHIELDING vs. RADIATION)

Attenuation

5-60%

≈ Al, Pt

10⁵

Plate width *d* [*nm*]

 $T_{\phi L} = T_L = 600 K^{\circ}$

gap = 100nm

107

Identical plates:

- Same (dissipative) material
- Same thickness d
- Crossed fluxes

1.0

 $Q_{\rm IC} < 0 < Q_{\rm B}$ $Q_{\rm IC} > 0 > Q_{\rm B}$

100 nm gap

0 flux between the plates in NON-Eq. scenario

d

d

gap

Conclusions

- We developed a full first-principles quantum approach based on a canonical quantization and open quantum systems frameworks.
- We deduced the steady situation and describe the physics of each contribution to the field operator.
- We applied for the two finite width plates and studied the Casimir forces and heat fluxes in different nonequilibrium scenarios.
- For the force, we reproduced all the known-results, giving also a consistent way to reobtain the non-equilibrium half-spaces result as a limiting case of the non-equilibrium finite width case.
- For the heat flux, we showed that Landauer formula is obtained in different situations but it is not valid in every situation in the two plates configuration.
- We showed that the scales of convergence of the force and the heat flux as functions of the thickness are different.
- For the "two thermal sides" scenario, we showed that a minimum in the heat flux exists, which could result in an attenuation of 60% for some materials.
- We showed that 0 heat flux between the plates can be obtained also in non-equilibrium scenarios.

Refs: 1 – AERL, Phys. Rev. D 95, 025009 (2017).

2 – AERL, Poggi P. M., Lombardo F. C., Giannini V., arXiv:1709.09277 (Oct2017). Submitted to PRA.

Refs: 1 – AERL, Phys. Rev. D 95, 025009 (2017).

2 – AERL, Poggi P. M., Lombardo F. C., Giannini V., arXiv:1709.09277 (Oct2017). Submitted to PRA.