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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form
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so, in principle, each part can be in any state.
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can be obtained. Solving the respective equations for the
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
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Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
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so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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• Interactions	begin	at	t =	t0
• For	t <	t0,	each	part	is	free
• Canonical	quantization	(Heisenberg	

equations)
• Composite	Hilbert	space:
• Uncorrelated	initial	state:

• Effective	field	equation (1+1):

of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material

ADRIÁN E. RUBIO LÓPEZ PHYSICAL REVIEW D 95, 025009 (2017)

025009-4

of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2
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; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:

ϕ̂ðx;t0Þ¼
Z

dk
!
1

ωk

"1
2

ðâkðt0Þeiðkx−ωkt0Þ þ â†kðt0Þe−iðkx−ωkt0ÞÞ;

ð4Þ

_̂ϕðx; t0Þ ¼
Z

dk
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"1
2

iωkð−âkðt0Þeiðkx−ωkt0Þ

þ â†kðt0Þe−iðkx−ωkt0ÞÞ; ð5Þ

where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads

□GRet þ
∂2

∂t2
#Z

t

0
χxðt − τÞGRetðx; x0; τÞdτ

$
¼ 0; ð6Þ

subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as

ϕ̂ðx; tÞ ¼ −
Z

dx0 _GRetðx; x0; t − t0Þϕ̂ðx0; t0Þ −
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t0
dτ _G2ðt0 − τÞ F̂x0ðτ − t0Þ

m
; ð8Þ

which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
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where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads
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which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ
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IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:
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where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads
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GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
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which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ
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m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$
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#
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$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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• Interactions	begin	at	t =	t0
• For	t <	t0,	each	part	is	free
• Canonical	quantization	(Heisenberg	

equations)
• Composite	Hilbert	space:
• Uncorrelated	initial	state:

• Effective	field	equation (1+1):

of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη

!
1

2
m_r2xðtÞ −

1

2
mω2

0r
2
xðtÞ

"

þ 4πηeϕðx; tÞ_rxðtÞ

þ 4πη
X

n

!
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2
mn _q2n;xðtÞ −

1

2
mnω2

nq2n;xðtÞ
"

− 4πη
X

n

λnqn;xðtÞrxðtÞ; ð1Þ

where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:

ϕ̂ðx;t0Þ¼
Z

dk
!
1

ωk

"1
2

ðâkðt0Þeiðkx−ωkt0Þ þ â†kðt0Þe−iðkx−ωkt0ÞÞ;

ð4Þ

_̂ϕðx; t0Þ ¼
Z

dk
!
1

ωk

"1
2

iωkð−âkðt0Þeiðkx−ωkt0Þ

þ â†kðt0Þe−iðkx−ωkt0ÞÞ; ð5Þ

where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads

□GRet þ
∂2

∂t2
#Z

t

0
χxðt − τÞGRetðx; x0; τÞdτ

$
¼ 0; ð6Þ

subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as

ϕ̂ðx; tÞ ¼ −
Z

dx0 _GRetðx; x0; t − t0Þϕ̂ðx0; t0Þ −
Z

dx0GRetðx; x0; t − t0Þ
∂ϕ̂
∂t ðx

0; t0Þ

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

#
_G1ðt0 − t0Þr̂x0ðt0Þ þ _G2ðt0 − t0Þ

p̂x0ðt0Þ
m

$

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

Z
t0

t0
dτ _G2ðt0 − τÞ F̂x0ðτ − t0Þ

m
; ð8Þ

which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη

!
1

2
m_r2xðtÞ −

1

2
mω2

0r
2
xðtÞ

"

þ 4πηeϕðx; tÞ_rxðtÞ

þ 4πη
X

n

!
1

2
mn _q2n;xðtÞ −

1

2
mnω2

nq2n;xðtÞ
"

− 4πη
X

n

λnqn;xðtÞrxðtÞ; ð1Þ

where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη

!
1

2
m_r2xðtÞ −
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mω2
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2
xðtÞ

"
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2
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"
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X

n

λnqn;xðtÞrxðtÞ; ð1Þ

where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
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t
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
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$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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• Interactions	begin	at	t =	t0
• For	t <	t0,	each	part	is	free
• Canonical	quantization	(Heisenberg	

equations)
• Composite	Hilbert	space:
• Uncorrelated	initial	state:

• Effective	field	equation (1+1):

of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ
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¼ 4πηeCðxÞ
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$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2
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#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ
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; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:

ϕ̂ðx;t0Þ¼
Z

dk
!
1

ωk

"1
2

ðâkðt0Þeiðkx−ωkt0Þ þ â†kðt0Þe−iðkx−ωkt0ÞÞ;

ð4Þ

_̂ϕðx; t0Þ ¼
Z

dk
!
1

ωk

"1
2

iωkð−âkðt0Þeiðkx−ωkt0Þ

þ â†kðt0Þe−iðkx−ωkt0ÞÞ; ð5Þ

where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads

□GRet þ
∂2

∂t2
#Z

t

0
χxðt − τÞGRetðx; x0; τÞdτ

$
¼ 0; ð6Þ

subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as

ϕ̂ðx; tÞ ¼ −
Z

dx0 _GRetðx; x0; t − t0Þϕ̂ðx0; t0Þ −
Z

dx0GRetðx; x0; t − t0Þ
∂ϕ̂
∂t ðx

0; t0Þ

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

#
_G1ðt0 − t0Þr̂x0ðt0Þ þ _G2ðt0 − t0Þ

p̂x0ðt0Þ
m

$

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

Z
t0

t0
dτ _G2ðt0 − τÞ F̂x0ðτ − t0Þ

m
; ð8Þ

which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:
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where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads
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subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as
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; ð8Þ

which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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It is also clear that the presence of the matter distribution
C means that the spatial integration is carried out over the
regions occupied by the material bodies, which in fact can
be inhomogeneous since the local properties of the material
can change in each point of space. This is why the
integration over x0 contains every factor in the rhs, to
eventually consider inhomogeneous materials. This last
expression also has the time and space dependence sug-
gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time
limit F̂∞

x0 ðωÞ contains a limit on t0 that seems to be
oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.

IV. CONTRIBUTIONS TO THE
ENERGY-MOMENTUM TENSOR

Finally, we have determined the long-time expressions
for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads

ϕ̂ðx; tÞ → ϕ̂∞ðx; tÞ ¼ ϕ̂∞
ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂∞

A ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂∞
B ðx; tÞ; ð19Þ

where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
situation ϕ̂∞

A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
cations on the calculation of the energy-momentum tensor
expectation values and forces, as we shall see, so the results
of Refs. [41,43] are correct. As we certainly have
∂μϕ̂

∞
A ≡ 0, this implies that ∂μϕ̂

∞ ¼ ∂μϕ̂
∞
IC ⊗ IA ⊗ IBþ

Iϕ ⊗ IA ⊗ ∂μϕ̂
∞
B . It is worth noting that the derivative of

the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
metrized products. Therefore, for the components of the
energy-momentum tensor operator we have

T̂μνðxσ1; t0Þ≡
!
δμγδνα −

1

2
ημνηγα

"
1

2
ð∂γϕ̂ðxσ1Þ∂αϕ̂ðxσ1Þ

þ ∂αϕ̂ðxσ1Þ∂γϕ̂ðxσ1ÞÞ; ð20Þ

where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:

T̂μνðxσ1; t0Þ → T̂∞
μνðxσ1Þ ¼ T̂IC;∞

μν ðxσ1Þ ⊗ IA ⊗ IB þ Iϕ ⊗ IA ⊗ T̂B;∞
μν ðxσ1Þ

þ
!
δμγδνα −

1

2
ημνηγα

"
1

2
½∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ þ ∂αϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ

þ ∂αϕ̂
∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ þ ∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ&: ð21Þ

As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,
h∂γϕ̂

∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞

μν ðxσ1Þiϕ þ hT̂B;∞
μν ðxσ1ÞiB; ð22Þ

where h…i on the lhs is the quantum expectation value
over the total Hilbert space H, while h…iϕ and h…iB
on the rhs are the quantum expectation values on the
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be inhomogeneous since the local properties of the material
can change in each point of space. This is why the
integration over x0 contains every factor in the rhs, to
eventually consider inhomogeneous materials. This last
expression also has the time and space dependence sug-
gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time
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x0 ðωÞ contains a limit on t0 that seems to be
oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.
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Finally, we have determined the long-time expressions
for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads
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where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
situation ϕ̂∞

A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
cations on the calculation of the energy-momentum tensor
expectation values and forces, as we shall see, so the results
of Refs. [41,43] are correct. As we certainly have
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A ≡ 0, this implies that ∂μϕ̂

∞ ¼ ∂μϕ̂
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B . It is worth noting that the derivative of

the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
metrized products. Therefore, for the components of the
energy-momentum tensor operator we have
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1

2
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1
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ð∂γϕ̂ðxσ1Þ∂αϕ̂ðxσ1Þ

þ ∂αϕ̂ðxσ1Þ∂γϕ̂ðxσ1ÞÞ; ð20Þ

where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:

T̂μνðxσ1; t0Þ → T̂∞
μνðxσ1Þ ¼ T̂IC;∞
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∞
B ðxσ1Þ&: ð21Þ

As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,
h∂γϕ̂

∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞

μν ðxσ1Þiϕ þ hT̂B;∞
μν ðxσ1ÞiB; ð22Þ

where h…i on the lhs is the quantum expectation value
over the total Hilbert space H, while h…iϕ and h…iB
on the rhs are the quantum expectation values on the
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη

!
1

2
m_r2xðtÞ −

1

2
mω2

0r
2
xðtÞ

"

þ 4πηeϕðx; tÞ_rxðtÞ

þ 4πη
X

n

!
1

2
mn _q2n;xðtÞ −

1

2
mnω2

nq2n;xðtÞ
"

− 4πη
X

n

λnqn;xðtÞrxðtÞ; ð1Þ

where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1
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∂μϕ∂μϕþ 4πη
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mω2

0r
2
xðtÞ

"

þ 4πηeϕðx; tÞ_rxðtÞ

þ 4πη
X

n

!
1

2
mn _q2n;xðtÞ −

1

2
mnω2

nq2n;xðtÞ
"

− 4πη
X

n

λnqn;xðtÞrxðtÞ; ð1Þ

where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z
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$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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general expressions for each contribution to the force. In
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while in Appendix F we show how our result recovers the
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paradigmatic example of quantum Brownian motion
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The model is a simplified version of the HB model,
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scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
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represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη

!
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2
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ
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$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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• Interactions	begin	at	t =	t0
• For	t <	t0,	each	part	is	free
• Canonical	quantization	(Heisenberg	

equations)
• Composite	Hilbert	space:
• Uncorrelated	initial	state:

• Effective	field	equation (1+1):

of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2
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¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
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t0
dτχxðt − τÞϕ̂ðx; τÞ

$
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; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:

ϕ̂ðx;t0Þ¼
Z

dk
!
1

ωk

"1
2

ðâkðt0Þeiðkx−ωkt0Þ þ â†kðt0Þe−iðkx−ωkt0ÞÞ;

ð4Þ

_̂ϕðx; t0Þ ¼
Z

dk
!
1

ωk

"1
2

iωkð−âkðt0Þeiðkx−ωkt0Þ

þ â†kðt0Þe−iðkx−ωkt0ÞÞ; ð5Þ

where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads

□GRet þ
∂2

∂t2
#Z

t

0
χxðt − τÞGRetðx; x0; τÞdτ

$
¼ 0; ð6Þ

subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as

ϕ̂ðx; tÞ ¼ −
Z

dx0 _GRetðx; x0; t − t0Þϕ̂ðx0; t0Þ −
Z

dx0GRetðx; x0; t − t0Þ
∂ϕ̂
∂t ðx

0; t0Þ

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

#
_G1ðt0 − t0Þr̂x0ðt0Þ þ _G2ðt0 − t0Þ

p̂x0ðt0Þ
m

$

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

Z
t0

t0
dτ _G2ðt0 − τÞ F̂x0ðτ − t0Þ

m
; ð8Þ

which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:
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where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads
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subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as
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which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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It is also clear that the presence of the matter distribution
C means that the spatial integration is carried out over the
regions occupied by the material bodies, which in fact can
be inhomogeneous since the local properties of the material
can change in each point of space. This is why the
integration over x0 contains every factor in the rhs, to
eventually consider inhomogeneous materials. This last
expression also has the time and space dependence sug-
gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time
limit F̂∞

x0 ðωÞ contains a limit on t0 that seems to be
oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.

IV. CONTRIBUTIONS TO THE
ENERGY-MOMENTUM TENSOR

Finally, we have determined the long-time expressions
for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads

ϕ̂ðx; tÞ → ϕ̂∞ðx; tÞ ¼ ϕ̂∞
ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂∞

A ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂∞
B ðx; tÞ; ð19Þ

where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
situation ϕ̂∞

A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
cations on the calculation of the energy-momentum tensor
expectation values and forces, as we shall see, so the results
of Refs. [41,43] are correct. As we certainly have
∂μϕ̂

∞
A ≡ 0, this implies that ∂μϕ̂

∞ ¼ ∂μϕ̂
∞
IC ⊗ IA ⊗ IBþ

Iϕ ⊗ IA ⊗ ∂μϕ̂
∞
B . It is worth noting that the derivative of

the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
metrized products. Therefore, for the components of the
energy-momentum tensor operator we have

T̂μνðxσ1; t0Þ≡
!
δμγδνα −

1

2
ημνηγα

"
1

2
ð∂γϕ̂ðxσ1Þ∂αϕ̂ðxσ1Þ

þ ∂αϕ̂ðxσ1Þ∂γϕ̂ðxσ1ÞÞ; ð20Þ

where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:

T̂μνðxσ1; t0Þ → T̂∞
μνðxσ1Þ ¼ T̂IC;∞

μν ðxσ1Þ ⊗ IA ⊗ IB þ Iϕ ⊗ IA ⊗ T̂B;∞
μν ðxσ1Þ

þ
!
δμγδνα −

1

2
ημνηγα

"
1

2
½∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ þ ∂αϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ

þ ∂αϕ̂
∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ þ ∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ&: ð21Þ

As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,
h∂γϕ̂

∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞

μν ðxσ1Þiϕ þ hT̂B;∞
μν ðxσ1ÞiB; ð22Þ

where h…i on the lhs is the quantum expectation value
over the total Hilbert space H, while h…iϕ and h…iB
on the rhs are the quantum expectation values on the
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It is also clear that the presence of the matter distribution
C means that the spatial integration is carried out over the
regions occupied by the material bodies, which in fact can
be inhomogeneous since the local properties of the material
can change in each point of space. This is why the
integration over x0 contains every factor in the rhs, to
eventually consider inhomogeneous materials. This last
expression also has the time and space dependence sug-
gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time
limit F̂∞

x0 ðωÞ contains a limit on t0 that seems to be
oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.

IV. CONTRIBUTIONS TO THE
ENERGY-MOMENTUM TENSOR

Finally, we have determined the long-time expressions
for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads

ϕ̂ðx; tÞ → ϕ̂∞ðx; tÞ ¼ ϕ̂∞
ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂∞

A ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂∞
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where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
situation ϕ̂∞

A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
cations on the calculation of the energy-momentum tensor
expectation values and forces, as we shall see, so the results
of Refs. [41,43] are correct. As we certainly have
∂μϕ̂

∞
A ≡ 0, this implies that ∂μϕ̂

∞ ¼ ∂μϕ̂
∞
IC ⊗ IA ⊗ IBþ

Iϕ ⊗ IA ⊗ ∂μϕ̂
∞
B . It is worth noting that the derivative of

the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
metrized products. Therefore, for the components of the
energy-momentum tensor operator we have

T̂μνðxσ1; t0Þ≡
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δμγδνα −
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2
ημνηγα
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1
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ð∂γϕ̂ðxσ1Þ∂αϕ̂ðxσ1Þ

þ ∂αϕ̂ðxσ1Þ∂γϕ̂ðxσ1ÞÞ; ð20Þ

where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:

T̂μνðxσ1; t0Þ → T̂∞
μνðxσ1Þ ¼ T̂IC;∞

μν ðxσ1Þ ⊗ IA ⊗ IB þ Iϕ ⊗ IA ⊗ T̂B;∞
μν ðxσ1Þ
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∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ&: ð21Þ

As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,
h∂γϕ̂

∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞

μν ðxσ1Þiϕ þ hT̂B;∞
μν ðxσ1ÞiB; ð22Þ

where h…i on the lhs is the quantum expectation value
over the total Hilbert space H, while h…iϕ and h…iB
on the rhs are the quantum expectation values on the
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t0 →	- ∞	and	poles	analysis

Independent	of	x	and	t
(damped	dynamics	of	r)

NO	contribution	to	Tµ𝜈



Model,	Eqs.	Motion,	Long-time	Limit	

of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη

!
1

2
m_r2xðtÞ −

1

2
mω2

0r
2
xðtÞ

"

þ 4πηeϕðx; tÞ_rxðtÞ

þ 4πη
X

n

!
1

2
mn _q2n;xðtÞ −

1

2
mnω2

nq2n;xðtÞ
"

− 4πη
X

n

λnqn;xðtÞrxðtÞ; ð1Þ

where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ
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þ
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$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
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in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη

!
1

2
m_r2xðtÞ −
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λnqn;xðtÞrxðtÞ; ð1Þ

where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$
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$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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• Interactions	begin	at	t =	t0
• For	t <	t0,	each	part	is	free
• Canonical	quantization	(Heisenberg	

equations)
• Composite	Hilbert	space:
• Uncorrelated	initial	state:

• Effective	field	equation (1+1):

of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$
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_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
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; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
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t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
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; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:

ϕ̂ðx;t0Þ¼
Z

dk
!
1

ωk

"1
2

ðâkðt0Þeiðkx−ωkt0Þ þ â†kðt0Þe−iðkx−ωkt0ÞÞ;

ð4Þ

_̂ϕðx; t0Þ ¼
Z

dk
!
1

ωk

"1
2

iωkð−âkðt0Þeiðkx−ωkt0Þ

þ â†kðt0Þe−iðkx−ωkt0ÞÞ; ð5Þ

where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads

□GRet þ
∂2

∂t2
#Z

t

0
χxðt − τÞGRetðx; x0; τÞdτ

$
¼ 0; ð6Þ

subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as

ϕ̂ðx; tÞ ¼ −
Z

dx0 _GRetðx; x0; t − t0Þϕ̂ðx0; t0Þ −
Z

dx0GRetðx; x0; t − t0Þ
∂ϕ̂
∂t ðx

0; t0Þ

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

#
_G1ðt0 − t0Þr̂x0ðt0Þ þ _G2ðt0 − t0Þ

p̂x0ðt0Þ
m

$

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

Z
t0

t0
dτ _G2ðt0 − τÞ F̂x0ðτ − t0Þ

m
; ð8Þ

which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:
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where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads
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∂2
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χxðt − τÞGRetðx; x0; τÞdτ

$
¼ 0; ð6Þ

subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as

ϕ̂ðx; tÞ ¼ −
Z

dx0 _GRetðx; x0; t − t0Þϕ̂ðx0; t0Þ −
Z

dx0GRetðx; x0; t − t0Þ
∂ϕ̂
∂t ðx

0; t0Þ

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

#
_G1ðt0 − t0Þr̂x0ðt0Þ þ _G2ðt0 − t0Þ

p̂x0ðt0Þ
m

$

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

Z
t0

t0
dτ _G2ðt0 − τÞ F̂x0ðτ − t0Þ

m
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which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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It is also clear that the presence of the matter distribution
C means that the spatial integration is carried out over the
regions occupied by the material bodies, which in fact can
be inhomogeneous since the local properties of the material
can change in each point of space. This is why the
integration over x0 contains every factor in the rhs, to
eventually consider inhomogeneous materials. This last
expression also has the time and space dependence sug-
gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time
limit F̂∞

x0 ðωÞ contains a limit on t0 that seems to be
oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.

IV. CONTRIBUTIONS TO THE
ENERGY-MOMENTUM TENSOR

Finally, we have determined the long-time expressions
for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads

ϕ̂ðx; tÞ → ϕ̂∞ðx; tÞ ¼ ϕ̂∞
ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂∞

A ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂∞
B ðx; tÞ; ð19Þ

where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
situation ϕ̂∞

A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
cations on the calculation of the energy-momentum tensor
expectation values and forces, as we shall see, so the results
of Refs. [41,43] are correct. As we certainly have
∂μϕ̂

∞
A ≡ 0, this implies that ∂μϕ̂

∞ ¼ ∂μϕ̂
∞
IC ⊗ IA ⊗ IBþ

Iϕ ⊗ IA ⊗ ∂μϕ̂
∞
B . It is worth noting that the derivative of

the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
metrized products. Therefore, for the components of the
energy-momentum tensor operator we have

T̂μνðxσ1; t0Þ≡
!
δμγδνα −

1

2
ημνηγα

"
1

2
ð∂γϕ̂ðxσ1Þ∂αϕ̂ðxσ1Þ

þ ∂αϕ̂ðxσ1Þ∂γϕ̂ðxσ1ÞÞ; ð20Þ

where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:

T̂μνðxσ1; t0Þ → T̂∞
μνðxσ1Þ ¼ T̂IC;∞

μν ðxσ1Þ ⊗ IA ⊗ IB þ Iϕ ⊗ IA ⊗ T̂B;∞
μν ðxσ1Þ

þ
!
δμγδνα −

1

2
ημνηγα

"
1

2
½∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ þ ∂αϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ

þ ∂αϕ̂
∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ þ ∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ&: ð21Þ

As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,
h∂γϕ̂

∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞

μν ðxσ1Þiϕ þ hT̂B;∞
μν ðxσ1ÞiB; ð22Þ

where h…i on the lhs is the quantum expectation value
over the total Hilbert space H, while h…iϕ and h…iB
on the rhs are the quantum expectation values on the
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regions occupied by the material bodies, which in fact can
be inhomogeneous since the local properties of the material
can change in each point of space. This is why the
integration over x0 contains every factor in the rhs, to
eventually consider inhomogeneous materials. This last
expression also has the time and space dependence sug-
gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time
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x0 ðωÞ contains a limit on t0 that seems to be
oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.
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for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads
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where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
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A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
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of Refs. [41,43] are correct. As we certainly have
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the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
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where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:
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As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,
h∂γϕ̂

∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞

μν ðxσ1Þiϕ þ hT̂B;∞
μν ðxσ1ÞiB; ð22Þ

where h…i on the lhs is the quantum expectation value
over the total Hilbert space H, while h…iϕ and h…iB
on the rhs are the quantum expectation values on the
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t0 →	- ∞	and	poles	analysis

6
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where �7 are the homogeneous solutions associated to the homogeneous field equation and satisfying only the bound-
ary condition on each limit of the variable value’s interval, bb

0,x

0(�1) is the annihilation operator of the volume
element degree of freedom, while the over-lines are denoting Fourier transforms.

III. FORCE AND RADIATIVE HEAT EXCHANGE AT THE STEADY STATE

With the field operator at the steady state, we can evaluate both the Casimir force and the heat transfer between
two plates in an unified way by calculating the expectation values of the energy-momentum tensor operator. The
quantum version of the energy-momentum tensor is obtained by symmetrizing the classical expression after promoting
the field to a quantum operator, giving:
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As the field operator in the steady state is given by Eq.(5), by noting that the contribution associated to the volume

elements is independent of time and space, we have that for the derivatives holds @
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. Therefore, the volume elements has no contribution to the expectations values of the energy-momentum
tensor. Moreover, as shown in Ref.[18], the expectation values of the annihilation and creation operators are zero
for thermal states, and we are considering thermal states for the baths. This turns to be enough to prove that the
expectation value of the energy-momentum tensor splits into two contributions, one associated to the initial conditions
of the field and the other one associated to the baths:
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where h...i
�,B

= Tr
�,B

(b⇢
IC,B

...), denoting that each trace is taken in the corresponding part of the total Hilbert space.
Nevertheless, while for the baths we assume thermal states, for the field we will consider an intrinsic non-equilibrium

state that takes into account the possibility for the initial free field to be in a state with net radiation going from
left to right. Although the configuration is surrounded by free space, it is of phenomenological interest to consider a
scenario where the configuration of plates is in contact with a general reservoir (i.e., the plates are inside an oven)
with its left and right walls located at x = �1 and x = +1 respectively and having each one at di↵erent (inverse)
temperature �

�,L

and �

�,R

. Initially, before the appearance of the plates, having this situation clearly generates an
intrinsic flow of heat from the hottest wall to the coldest one. After the appearance of the plates, during the transient
stage, this flow is modified by the presence of the plates (as it happens in Ref.[18] for the field in an initial thermal
state) until reaching the (steady) long-time regime.
Therefore, as the walls of the (hypothetical) oven are held at di↵erent temperatures, the crucial point here is that

the modes representing traveling-waves from left to right (k > 0) will radiate at the inverse-temperature �

�,L

, while
the modes representing traveling-waves from right to left (k < 0) will radiate at the inverse-temperature �

�,R

. Then,
the intrinsic non-equilibrium state for the field will be defined by the expectation values:
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where the typical expectation values for a thermal state (see Ref.[18]) are simply recovered by setting �

�,L

= �

�,R

.
More about the intrinsic non-equilibrium state is shown in Appendix A.
Considering this, for a general configuration, both terms of the expectation value of the components of the energy-

momentum tensor can be calculated by employing the Green function and the homogeneous solutions for the given
problem, obtaining the following expressions:
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη

!
1

2
m_r2xðtÞ −

1

2
mω2

0r
2
xðtÞ

"

þ 4πηeϕðx; tÞ_rxðtÞ

þ 4πη
X

n

!
1

2
mn _q2n;xðtÞ −

1

2
mnω2

nq2n;xðtÞ
"

− 4πη
X

n

λnqn;xðtÞrxðtÞ; ð1Þ

where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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while in Appendix F we show how our result recovers the
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and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
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in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη

!
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2
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
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þ
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dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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• Interactions	begin	at	t =	t0
• For	t <	t0,	each	part	is	free
• Canonical	quantization	(Heisenberg	

equations)
• Composite	Hilbert	space:
• Uncorrelated	initial	state:

• Effective	field	equation (1+1):

of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t
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dτχxðt − τÞϕ̂ðx; τÞ

$
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#
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$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2
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$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:

ϕ̂ðx;t0Þ¼
Z

dk
!
1

ωk

"1
2

ðâkðt0Þeiðkx−ωkt0Þ þ â†kðt0Þe−iðkx−ωkt0ÞÞ;

ð4Þ

_̂ϕðx; t0Þ ¼
Z

dk
!
1

ωk

"1
2

iωkð−âkðt0Þeiðkx−ωkt0Þ

þ â†kðt0Þe−iðkx−ωkt0ÞÞ; ð5Þ

where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads

□GRet þ
∂2

∂t2
#Z

t

0
χxðt − τÞGRetðx; x0; τÞdτ

$
¼ 0; ð6Þ

subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as

ϕ̂ðx; tÞ ¼ −
Z

dx0 _GRetðx; x0; t − t0Þϕ̂ðx0; t0Þ −
Z

dx0GRetðx; x0; t − t0Þ
∂ϕ̂
∂t ðx

0; t0Þ

−
Z

t

t0
dt0

Z
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#
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$
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Z

t
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dt0
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dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

Z
t0

t0
dτ _G2ðt0 − τÞ F̂x0ðτ − t0Þ

m
; ð8Þ

which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:

ϕ̂ðx;t0Þ¼
Z

dk
!
1

ωk

"1
2

ðâkðt0Þeiðkx−ωkt0Þ þ â†kðt0Þe−iðkx−ωkt0ÞÞ;

ð4Þ

_̂ϕðx; t0Þ ¼
Z

dk
!
1

ωk

"1
2

iωkð−âkðt0Þeiðkx−ωkt0Þ

þ â†kðt0Þe−iðkx−ωkt0ÞÞ; ð5Þ

where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads

□GRet þ
∂2

∂t2
#Z

t

0
χxðt − τÞGRetðx; x0; τÞdτ

$
¼ 0; ð6Þ

subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as

ϕ̂ðx; tÞ ¼ −
Z

dx0 _GRetðx; x0; t − t0Þϕ̂ðx0; t0Þ −
Z

dx0GRetðx; x0; t − t0Þ
∂ϕ̂
∂t ðx

0; t0Þ

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

#
_G1ðt0 − t0Þr̂x0ðt0Þ þ _G2ðt0 − t0Þ

p̂x0ðt0Þ
m

$

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

Z
t0

t0
dτ _G2ðt0 − τÞ F̂x0ðτ − t0Þ

m
; ð8Þ

which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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It is also clear that the presence of the matter distribution
C means that the spatial integration is carried out over the
regions occupied by the material bodies, which in fact can
be inhomogeneous since the local properties of the material
can change in each point of space. This is why the
integration over x0 contains every factor in the rhs, to
eventually consider inhomogeneous materials. This last
expression also has the time and space dependence sug-
gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time
limit F̂∞

x0 ðωÞ contains a limit on t0 that seems to be
oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.

IV. CONTRIBUTIONS TO THE
ENERGY-MOMENTUM TENSOR

Finally, we have determined the long-time expressions
for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads

ϕ̂ðx; tÞ → ϕ̂∞ðx; tÞ ¼ ϕ̂∞
ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂∞

A ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂∞
B ðx; tÞ; ð19Þ

where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
situation ϕ̂∞

A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
cations on the calculation of the energy-momentum tensor
expectation values and forces, as we shall see, so the results
of Refs. [41,43] are correct. As we certainly have
∂μϕ̂

∞
A ≡ 0, this implies that ∂μϕ̂

∞ ¼ ∂μϕ̂
∞
IC ⊗ IA ⊗ IBþ

Iϕ ⊗ IA ⊗ ∂μϕ̂
∞
B . It is worth noting that the derivative of

the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
metrized products. Therefore, for the components of the
energy-momentum tensor operator we have

T̂μνðxσ1; t0Þ≡
!
δμγδνα −

1

2
ημνηγα

"
1

2
ð∂γϕ̂ðxσ1Þ∂αϕ̂ðxσ1Þ

þ ∂αϕ̂ðxσ1Þ∂γϕ̂ðxσ1ÞÞ; ð20Þ

where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:

T̂μνðxσ1; t0Þ → T̂∞
μνðxσ1Þ ¼ T̂IC;∞

μν ðxσ1Þ ⊗ IA ⊗ IB þ Iϕ ⊗ IA ⊗ T̂B;∞
μν ðxσ1Þ

þ
!
δμγδνα −

1

2
ημνηγα

"
1

2
½∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ þ ∂αϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ

þ ∂αϕ̂
∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ þ ∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ&: ð21Þ

As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,
h∂γϕ̂

∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞

μν ðxσ1Þiϕ þ hT̂B;∞
μν ðxσ1ÞiB; ð22Þ

where h…i on the lhs is the quantum expectation value
over the total Hilbert space H, while h…iϕ and h…iB
on the rhs are the quantum expectation values on the
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It is also clear that the presence of the matter distribution
C means that the spatial integration is carried out over the
regions occupied by the material bodies, which in fact can
be inhomogeneous since the local properties of the material
can change in each point of space. This is why the
integration over x0 contains every factor in the rhs, to
eventually consider inhomogeneous materials. This last
expression also has the time and space dependence sug-
gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time
limit F̂∞

x0 ðωÞ contains a limit on t0 that seems to be
oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.

IV. CONTRIBUTIONS TO THE
ENERGY-MOMENTUM TENSOR

Finally, we have determined the long-time expressions
for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads

ϕ̂ðx; tÞ → ϕ̂∞ðx; tÞ ¼ ϕ̂∞
ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂∞

A ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂∞
B ðx; tÞ; ð19Þ

where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
situation ϕ̂∞

A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
cations on the calculation of the energy-momentum tensor
expectation values and forces, as we shall see, so the results
of Refs. [41,43] are correct. As we certainly have
∂μϕ̂

∞
A ≡ 0, this implies that ∂μϕ̂

∞ ¼ ∂μϕ̂
∞
IC ⊗ IA ⊗ IBþ

Iϕ ⊗ IA ⊗ ∂μϕ̂
∞
B . It is worth noting that the derivative of

the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
metrized products. Therefore, for the components of the
energy-momentum tensor operator we have

T̂μνðxσ1; t0Þ≡
!
δμγδνα −

1

2
ημνηγα

"
1

2
ð∂γϕ̂ðxσ1Þ∂αϕ̂ðxσ1Þ

þ ∂αϕ̂ðxσ1Þ∂γϕ̂ðxσ1ÞÞ; ð20Þ

where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:

T̂μνðxσ1; t0Þ → T̂∞
μνðxσ1Þ ¼ T̂IC;∞

μν ðxσ1Þ ⊗ IA ⊗ IB þ Iϕ ⊗ IA ⊗ T̂B;∞
μν ðxσ1Þ

þ
!
δμγδνα −

1

2
ημνηγα

"
1

2
½∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ þ ∂αϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ

þ ∂αϕ̂
∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ þ ∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ&: ð21Þ

As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,
h∂γϕ̂

∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞

μν ðxσ1Þiϕ þ hT̂B;∞
μν ðxσ1ÞiB; ð22Þ

where h…i on the lhs is the quantum expectation value
over the total Hilbert space H, while h…iϕ and h…iB
on the rhs are the quantum expectation values on the
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη

!
1

2
m_r2xðtÞ −

1

2
mω2

0r
2
xðtÞ

"

þ 4πηeϕðx; tÞ_rxðtÞ

þ 4πη
X

n

!
1

2
mn _q2n;xðtÞ −

1

2
mnω2

nq2n;xðtÞ
"

− 4πη
X

n

λnqn;xðtÞrxðtÞ; ð1Þ

where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη

!
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m_r2xðtÞ −

1
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mω2
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$
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$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
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p̂xðt0Þ
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þ
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t
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dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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• Interactions	begin	at	t =	t0
• For	t <	t0,	each	part	is	free
• Canonical	quantization	(Heisenberg	

equations)
• Composite	Hilbert	space:
• Uncorrelated	initial	state:

• Effective	field	equation (1+1):

of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t
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dτχxðt − τÞϕ̂ðx; τÞ

$
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$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ
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; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:

ϕ̂ðx;t0Þ¼
Z

dk
!
1

ωk

"1
2

ðâkðt0Þeiðkx−ωkt0Þ þ â†kðt0Þe−iðkx−ωkt0ÞÞ;

ð4Þ

_̂ϕðx; t0Þ ¼
Z

dk
!
1

ωk

"1
2

iωkð−âkðt0Þeiðkx−ωkt0Þ

þ â†kðt0Þe−iðkx−ωkt0ÞÞ; ð5Þ

where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads

□GRet þ
∂2

∂t2
#Z

t

0
χxðt − τÞGRetðx; x0; τÞdτ

$
¼ 0; ð6Þ

subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as

ϕ̂ðx; tÞ ¼ −
Z

dx0 _GRetðx; x0; t − t0Þϕ̂ðx0; t0Þ −
Z

dx0GRetðx; x0; t − t0Þ
∂ϕ̂
∂t ðx

0; t0Þ

−
Z

t

t0
dt0

Z
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p̂x0ðt0Þ
m

$
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Z

t
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dt0
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dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

Z
t0

t0
dτ _G2ðt0 − τÞ F̂x0ðτ − t0Þ

m
; ð8Þ

which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:

ϕ̂ðx;t0Þ¼
Z

dk
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1

ωk

"1
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ðâkðt0Þeiðkx−ωkt0Þ þ â†kðt0Þe−iðkx−ωkt0ÞÞ;

ð4Þ

_̂ϕðx; t0Þ ¼
Z

dk
!
1

ωk

"1
2

iωkð−âkðt0Þeiðkx−ωkt0Þ

þ â†kðt0Þe−iðkx−ωkt0ÞÞ; ð5Þ

where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads

□GRet þ
∂2

∂t2
#Z

t

0
χxðt − τÞGRetðx; x0; τÞdτ

$
¼ 0; ð6Þ

subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as

ϕ̂ðx; tÞ ¼ −
Z

dx0 _GRetðx; x0; t − t0Þϕ̂ðx0; t0Þ −
Z

dx0GRetðx; x0; t − t0Þ
∂ϕ̂
∂t ðx

0; t0Þ

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

#
_G1ðt0 − t0Þr̂x0ðt0Þ þ _G2ðt0 − t0Þ

p̂x0ðt0Þ
m

$

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

Z
t0

t0
dτ _G2ðt0 − τÞ F̂x0ðτ − t0Þ

m
; ð8Þ

which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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It is also clear that the presence of the matter distribution
C means that the spatial integration is carried out over the
regions occupied by the material bodies, which in fact can
be inhomogeneous since the local properties of the material
can change in each point of space. This is why the
integration over x0 contains every factor in the rhs, to
eventually consider inhomogeneous materials. This last
expression also has the time and space dependence sug-
gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time
limit F̂∞

x0 ðωÞ contains a limit on t0 that seems to be
oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.

IV. CONTRIBUTIONS TO THE
ENERGY-MOMENTUM TENSOR

Finally, we have determined the long-time expressions
for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads

ϕ̂ðx; tÞ → ϕ̂∞ðx; tÞ ¼ ϕ̂∞
ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂∞

A ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂∞
B ðx; tÞ; ð19Þ

where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
situation ϕ̂∞

A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
cations on the calculation of the energy-momentum tensor
expectation values and forces, as we shall see, so the results
of Refs. [41,43] are correct. As we certainly have
∂μϕ̂

∞
A ≡ 0, this implies that ∂μϕ̂

∞ ¼ ∂μϕ̂
∞
IC ⊗ IA ⊗ IBþ

Iϕ ⊗ IA ⊗ ∂μϕ̂
∞
B . It is worth noting that the derivative of

the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
metrized products. Therefore, for the components of the
energy-momentum tensor operator we have

T̂μνðxσ1; t0Þ≡
!
δμγδνα −

1

2
ημνηγα

"
1

2
ð∂γϕ̂ðxσ1Þ∂αϕ̂ðxσ1Þ

þ ∂αϕ̂ðxσ1Þ∂γϕ̂ðxσ1ÞÞ; ð20Þ

where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:

T̂μνðxσ1; t0Þ → T̂∞
μνðxσ1Þ ¼ T̂IC;∞

μν ðxσ1Þ ⊗ IA ⊗ IB þ Iϕ ⊗ IA ⊗ T̂B;∞
μν ðxσ1Þ

þ
!
δμγδνα −

1

2
ημνηγα

"
1

2
½∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ þ ∂αϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ

þ ∂αϕ̂
∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ þ ∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ&: ð21Þ

As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,
h∂γϕ̂

∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞

μν ðxσ1Þiϕ þ hT̂B;∞
μν ðxσ1ÞiB; ð22Þ

where h…i on the lhs is the quantum expectation value
over the total Hilbert space H, while h…iϕ and h…iB
on the rhs are the quantum expectation values on the
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expression also has the time and space dependence sug-
gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time
limit F̂∞

x0 ðωÞ contains a limit on t0 that seems to be
oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.
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Finally, we have determined the long-time expressions
for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads

ϕ̂ðx; tÞ → ϕ̂∞ðx; tÞ ¼ ϕ̂∞
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A ⊗ IB
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B ðx; tÞ; ð19Þ

where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
situation ϕ̂∞

A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
cations on the calculation of the energy-momentum tensor
expectation values and forces, as we shall see, so the results
of Refs. [41,43] are correct. As we certainly have
∂μϕ̂

∞
A ≡ 0, this implies that ∂μϕ̂

∞ ¼ ∂μϕ̂
∞
IC ⊗ IA ⊗ IBþ

Iϕ ⊗ IA ⊗ ∂μϕ̂
∞
B . It is worth noting that the derivative of

the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
metrized products. Therefore, for the components of the
energy-momentum tensor operator we have

T̂μνðxσ1; t0Þ≡
!
δμγδνα −

1

2
ημνηγα

"
1

2
ð∂γϕ̂ðxσ1Þ∂αϕ̂ðxσ1Þ

þ ∂αϕ̂ðxσ1Þ∂γϕ̂ðxσ1ÞÞ; ð20Þ

where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:

T̂μνðxσ1; t0Þ → T̂∞
μνðxσ1Þ ¼ T̂IC;∞

μν ðxσ1Þ ⊗ IA ⊗ IB þ Iϕ ⊗ IA ⊗ T̂B;∞
μν ðxσ1Þ

þ
!
δμγδνα −

1
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1

2
½∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂
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B ðxσ1Þ
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B ðxσ1Þ þ ∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ&: ð21Þ

As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,
h∂γϕ̂

∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞

μν ðxσ1Þiϕ þ hT̂B;∞
μν ðxσ1ÞiB; ð22Þ

where h…i on the lhs is the quantum expectation value
over the total Hilbert space H, while h…iϕ and h…iB
on the rhs are the quantum expectation values on the
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη

!
1

2
m_r2xðtÞ −

1

2
mω2

0r
2
xðtÞ

"

þ 4πηeϕðx; tÞ_rxðtÞ

þ 4πη
X

n

!
1

2
mn _q2n;xðtÞ −

1

2
mnω2

nq2n;xðtÞ
"

− 4πη
X

n

λnqn;xðtÞrxðtÞ; ð1Þ

where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
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ature. Finally, Sec. VII summarizes our findings.
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set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
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in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,
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scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
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1

2
mω2

0r
2
xðtÞ

"

þ 4πηeϕðx; tÞ_rxðtÞ

þ 4πη
X

n

!
1

2
mn _q2n;xðtÞ −

1

2
mnω2

nq2n;xðtÞ
"

− 4πη
X

n

λnqn;xðtÞrxðtÞ; ð1Þ

where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
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m the plasma frequency. It is worth noting
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forward generalization to inhomogeneous media, where
each point of the material can have different properties.
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Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
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þ
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m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t
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dτχxðt − τÞϕ̂ðx; τÞ
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$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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• Interactions	begin	at	t =	t0
• For	t <	t0,	each	part	is	free
• Canonical	quantization	(Heisenberg	

equations)
• Composite	Hilbert	space:
• Uncorrelated	initial	state:

• Effective	field	equation (1+1):

of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t
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dτχxðt − τÞϕ̂ðx; τÞ
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; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:

ϕ̂ðx;t0Þ¼
Z

dk
!
1

ωk

"1
2

ðâkðt0Þeiðkx−ωkt0Þ þ â†kðt0Þe−iðkx−ωkt0ÞÞ;

ð4Þ

_̂ϕðx; t0Þ ¼
Z

dk
!
1

ωk

"1
2

iωkð−âkðt0Þeiðkx−ωkt0Þ

þ â†kðt0Þe−iðkx−ωkt0ÞÞ; ð5Þ

where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads

□GRet þ
∂2

∂t2
#Z

t

0
χxðt − τÞGRetðx; x0; τÞdτ

$
¼ 0; ð6Þ

subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as

ϕ̂ðx; tÞ ¼ −
Z

dx0 _GRetðx; x0; t − t0Þϕ̂ðx0; t0Þ −
Z

dx0GRetðx; x0; t − t0Þ
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dt0
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Z
t0
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dτ _G2ðt0 − τÞ F̂x0ðτ − t0Þ

m
; ð8Þ

which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:

ϕ̂ðx;t0Þ¼
Z
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1

ωk
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iωkð−âkðt0Þeiðkx−ωkt0Þ

þ â†kðt0Þe−iðkx−ωkt0ÞÞ; ð5Þ

where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads

□GRet þ
∂2

∂t2
#Z

t

0
χxðt − τÞGRetðx; x0; τÞdτ

$
¼ 0; ð6Þ

subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as
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Z

dx0 _GRetðx; x0; t − t0Þϕ̂ðx0; t0Þ −
Z

dx0GRetðx; x0; t − t0Þ
∂ϕ̂
∂t ðx

0; t0Þ

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

#
_G1ðt0 − t0Þr̂x0ðt0Þ þ _G2ðt0 − t0Þ

p̂x0ðt0Þ
m

$

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

Z
t0

t0
dτ _G2ðt0 − τÞ F̂x0ðτ − t0Þ

m
; ð8Þ

which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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It is also clear that the presence of the matter distribution
C means that the spatial integration is carried out over the
regions occupied by the material bodies, which in fact can
be inhomogeneous since the local properties of the material
can change in each point of space. This is why the
integration over x0 contains every factor in the rhs, to
eventually consider inhomogeneous materials. This last
expression also has the time and space dependence sug-
gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time
limit F̂∞

x0 ðωÞ contains a limit on t0 that seems to be
oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.

IV. CONTRIBUTIONS TO THE
ENERGY-MOMENTUM TENSOR

Finally, we have determined the long-time expressions
for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads

ϕ̂ðx; tÞ → ϕ̂∞ðx; tÞ ¼ ϕ̂∞
ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂∞

A ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂∞
B ðx; tÞ; ð19Þ

where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
situation ϕ̂∞

A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
cations on the calculation of the energy-momentum tensor
expectation values and forces, as we shall see, so the results
of Refs. [41,43] are correct. As we certainly have
∂μϕ̂

∞
A ≡ 0, this implies that ∂μϕ̂

∞ ¼ ∂μϕ̂
∞
IC ⊗ IA ⊗ IBþ

Iϕ ⊗ IA ⊗ ∂μϕ̂
∞
B . It is worth noting that the derivative of

the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
metrized products. Therefore, for the components of the
energy-momentum tensor operator we have

T̂μνðxσ1; t0Þ≡
!
δμγδνα −

1

2
ημνηγα

"
1

2
ð∂γϕ̂ðxσ1Þ∂αϕ̂ðxσ1Þ

þ ∂αϕ̂ðxσ1Þ∂γϕ̂ðxσ1ÞÞ; ð20Þ

where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:

T̂μνðxσ1; t0Þ → T̂∞
μνðxσ1Þ ¼ T̂IC;∞

μν ðxσ1Þ ⊗ IA ⊗ IB þ Iϕ ⊗ IA ⊗ T̂B;∞
μν ðxσ1Þ

þ
!
δμγδνα −

1

2
ημνηγα

"
1

2
½∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ þ ∂αϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ

þ ∂αϕ̂
∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ þ ∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ&: ð21Þ

As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,
h∂γϕ̂

∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞

μν ðxσ1Þiϕ þ hT̂B;∞
μν ðxσ1ÞiB; ð22Þ

where h…i on the lhs is the quantum expectation value
over the total Hilbert space H, while h…iϕ and h…iB
on the rhs are the quantum expectation values on the
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gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time
limit F̂∞

x0 ðωÞ contains a limit on t0 that seems to be
oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.
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Finally, we have determined the long-time expressions
for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads

ϕ̂ðx; tÞ → ϕ̂∞ðx; tÞ ¼ ϕ̂∞
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A ⊗ IB
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where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
situation ϕ̂∞

A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
cations on the calculation of the energy-momentum tensor
expectation values and forces, as we shall see, so the results
of Refs. [41,43] are correct. As we certainly have
∂μϕ̂

∞
A ≡ 0, this implies that ∂μϕ̂

∞ ¼ ∂μϕ̂
∞
IC ⊗ IA ⊗ IBþ

Iϕ ⊗ IA ⊗ ∂μϕ̂
∞
B . It is worth noting that the derivative of

the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
metrized products. Therefore, for the components of the
energy-momentum tensor operator we have

T̂μνðxσ1; t0Þ≡
!
δμγδνα −

1

2
ημνηγα

"
1

2
ð∂γϕ̂ðxσ1Þ∂αϕ̂ðxσ1Þ

þ ∂αϕ̂ðxσ1Þ∂γϕ̂ðxσ1ÞÞ; ð20Þ

where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:

T̂μνðxσ1; t0Þ → T̂∞
μνðxσ1Þ ¼ T̂IC;∞

μν ðxσ1Þ ⊗ IA ⊗ IB þ Iϕ ⊗ IA ⊗ T̂B;∞
μν ðxσ1Þ

þ
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δμγδνα −

1
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1
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ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
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B ðxσ1Þ þ ∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ&: ð21Þ

As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,
h∂γϕ̂

∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞

μν ðxσ1Þiϕ þ hT̂B;∞
μν ðxσ1ÞiB; ð22Þ

where h…i on the lhs is the quantum expectation value
over the total Hilbert space H, while h…iϕ and h…iB
on the rhs are the quantum expectation values on the
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη

!
1

2
m_r2xðtÞ −

1

2
mω2

0r
2
xðtÞ

"

þ 4πηeϕðx; tÞ_rxðtÞ

þ 4πη
X

n

!
1

2
mn _q2n;xðtÞ −

1

2
mnω2

nq2n;xðtÞ
"

− 4πη
X

n

λnqn;xðtÞrxðtÞ; ð1Þ

where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
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ature. Finally, Sec. VII summarizes our findings.
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II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ
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þ
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; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
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4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
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Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
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; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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• Interactions	begin	at	t =	t0
• For	t <	t0,	each	part	is	free
• Canonical	quantization	(Heisenberg	

equations)
• Composite	Hilbert	space:
• Uncorrelated	initial	state:

• Effective	field	equation (1+1):

of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
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; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material

ADRIÁN E. RUBIO LÓPEZ PHYSICAL REVIEW D 95, 025009 (2017)

025009-4

of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:

ϕ̂ðx;t0Þ¼
Z

dk
!
1

ωk

"1
2

ðâkðt0Þeiðkx−ωkt0Þ þ â†kðt0Þe−iðkx−ωkt0ÞÞ;

ð4Þ

_̂ϕðx; t0Þ ¼
Z

dk
!
1

ωk

"1
2

iωkð−âkðt0Þeiðkx−ωkt0Þ

þ â†kðt0Þe−iðkx−ωkt0ÞÞ; ð5Þ

where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads

□GRet þ
∂2

∂t2
#Z

t

0
χxðt − τÞGRetðx; x0; τÞdτ

$
¼ 0; ð6Þ

subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as

ϕ̂ðx; tÞ ¼ −
Z

dx0 _GRetðx; x0; t − t0Þϕ̂ðx0; t0Þ −
Z

dx0GRetðx; x0; t − t0Þ
∂ϕ̂
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−
Z

t
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dt0
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dt0
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Z
t0

t0
dτ _G2ðt0 − τÞ F̂x0ðτ − t0Þ

m
; ð8Þ

which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:
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where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads

□GRet þ
∂2

∂t2
#Z

t

0
χxðt − τÞGRetðx; x0; τÞdτ

$
¼ 0; ð6Þ

subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as

ϕ̂ðx; tÞ ¼ −
Z

dx0 _GRetðx; x0; t − t0Þϕ̂ðx0; t0Þ −
Z

dx0GRetðx; x0; t − t0Þ
∂ϕ̂
∂t ðx

0; t0Þ

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

#
_G1ðt0 − t0Þr̂x0ðt0Þ þ _G2ðt0 − t0Þ

p̂x0ðt0Þ
m

$

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

Z
t0

t0
dτ _G2ðt0 − τÞ F̂x0ðτ − t0Þ

m
; ð8Þ

which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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It is also clear that the presence of the matter distribution
C means that the spatial integration is carried out over the
regions occupied by the material bodies, which in fact can
be inhomogeneous since the local properties of the material
can change in each point of space. This is why the
integration over x0 contains every factor in the rhs, to
eventually consider inhomogeneous materials. This last
expression also has the time and space dependence sug-
gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time
limit F̂∞

x0 ðωÞ contains a limit on t0 that seems to be
oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.

IV. CONTRIBUTIONS TO THE
ENERGY-MOMENTUM TENSOR

Finally, we have determined the long-time expressions
for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads

ϕ̂ðx; tÞ → ϕ̂∞ðx; tÞ ¼ ϕ̂∞
ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂∞

A ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂∞
B ðx; tÞ; ð19Þ

where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
situation ϕ̂∞

A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
cations on the calculation of the energy-momentum tensor
expectation values and forces, as we shall see, so the results
of Refs. [41,43] are correct. As we certainly have
∂μϕ̂

∞
A ≡ 0, this implies that ∂μϕ̂

∞ ¼ ∂μϕ̂
∞
IC ⊗ IA ⊗ IBþ

Iϕ ⊗ IA ⊗ ∂μϕ̂
∞
B . It is worth noting that the derivative of

the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
metrized products. Therefore, for the components of the
energy-momentum tensor operator we have

T̂μνðxσ1; t0Þ≡
!
δμγδνα −

1

2
ημνηγα

"
1

2
ð∂γϕ̂ðxσ1Þ∂αϕ̂ðxσ1Þ

þ ∂αϕ̂ðxσ1Þ∂γϕ̂ðxσ1ÞÞ; ð20Þ

where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:

T̂μνðxσ1; t0Þ → T̂∞
μνðxσ1Þ ¼ T̂IC;∞

μν ðxσ1Þ ⊗ IA ⊗ IB þ Iϕ ⊗ IA ⊗ T̂B;∞
μν ðxσ1Þ

þ
!
δμγδνα −

1

2
ημνηγα

"
1

2
½∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ þ ∂αϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ

þ ∂αϕ̂
∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ þ ∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ&: ð21Þ

As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,
h∂γϕ̂

∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞

μν ðxσ1Þiϕ þ hT̂B;∞
μν ðxσ1ÞiB; ð22Þ

where h…i on the lhs is the quantum expectation value
over the total Hilbert space H, while h…iϕ and h…iB
on the rhs are the quantum expectation values on the
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It is also clear that the presence of the matter distribution
C means that the spatial integration is carried out over the
regions occupied by the material bodies, which in fact can
be inhomogeneous since the local properties of the material
can change in each point of space. This is why the
integration over x0 contains every factor in the rhs, to
eventually consider inhomogeneous materials. This last
expression also has the time and space dependence sug-
gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time
limit F̂∞

x0 ðωÞ contains a limit on t0 that seems to be
oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.

IV. CONTRIBUTIONS TO THE
ENERGY-MOMENTUM TENSOR

Finally, we have determined the long-time expressions
for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads

ϕ̂ðx; tÞ → ϕ̂∞ðx; tÞ ¼ ϕ̂∞
ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂∞

A ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂∞
B ðx; tÞ; ð19Þ

where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
situation ϕ̂∞

A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
cations on the calculation of the energy-momentum tensor
expectation values and forces, as we shall see, so the results
of Refs. [41,43] are correct. As we certainly have
∂μϕ̂

∞
A ≡ 0, this implies that ∂μϕ̂

∞ ¼ ∂μϕ̂
∞
IC ⊗ IA ⊗ IBþ

Iϕ ⊗ IA ⊗ ∂μϕ̂
∞
B . It is worth noting that the derivative of

the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
metrized products. Therefore, for the components of the
energy-momentum tensor operator we have

T̂μνðxσ1; t0Þ≡
!
δμγδνα −

1

2
ημνηγα

"
1

2
ð∂γϕ̂ðxσ1Þ∂αϕ̂ðxσ1Þ

þ ∂αϕ̂ðxσ1Þ∂γϕ̂ðxσ1ÞÞ; ð20Þ

where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:

T̂μνðxσ1; t0Þ → T̂∞
μνðxσ1Þ ¼ T̂IC;∞

μν ðxσ1Þ ⊗ IA ⊗ IB þ Iϕ ⊗ IA ⊗ T̂B;∞
μν ðxσ1Þ

þ
!
δμγδνα −

1

2
ημνηγα

"
1

2
½∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ þ ∂αϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ

þ ∂αϕ̂
∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ þ ∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ&: ð21Þ

As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,
h∂γϕ̂

∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞

μν ðxσ1Þiϕ þ hT̂B;∞
μν ðxσ1ÞiB; ð22Þ

where h…i on the lhs is the quantum expectation value
over the total Hilbert space H, while h…iϕ and h…iB
on the rhs are the quantum expectation values on the
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t0 →	- ∞	and	poles	analysis

Homogeneous	
solution

which is valid for every odd spectral density for any type of environment, in agreement with the results found in Ref. [43].
Finally, for the expectation value of the components of the energy-momentum tensor, we have

hT̂B;∞
μν ðxÞiB ¼

Z
dx0Cðx0Þ

Z
þ∞

−∞
dω2ω2Reðnx0ÞImðnx0Þ coth

!
βB;x0ω
2

"

×
!
½δμ0ð−iωÞGRetðx; x0;ωÞ þ δμ1∂xGRetðx; x0;ωÞ&½δν0iωG'

Retðx; x0;ωÞ þ δν1∂xG
'
Retðx; x0;ωÞ&

−
1

2
ημν½ω2jGRetðx; x0;ωÞj2 − j∂xGRetðx; x0;ωÞj2&

"
; ð28Þ

which does not depend on the time coordinate. On the other
hand, there is still a spatial dependence in principle.
Moreover, it should be noted that in the last expression
we have included spatial labels for the material properties,
denoting that the result is also valid for inhomogeneous
materials.
This contribution of the baths to the energy-momentum

tensor is in fact the 1þ 1 scalar version and also the
generalization (in terms of boundaries and inhomogeneity
properties) of the expressions found in Refs. [19–21,24,
25,39,41,43], but this time deduced from a full canonical
quantum procedure.

B. Initial conditions’ contribution to the
energy-momentum tensor

We can now calculate the contribution to the energy-
momentum tensor resulting from the initial conditions.
With the aim of calculating the expectation values of the
products of derivatives of the field operator, for simplicity
we rewrite Eq. (13) as

ϕ̂∞
ICðx;tÞ

¼
Z

dk
#
1

ωk

$1
2

½âkð−∞Þe−iωktΦkðxÞþ â†kð−∞ÞeiωktðΦkðxÞÞ'&

þ½time- andspace-independent oscillatory term&; ð29Þ

where we have to consider that ΦkðxÞ ¼ Φ>
−ikðxÞ for k > 0,

ΦkðxÞ ¼ ðΦ<
−ikðxÞÞ' for k < 0, and ωk ¼ jkj.

This way, the derivative of the field operator is
obtained in a straightforward fashion by considering that
∂μ½e−iωktΦkðxÞ& ¼ e−iωktðδμ0ð−iωkÞΦkðxÞ þ δμ1Φ0

kðxÞÞ:

∂μϕ̂
∞
ICðxσÞ ¼

Z
dk

#
1

ωk

$1
2

½âkð−∞Þe−iωktðδμ0ð−iωkÞΦkðxÞ

þ δμ1Φ0
kðxÞÞ þ â†kð−∞Þeiωktðδμ0iωkðΦkðxÞÞ'

þ δμ1ðΦ0
kðxÞÞ'Þ&: ð30Þ

Considering that hfâ†kð−∞Þ; â†k0ð−∞Þgiϕ ¼ hfâkð−∞Þ;
âk0ð−∞Þgi'ϕ ¼ 2hâkð−∞Þâk0ð−∞Þi'ϕ and also that

hfâ†kð−∞Þ; âk0ð−∞Þgiϕ ¼ 2hâ†kð−∞Þâk0ð−∞Þiϕ þ δðk−
k0Þ ¼ hfâkð−∞Þ; â†k0ð−∞Þgi'ϕ, we obtain the expectation
values of the components of the energy-momentum tensor:

hT̂IC;∞
μν ðxσ1Þiϕ ¼ hT̂IC;∞

μν ðx1ÞiVacϕ þ T State
μν ðxσ1Þ; ð31Þ

where hT̂IC;∞
μν ðx1ÞiVacϕ corresponds to the contribution

associated entirely to vacuum fluctuations at zero temper-
ature, which is always present, state and (at least) time
independent, and is given by

hT̂IC;∞
μν ðx1ÞiVacϕ ¼

Z
dk

1

ωk
Re½ðδμ0ð−iωkÞΦk þ δμ1Φ0

kÞðδν0iωkÞðΦkÞ' þ δν1ðΦ0
kÞ'Þ −

ημν
2

ðω2
kjΦkj2 − jΦ0

kj2Þ&; ð32Þ

while T State
μν ðxσ1Þ corresponds to the specific contribution for the given initial state we consider for the field:

T State
μν ðxσ1Þ ¼

Z
dk

Z
dk0

#
1

ωkωk0

$1
2

2Re
#
hâkð−∞Þâk0ð−∞Þiϕe−iðωkþωk0 Þt½ðδμ0ð−iωkÞΦk þ δμ1Φ0

kÞðδν0ð−iωk0ÞΦk0 þ δν1Φ0
k0Þ

þ 1

2
ημνðωkωk0ΦkΦk0 þ Φ0

kΦ
0
k0Þ& þ hâ†kð−∞Þâk0ð−∞Þiϕeiðωk−ωk0 Þt

× ½ðδμ0iωkΦk þ δμ1Φ0
kÞðδν0ð−iωk0ÞðΦk0Þ' þ δν1ðΦ0

k0Þ'Þ −
1

2
ημνðωkωk0ðΦkÞ'Φk0 − ðΦ0

kÞ'Φ0
k0Þ&

$
; ð33Þ

which in principle depends on all the spacetime coordinates.
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Model,	Eqs.	Motion,	Long-time	Limit	

of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη

!
1

2
m_r2xðtÞ −

1

2
mω2

0r
2
xðtÞ

"

þ 4πηeϕðx; tÞ_rxðtÞ

þ 4πη
X

n

!
1

2
mn _q2n;xðtÞ −

1

2
mnω2

nq2n;xðtÞ
"

− 4πη
X

n

λnqn;xðtÞrxðtÞ; ð1Þ

where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material

ADRIÁN E. RUBIO LÓPEZ PHYSICAL REVIEW D 95, 025009 (2017)

025009-4
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Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ
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m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z
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dτχxðt − τÞϕ̂ðx; τÞ
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_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ
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$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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• Interactions	begin	at	t =	t0
• For	t <	t0,	each	part	is	free
• Canonical	quantization	(Heisenberg	

equations)
• Composite	Hilbert	space:
• Uncorrelated	initial	state:

• Effective	field	equation (1+1):

of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη

!
1

2
m_r2xðtÞ −

1

2
mω2

0r
2
xðtÞ

"

þ 4πηeϕðx; tÞ_rxðtÞ

þ 4πη
X

n

!
1

2
mn _q2n;xðtÞ −

1

2
mnω2

nq2n;xðtÞ
"

− 4πη
X

n

λnqn;xðtÞrxðtÞ; ð1Þ

where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:

ϕ̂ðx;t0Þ¼
Z

dk
!
1
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2
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ð4Þ
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iωkð−âkðt0Þeiðkx−ωkt0Þ

þ â†kðt0Þe−iðkx−ωkt0ÞÞ; ð5Þ

where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads
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$
¼ 0; ð6Þ

subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as

ϕ̂ðx; tÞ ¼ −
Z

dx0 _GRetðx; x0; t − t0Þϕ̂ðx0; t0Þ −
Z

dx0GRetðx; x0; t − t0Þ
∂ϕ̂
∂t ðx

0; t0Þ

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

#
_G1ðt0 − t0Þr̂x0ðt0Þ þ _G2ðt0 − t0Þ

p̂x0ðt0Þ
m

$

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

Z
t0

t0
dτ _G2ðt0 − τÞ F̂x0ðτ − t0Þ

m
; ð8Þ

which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the

QUANTUM VACUUM FLUCTUATIONS IN PRESENCE OF … PHYSICAL REVIEW D 95, 025009 (2017)

025009-5

bodies enter through the spatial material distribution
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dk
!
1

ωk

"1
2
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ð4Þ
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dk
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1

ωk
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2
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þ â†kðt0Þe−iðkx−ωkt0ÞÞ; ð5Þ
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operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads
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∂t2
#Z
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0
χxðt − τÞGRetðx; x0; τÞdτ

$
¼ 0; ð6Þ

subjected to the following initial conditions:

GRetðx;x0; t¼ 0Þ ¼ 0; _GRetðx;x0; t¼ 0Þ ¼−δðx− x0Þ;
ð7Þ

in such a way that the field can be written as

ϕ̂ðx; tÞ ¼ −
Z

dx0 _GRetðx; x0; t − t0Þϕ̂ðx0; t0Þ −
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dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ
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t0

t0
dτ _G2ðt0 − τÞ F̂x0ðτ − t0Þ

m
; ð8Þ

which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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It is also clear that the presence of the matter distribution
C means that the spatial integration is carried out over the
regions occupied by the material bodies, which in fact can
be inhomogeneous since the local properties of the material
can change in each point of space. This is why the
integration over x0 contains every factor in the rhs, to
eventually consider inhomogeneous materials. This last
expression also has the time and space dependence sug-
gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time
limit F̂∞

x0 ðωÞ contains a limit on t0 that seems to be
oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.

IV. CONTRIBUTIONS TO THE
ENERGY-MOMENTUM TENSOR

Finally, we have determined the long-time expressions
for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads

ϕ̂ðx; tÞ → ϕ̂∞ðx; tÞ ¼ ϕ̂∞
ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂∞

A ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂∞
B ðx; tÞ; ð19Þ

where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
situation ϕ̂∞

A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
cations on the calculation of the energy-momentum tensor
expectation values and forces, as we shall see, so the results
of Refs. [41,43] are correct. As we certainly have
∂μϕ̂

∞
A ≡ 0, this implies that ∂μϕ̂

∞ ¼ ∂μϕ̂
∞
IC ⊗ IA ⊗ IBþ

Iϕ ⊗ IA ⊗ ∂μϕ̂
∞
B . It is worth noting that the derivative of

the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
metrized products. Therefore, for the components of the
energy-momentum tensor operator we have

T̂μνðxσ1; t0Þ≡
!
δμγδνα −

1

2
ημνηγα

"
1

2
ð∂γϕ̂ðxσ1Þ∂αϕ̂ðxσ1Þ

þ ∂αϕ̂ðxσ1Þ∂γϕ̂ðxσ1ÞÞ; ð20Þ

where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:

T̂μνðxσ1; t0Þ → T̂∞
μνðxσ1Þ ¼ T̂IC;∞

μν ðxσ1Þ ⊗ IA ⊗ IB þ Iϕ ⊗ IA ⊗ T̂B;∞
μν ðxσ1Þ

þ
!
δμγδνα −

1

2
ημνηγα

"
1

2
½∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ þ ∂αϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ

þ ∂αϕ̂
∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ þ ∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ&: ð21Þ

As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,
h∂γϕ̂

∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞

μν ðxσ1Þiϕ þ hT̂B;∞
μν ðxσ1ÞiB; ð22Þ

where h…i on the lhs is the quantum expectation value
over the total Hilbert space H, while h…iϕ and h…iB
on the rhs are the quantum expectation values on the
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It is also clear that the presence of the matter distribution
C means that the spatial integration is carried out over the
regions occupied by the material bodies, which in fact can
be inhomogeneous since the local properties of the material
can change in each point of space. This is why the
integration over x0 contains every factor in the rhs, to
eventually consider inhomogeneous materials. This last
expression also has the time and space dependence sug-
gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time
limit F̂∞

x0 ðωÞ contains a limit on t0 that seems to be
oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.

IV. CONTRIBUTIONS TO THE
ENERGY-MOMENTUM TENSOR

Finally, we have determined the long-time expressions
for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads

ϕ̂ðx; tÞ → ϕ̂∞ðx; tÞ ¼ ϕ̂∞
ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂∞

A ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂∞
B ðx; tÞ; ð19Þ

where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
situation ϕ̂∞

A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
cations on the calculation of the energy-momentum tensor
expectation values and forces, as we shall see, so the results
of Refs. [41,43] are correct. As we certainly have
∂μϕ̂

∞
A ≡ 0, this implies that ∂μϕ̂

∞ ¼ ∂μϕ̂
∞
IC ⊗ IA ⊗ IBþ

Iϕ ⊗ IA ⊗ ∂μϕ̂
∞
B . It is worth noting that the derivative of

the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
metrized products. Therefore, for the components of the
energy-momentum tensor operator we have

T̂μνðxσ1; t0Þ≡
!
δμγδνα −

1

2
ημνηγα

"
1

2
ð∂γϕ̂ðxσ1Þ∂αϕ̂ðxσ1Þ

þ ∂αϕ̂ðxσ1Þ∂γϕ̂ðxσ1ÞÞ; ð20Þ

where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:

T̂μνðxσ1; t0Þ → T̂∞
μνðxσ1Þ ¼ T̂IC;∞

μν ðxσ1Þ ⊗ IA ⊗ IB þ Iϕ ⊗ IA ⊗ T̂B;∞
μν ðxσ1Þ

þ
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δμγδνα −
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2
ημνηγα
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2
½∂γϕ̂
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ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂
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B ðxσ1Þ þ ∂αϕ̂
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B ðxσ1Þ

þ ∂αϕ̂
∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ þ ∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ&: ð21Þ

As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,
h∂γϕ̂

∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞

μν ðxσ1Þiϕ þ hT̂B;∞
μν ðxσ1ÞiB; ð22Þ

where h…i on the lhs is the quantum expectation value
over the total Hilbert space H, while h…iϕ and h…iB
on the rhs are the quantum expectation values on the

ADRIÁN E. RUBIO LÓPEZ PHYSICAL REVIEW D 95, 025009 (2017)

025009-8

t0 →	- ∞	and	poles	analysis

Homogeneous	
solution

Defined	in	the	free	
field	Hilbert	space



Model,	Eqs.	Motion,	Long-time	Limit	

of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B

¼ 1

2
∂μϕ∂μϕþ 4πη

!
1

2
m_r2xðtÞ −

1

2
mω2

0r
2
xðtÞ

"

þ 4πηeϕðx; tÞ_rxðtÞ

þ 4πη
X

n

!
1

2
mn _q2n;xðtÞ −

1

2
mnω2

nq2n;xðtÞ
"

− 4πη
X

n

λnqn;xðtÞrxðtÞ; ð1Þ

where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
#Z

t

t0
dτχxðt − τÞϕ̂ðx; τÞ

$

¼ 4πηeCðxÞ
#
_G1ðt − t0Þr̂xðt0Þ þ _G2ðt − t0Þ

p̂xðt0Þ
m

þ
Z

t

t0
dτ _G2ðt − τÞ F̂xðτ − t0Þ

m

$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
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t
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$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by

□ϕ̂þ ∂2

∂t2
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$
; ð3Þ

where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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• Interactions	begin	at	t =	t0
• For	t <	t0,	each	part	is	free
• Canonical	quantization	(Heisenberg	

equations)
• Composite	Hilbert	space:
• Uncorrelated	initial	state:

• Effective	field	equation (1+1):

of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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of the field with the implementation of the time average.
Section V is devoted to the calculation of the total Casimir
force for the finite width plates configuration, deriving
general expressions for each contribution to the force. In
Appendix E we give the homogeneous solutions and the
Green function needed for the calculations of the section,
while in Appendix F we show how our result recovers the
dissipationless limit and the Lifshitz formula at thermal
equilibrium. InSec.VI,wepresent a comparison between the
Casimir forces obtained by taking a thermal state for the field
and a squeezed one, when the baths keep the same temper-
ature. Finally, Sec. VII summarizes our findings.
Throughout the paper, for simplicity, we have

set ℏ ¼ kB ¼ c ¼ 1.

II. LAGRANGIAN DENSITY AND
FIELD EQUATION

With the aim of including effects of dissipation and noise
in the evaluation of the Casimir energy or force, we will use
the theory of open quantum systems, keeping in mind the
paradigmatic example of quantum Brownian motion
(QBM) [37].
The model is a simplified version of the HB model,

consisting of a system composed of two parts: a massless
scalar field and dielectric material which, in turn, are
described by their internal degrees of freedom (a set of
harmonic oscillators). Both subsystems constitute a
composite system that is coupled to a second set of
harmonic oscillators (playing the role of an external
environment or termal bath). For simplicity we will work
in 1þ 1 dimensions. In our toy model the massless field
represents the electromagnetic field, and the first set of
harmonic oscillators directly coupled to the scalar field
represents the polarizable volume elements of the material.
Considering the usual interaction term between the

electromagnetic field and the ordinary polarizable matter,
the coupling between the field and the volume elements of
the material will be taken as a current-type one, where the
field couples to the velocity of variation of the volume
elements’ degrees of freedom. The coupling constant for
this interaction is the electric charge e. We will also assume
that there is no direct coupling between the field and the
thermal bath. The Lagrangian density is therefore given by

L ¼ Lϕ þ LS þ Lϕ−S þ LB þ LS−B
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where we have stressed the fact that r and qn have a
dependence on position as a label identifying the point of
space at which they are located but without being a
dynamical variable (as it happens for the scalar field). It
is clear that each atom interacts with a thermal bath placed
at the same position. We have denoted by η the density of
the degrees of freedom of the volume elements. The
constants λn are the coupling constants between the volume
elements and the bath oscillators. It is implicitly understood
that Eq. (1) represents the Lagrangian density inside the
material, while outside the Lagrangian is given by the free
field one.
The quantization of the theory is straightforward. It

should be noted that the full Hilbert space of the model H,
where the quantization is performed, is not only the field
Hilbert space Hϕ (as is considered in others works where
the field is the only relevant degree of freedom), but also
includes the Hilbert spaces of the volume elements’ degrees
of freedom HA and the bath oscillators HB, in such a way
that H ¼ Hϕ ⊗ HA ⊗ HB. We will assume, as frequently
done in the context of QBM, that for t < t0 the three parts
of the systems are uncorrelated and not interacting.
Interactions are turned on at t ¼ t0. Therefore, the initial
conditions for the operators ϕ̂, r̂ must be given in terms of
operators acting in each part of the Hilbert space. The
interactions are such that initial operators become operators
over the whole space H. The initial density matrix of the
total system is of the form

ρ̂ðt0Þ ¼ ρ̂ICðt0Þ ⊗ ρ̂Aðt0Þ ⊗ ρ̂B; ð2Þ

so, in principle, each part can be in any state.
Once the model of the interaction between the field and

the matter is properly described, the equations of motion
can be obtained. Solving the respective equations for the
bath oscillators and the volume elements, an equation of
motion for the field can be deduced. In Appendix A, this
work is done in the context of the open quantum system’s
framework, showing that the field equation is given by
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where χxðtÞ ¼ ω2
PlG2;xðtÞCðxÞ is the susceptibility function

with ω2
Pl ¼

4πηe2
m the plasma frequency. It is worth noting

that we have included a spatial label denoting the straight-
forward generalization to inhomogeneous media, where
each point of the material can have different properties.
Beyond this dependence, the boundaries of the material
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bodies enter through the spatial material distribution
function C, which is zero in free space points. The regions
filled (and the contours) with real material are defined by
this function. This is clearly essential for the determination
of the field’s boundary conditions.
This equation (like all Heisenberg equations) is clearly

subjected to initial conditions, in this case, free field
conditions:
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Z
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where âkðt0Þ and â†kðt0Þ are the annihilation and creation
operators for the free field at the initial time, and ωk ¼ jkj.
To solve the equation, the retarded Green function can be

employed, in such a way that the associated equation for
t > 0 reads
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subjected to the following initial conditions:
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ð7Þ
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∂ϕ̂
∂t ðx

0; t0Þ

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

#
_G1ðt0 − t0Þr̂x0ðt0Þ þ _G2ðt0 − t0Þ

p̂x0ðt0Þ
m

$

−
Z

t

t0
dt0

Z
dx0GRetðx; x0; t − t0Þ4πηeCðx0Þ

Z
t0

t0
dτ _G2ðt0 − τÞ F̂x0ðτ − t0Þ

m
; ð8Þ

which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:

ϕ̂ðx; tÞ ¼ ϕ̂ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂Aðx; tÞ ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂Bðx; tÞ: ð9Þ

As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ

IC ðx; tÞþ
ϕ̂ð−Þ
IC ðx; tÞ, with ϕ̂ð−Þ

IC ðx; tÞ ¼ ðϕ̂ðþÞ
IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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which is the general solution for the field operator of the
full time-dependent problem from given initial conditions.
As is expected, the field operator presents three parts,

each one consisting of an operator acting in one of the three
Hilbert spaces of the total Hilbert space.

III. CONTRIBUTIONS TO THE FIELD OPERATOR

As it was recently stressed, the last equation of the
preceding section means that the field operator begins at
the initial time t0 as an operator on Hϕ. Nevertheless, the
switching-on of the interactions causes the field operator to
become an operator on the full Hilbert space H during the
time evolution:
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As we are interested in evaluating the Casimir force in
nonequilibrium but steady situations, we have to investigate
the long-time limit (t0 → −∞) of these three contributions.
Although the field operator will remain as an operator in the
full Hilbert space H, as we will see, the Casimir force does
not necessarily contain contributions associated to each part
of H. This will depend on the internal dynamics of the
material and the initial state ρ̂ðt0Þ but also strongly on the
boundaries’ configuration considered, as mentioned in
Refs. [21,25].

A. Long-time limit of initial conditions’ contribution

Let us consider the field operator’s contribution asso-
ciated to the initial conditions. Since the initial conditions
are written in terms of the creation and annihilation
operators of the free field through Eqs. (4) and (5), the
contribution can also be written in terms of these operators.
Hence, the contribution splits into ϕ̂ICðx; tÞ ¼ ϕ̂ðþÞ
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IC ðx; tÞÞ† due to the fact

that the retarded Green function GRet is real and the
Hermiticity of the initial free-field operators. Therefore,
ϕ̂ðþÞ
IC ðx; tÞ is associated to the free-field annihilation oper-

ator âkðt0Þ and ϕ̂ð−Þ
IC ðx; tÞ to the free-field creation operator

â†kðt0Þ. Moreover, given Eqs. (6) and (7), the initial
conditions problem can be solved by a Laplace transform.
Therefore, the equation of motion for the retarded Green
function’s Laplace transform ~GRetðx; x0; sÞ is given by

∂2 ~GRet

∂x2 − s2n2xðsÞ ~GRetðx; x0; sÞ ¼ δðx − x0Þ; ð10Þ

with nxðsÞ the refraction index at the point x:

n2xðsÞ≡ 1þ ω2
Pl
~G2;xðsÞCðxÞ: ð11Þ

The last equation is valid for every spatial dependence on
the material properties and also for every configuration of
boundaries. For a given material’s distribution CðxÞ, the
boundary conditions are determined through integrating the
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It is also clear that the presence of the matter distribution
C means that the spatial integration is carried out over the
regions occupied by the material bodies, which in fact can
be inhomogeneous since the local properties of the material
can change in each point of space. This is why the
integration over x0 contains every factor in the rhs, to
eventually consider inhomogeneous materials. This last
expression also has the time and space dependence sug-
gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time
limit F̂∞

x0 ðωÞ contains a limit on t0 that seems to be
oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.

IV. CONTRIBUTIONS TO THE
ENERGY-MOMENTUM TENSOR

Finally, we have determined the long-time expressions
for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads

ϕ̂ðx; tÞ → ϕ̂∞ðx; tÞ ¼ ϕ̂∞
ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂∞

A ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂∞
B ðx; tÞ; ð19Þ

where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
situation ϕ̂∞

A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
cations on the calculation of the energy-momentum tensor
expectation values and forces, as we shall see, so the results
of Refs. [41,43] are correct. As we certainly have
∂μϕ̂

∞
A ≡ 0, this implies that ∂μϕ̂

∞ ¼ ∂μϕ̂
∞
IC ⊗ IA ⊗ IBþ

Iϕ ⊗ IA ⊗ ∂μϕ̂
∞
B . It is worth noting that the derivative of

the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
metrized products. Therefore, for the components of the
energy-momentum tensor operator we have

T̂μνðxσ1; t0Þ≡
!
δμγδνα −

1

2
ημνηγα

"
1

2
ð∂γϕ̂ðxσ1Þ∂αϕ̂ðxσ1Þ

þ ∂αϕ̂ðxσ1Þ∂γϕ̂ðxσ1ÞÞ; ð20Þ

where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:

T̂μνðxσ1; t0Þ → T̂∞
μνðxσ1Þ ¼ T̂IC;∞

μν ðxσ1Þ ⊗ IA ⊗ IB þ Iϕ ⊗ IA ⊗ T̂B;∞
μν ðxσ1Þ

þ
!
δμγδνα −

1

2
ημνηγα

"
1

2
½∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ þ ∂αϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ

þ ∂αϕ̂
∞
ICðxσ1Þ ⊗ IA ⊗ ∂γϕ̂

∞
B ðxσ1Þ þ ∂γϕ̂

∞
ICðxσ1Þ ⊗ IA ⊗ ∂αϕ̂

∞
B ðxσ1Þ&: ð21Þ

As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,
h∂γϕ̂

∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞

μν ðxσ1Þiϕ þ hT̂B;∞
μν ðxσ1ÞiB; ð22Þ

where h…i on the lhs is the quantum expectation value
over the total Hilbert space H, while h…iϕ and h…iB
on the rhs are the quantum expectation values on the
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It is also clear that the presence of the matter distribution
C means that the spatial integration is carried out over the
regions occupied by the material bodies, which in fact can
be inhomogeneous since the local properties of the material
can change in each point of space. This is why the
integration over x0 contains every factor in the rhs, to
eventually consider inhomogeneous materials. This last
expression also has the time and space dependence sug-
gested in Refs. [41,43] for the so-called Langevin con-
tribution associated to the baths and consisting in outgoing
waves from the material bodies. This last feature is verified
through the time dependence, while the space dependence
is correctly supported by the spatial dependence of the
field’s retarded Green function transform GRet.
As a final comment to this section, it is clear that the

transform of the stochastic force operator at the long-time
limit F̂∞

x0 ðωÞ contains a limit on t0 that seems to be
oscillatory; however this will not enter the correlation
expectation values of this operator, which are governed
by the QBM theory.

IV. CONTRIBUTIONS TO THE
ENERGY-MOMENTUM TENSOR

Finally, we have determined the long-time expressions
for each part of the field operator, given in Eqs. (13), (16),
and (18). Therefore, for t0 → −∞, the field operator reads

ϕ̂ðx; tÞ → ϕ̂∞ðx; tÞ ¼ ϕ̂∞
ICðx; tÞ ⊗ IA ⊗ IB þ Iϕ ⊗ ϕ̂∞

A ⊗ IB

þ Iϕ ⊗ IA ⊗ ϕ̂∞
B ðx; tÞ; ð19Þ

where we have stressed the fact that the volume elements’
field operator in the steady situation does not depend on the
spatial or temporal coordinates.
It is worth noting that a similar separation was consid-

ered, without rigorous demonstration, in Refs. [41,43]
about the field operator in the steady situation. In both

works, the field operator does not contain any contribution
from the volume elements. Based on the dissipative
dynamics of the volume elements and the relaxation of
its degrees of freedom, it is assumed that in the steady
situation ϕ̂∞

A ≡ 0. Here we show that this is not true and
what happens is that ϕ̂∞

A is in fact independent of the
spacetime coordinates. However, this has no direct impli-
cations on the calculation of the energy-momentum tensor
expectation values and forces, as we shall see, so the results
of Refs. [41,43] are correct. As we certainly have
∂μϕ̂

∞
A ≡ 0, this implies that ∂μϕ̂

∞ ¼ ∂μϕ̂
∞
IC ⊗ IA ⊗ IBþ

Iϕ ⊗ IA ⊗ ∂μϕ̂
∞
B . It is worth noting that the derivative of

the initial conditions’ contribution to the last expression
makes the time- and space-independent terms contained in
ϕ̂∞
IC vanish [see Eq. (13)].
Then, the expectation value of the components of the

energy-momentum tensor operator at the steady situation
will not contain any contribution of the volume elements
independently of its initial state, which is in agreement with
the results obtained by putting ϕ̂∞

A ≡ 0 from the very
beginning.
In the quantum theory, the expectation values of the

energy-momentum tensor involve the correlation of the
derivatives, which are the expectation values of sym-
metrized products. Therefore, for the components of the
energy-momentum tensor operator we have

T̂μνðxσ1; t0Þ≡
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ð∂γϕ̂ðxσ1Þ∂αϕ̂ðxσ1Þ

þ ∂αϕ̂ðxσ1Þ∂γϕ̂ðxσ1ÞÞ; ð20Þ

where we have stressed the dependence of these quantities
on the initial time t0.
Therefore, the long-time limit of the components is

straightforward:
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As the derivatives of the baths’ contribution to the
field operator are obviously linear in the annihilation
and creation operators of the baths and we are consid-
ering a thermal initial density matrix for the baths, we
have that its expectation values are zero, i.e.,
h∂γϕ̂

∞
B ðxσ1ÞiB ≡ TrBðρ̂B ⊗ T̂B;∞

μν ðxσ1ÞÞ ¼ 0. This makes
the expectation values of the second line of the last
equation zero, independently of the field’s initial state

considered. Hence, the expectation values of the com-
ponents of the energy-momentum tensor read

hT̂∞
μνðxσ1Þi ¼ hT̂IC;∞
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t0 →	- ∞	and	poles	analysis

• Each	part	of	the	system	with	undamped	dynamics	contribute
• Non-thermal	initial	states can	be	considered	for	each	part,	

defined	at	the	initial	time,	when	all	the	parts	are	not	interacting



Expectation	values	of	Tµ𝜈

6

b
�

1
B

(x, t) =

Z
dx

0 4⇡⌘eC(x0)

m

Z
+1

�1

d!

2⇡
e

�i!t

i! G

2

(!) G
Ret

(x, x0
,!) b

F

1
x

0 (!), (8)

where �7 are the homogeneous solutions associated to the homogeneous field equation and satisfying only the bound-
ary condition on each limit of the variable value’s interval, bb

0,x

0(�1) is the annihilation operator of the volume
element degree of freedom, while the over-lines are denoting Fourier transforms.

III. FORCE AND RADIATIVE HEAT EXCHANGE AT THE STEADY STATE

With the field operator at the steady state, we can evaluate both the Casimir force and the heat transfer between
two plates in an unified way by calculating the expectation values of the energy-momentum tensor operator. The
quantum version of the energy-momentum tensor is obtained by symmetrizing the classical expression after promoting
the field to a quantum operator, giving:
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As the field operator in the steady state is given by Eq.(5), by noting that the contribution associated to the volume
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. Therefore, the volume elements has no contribution to the expectations values of the energy-momentum
tensor. Moreover, as shown in Ref.[18], the expectation values of the annihilation and creation operators are zero
for thermal states, and we are considering thermal states for the baths. This turns to be enough to prove that the
expectation value of the energy-momentum tensor splits into two contributions, one associated to the initial conditions
of the field and the other one associated to the baths:
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where h...i
�,B

= Tr
�,B

(b⇢
IC,B

...), denoting that each trace is taken in the corresponding part of the total Hilbert space.
Nevertheless, while for the baths we assume thermal states, for the field we will consider an intrinsic non-equilibrium

state that takes into account the possibility for the initial free field to be in a state with net radiation going from
left to right. Although the configuration is surrounded by free space, it is of phenomenological interest to consider a
scenario where the configuration of plates is in contact with a general reservoir (i.e., the plates are inside an oven)
with its left and right walls located at x = �1 and x = +1 respectively and having each one at di↵erent (inverse)
temperature �

�,L

and �

�,R

. Initially, before the appearance of the plates, having this situation clearly generates an
intrinsic flow of heat from the hottest wall to the coldest one. After the appearance of the plates, during the transient
stage, this flow is modified by the presence of the plates (as it happens in Ref.[18] for the field in an initial thermal
state) until reaching the (steady) long-time regime.
Therefore, as the walls of the (hypothetical) oven are held at di↵erent temperatures, the crucial point here is that

the modes representing traveling-waves from left to right (k > 0) will radiate at the inverse-temperature �
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the modes representing traveling-waves from right to left (k < 0) will radiate at the inverse-temperature �
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. Then,
the intrinsic non-equilibrium state for the field will be defined by the expectation values:
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where the typical expectation values for a thermal state (see Ref.[18]) are simply recovered by setting �

�,L

= �
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.
More about the intrinsic non-equilibrium state is shown in Appendix A.
Considering this, for a general configuration, both terms of the expectation value of the components of the energy-

momentum tensor can be calculated by employing the Green function and the homogeneous solutions for the given
problem, obtaining the following expressions:
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where �7 are the homogeneous solutions associated to the homogeneous field equation and satisfying only the bound-
ary condition on each limit of the variable value’s interval, bb

0,x

0(�1) is the annihilation operator of the volume
element degree of freedom, while the over-lines are denoting Fourier transforms.

III. FORCE AND RADIATIVE HEAT EXCHANGE AT THE STEADY STATE

With the field operator at the steady state, we can evaluate both the Casimir force and the heat transfer between
two plates in an unified way by calculating the expectation values of the energy-momentum tensor operator. The
quantum version of the energy-momentum tensor is obtained by symmetrizing the classical expression after promoting
the field to a quantum operator, giving:
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As the field operator in the steady state is given by Eq.(5), by noting that the contribution associated to the volume
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. Therefore, the volume elements has no contribution to the expectations values of the energy-momentum
tensor. Moreover, as shown in Ref.[18], the expectation values of the annihilation and creation operators are zero
for thermal states, and we are considering thermal states for the baths. This turns to be enough to prove that the
expectation value of the energy-momentum tensor splits into two contributions, one associated to the initial conditions
of the field and the other one associated to the baths:
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where h...i
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= Tr
�,B

(b⇢
IC,B

...), denoting that each trace is taken in the corresponding part of the total Hilbert space.
Nevertheless, while for the baths we assume thermal states, for the field we will consider an intrinsic non-equilibrium

state that takes into account the possibility for the initial free field to be in a state with net radiation going from
left to right. Although the configuration is surrounded by free space, it is of phenomenological interest to consider a
scenario where the configuration of plates is in contact with a general reservoir (i.e., the plates are inside an oven)
with its left and right walls located at x = �1 and x = +1 respectively and having each one at di↵erent (inverse)
temperature �

�,L

and �

�,R

. Initially, before the appearance of the plates, having this situation clearly generates an
intrinsic flow of heat from the hottest wall to the coldest one. After the appearance of the plates, during the transient
stage, this flow is modified by the presence of the plates (as it happens in Ref.[18] for the field in an initial thermal
state) until reaching the (steady) long-time regime.
Therefore, as the walls of the (hypothetical) oven are held at di↵erent temperatures, the crucial point here is that

the modes representing traveling-waves from left to right (k > 0) will radiate at the inverse-temperature �

�,L

, while
the modes representing traveling-waves from right to left (k < 0) will radiate at the inverse-temperature �
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. Then,
the intrinsic non-equilibrium state for the field will be defined by the expectation values:
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where the typical expectation values for a thermal state (see Ref.[18]) are simply recovered by setting �
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.
More about the intrinsic non-equilibrium state is shown in Appendix A.
Considering this, for a general configuration, both terms of the expectation value of the components of the energy-

momentum tensor can be calculated by employing the Green function and the homogeneous solutions for the given
problem, obtaining the following expressions:
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parts of the total Hilbert space associated to the field
(Hϕ) and to the baths (HB), respectively.
Moreover, the last equation constitutes a generalization of

the expression considered in Ref. [43] for the calculation of
the pressure and also is in agreement with the separation of
contributions deduced in Refs. [20,25] for different specific
situations studied through a functional integral approach. It
is worth noting that in this case the thermal state of the baths
ensures separation, regardless of the field’s initial state.
However, the same splitting can be achieved if the field has
an initial thermal state, regardless of the state of the baths.
It is clear that the agreement between the calculations in

Refs. [41,43] (which mistakenly assume no contribution
from the volume elements to the field operator) and the
present ones relies on the fact that the physical quantities
of interest are constructed from derivatives of the field
operator. In this sense, if the field correlation could be
measured directly, both approaches would differ due to the
presence of the terms independent of the coordinates that
would enter the field correlation, making the latter finally
also depend on the volume elements’ initial state.
As a final comment, it is important to note that here

we are obtaining the splitting in the long-time regime, i.e.,
as a result of (and after) the dynamical transient evolution
from an uncorrelated and noninteracting initial situation.
Thus, the steady state achieved is closely related with the
establishment of a nonequilibrium energy exchange at a
constant (time-independent) rate between the different parts

of the total system (see Ref. [44] for a similar analysis on a
system characterized by a Langevin equation of motion).
In this sense, an analog splitting in a steady situation was
found in Ref. [45] by assuming a stationary regime in the
implementation of a steady canonical quantization scheme.
However, this is not deduced from an initial conditions’
problem, because the steadiness assumption is crucial for
the calculations and limits this approach to the case of
thermal states. On the other hand, our present approach,
without assuming a steady situation, gives the correct
framework to include arbitrary quantum states and address
more general scenarios in a consistent physical way.

A. Thermal baths’ contribution to the
energy-momentum tensor

We start by calculating the contribution to the expect-
ation values of the energy-momentum tensor associated to
the thermal baths, given by the second term in Eq. (22):

hT̂B;∞
μν ðxσ1ÞiB ≡

!
δμγδνα −

1

2
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"

×
1

2
hf∂γϕ̂

∞
B ðxσ1Þ; ∂αϕ̂

∞
B ðxσ1ÞgiB; ð23Þ

where fÂ; B̂g ¼ Â B̂þB̂ Â is the anticommutator of the
operators Â and B̂.
Considering Eq. (18), the derivative can be written as

∂μϕ̂
∞
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Z
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i
F̂∞
x0 ðω0Þ: ð24Þ

Therefore, the expectation value of the product of derivatives involves the correlation of the stochastic force operators.
These expectation values can be obtained from the definitions of the noise kernel and the stochastic force operator in
Eqs. (A7) and (A9), as done in Ref. [43]:

hfF̂∞
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Due to the delta functions, we obtain for the expectation value in the rhs of Eq. (23)
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Considering Eq. (A6), it can be easily proved that ωγðωÞ ¼ 2π
m JðωÞ. Moreover, from the definition of the refractive index

below Eq. (10) and given a cutoff function without poles for the spectral density JðωÞ, it can be shown that

ω2
PlωγðωÞjG2ðωÞj2 ¼ 2ReðnÞImðnÞ; ð27Þ
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where �7 are the homogeneous solutions associated to the homogeneous field equation and satisfying only the bound-
ary condition on each limit of the variable value’s interval, bb

0,x

0(�1) is the annihilation operator of the volume
element degree of freedom, while the over-lines are denoting Fourier transforms.

III. FORCE AND RADIATIVE HEAT EXCHANGE AT THE STEADY STATE

With the field operator at the steady state, we can evaluate both the Casimir force and the heat transfer between
two plates in an unified way by calculating the expectation values of the energy-momentum tensor operator. The
quantum version of the energy-momentum tensor is obtained by symmetrizing the classical expression after promoting
the field to a quantum operator, giving:
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As the field operator in the steady state is given by Eq.(5), by noting that the contribution associated to the volume
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. Therefore, the volume elements has no contribution to the expectations values of the energy-momentum
tensor. Moreover, as shown in Ref.[18], the expectation values of the annihilation and creation operators are zero
for thermal states, and we are considering thermal states for the baths. This turns to be enough to prove that the
expectation value of the energy-momentum tensor splits into two contributions, one associated to the initial conditions
of the field and the other one associated to the baths:
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where h...i
�,B

= Tr
�,B

(b⇢
IC,B

...), denoting that each trace is taken in the corresponding part of the total Hilbert space.
Nevertheless, while for the baths we assume thermal states, for the field we will consider an intrinsic non-equilibrium

state that takes into account the possibility for the initial free field to be in a state with net radiation going from
left to right. Although the configuration is surrounded by free space, it is of phenomenological interest to consider a
scenario where the configuration of plates is in contact with a general reservoir (i.e., the plates are inside an oven)
with its left and right walls located at x = �1 and x = +1 respectively and having each one at di↵erent (inverse)
temperature �

�,L

and �

�,R

. Initially, before the appearance of the plates, having this situation clearly generates an
intrinsic flow of heat from the hottest wall to the coldest one. After the appearance of the plates, during the transient
stage, this flow is modified by the presence of the plates (as it happens in Ref.[18] for the field in an initial thermal
state) until reaching the (steady) long-time regime.
Therefore, as the walls of the (hypothetical) oven are held at di↵erent temperatures, the crucial point here is that

the modes representing traveling-waves from left to right (k > 0) will radiate at the inverse-temperature �

�,L

, while
the modes representing traveling-waves from right to left (k < 0) will radiate at the inverse-temperature �

�,R

. Then,
the intrinsic non-equilibrium state for the field will be defined by the expectation values:
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where the typical expectation values for a thermal state (see Ref.[18]) are simply recovered by setting �

�,L

= �

�,R

.
More about the intrinsic non-equilibrium state is shown in Appendix A.
Considering this, for a general configuration, both terms of the expectation value of the components of the energy-

momentum tensor can be calculated by employing the Green function and the homogeneous solutions for the given
problem, obtaining the following expressions:
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where �7 are the homogeneous solutions associated to the homogeneous field equation and satisfying only the bound-
ary condition on each limit of the variable value’s interval, bb

0,x

0(�1) is the annihilation operator of the volume
element degree of freedom, while the over-lines are denoting Fourier transforms.

III. FORCE AND RADIATIVE HEAT EXCHANGE AT THE STEADY STATE

With the field operator at the steady state, we can evaluate both the Casimir force and the heat transfer between
two plates in an unified way by calculating the expectation values of the energy-momentum tensor operator. The
quantum version of the energy-momentum tensor is obtained by symmetrizing the classical expression after promoting
the field to a quantum operator, giving:
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As the field operator in the steady state is given by Eq.(5), by noting that the contribution associated to the volume
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. Therefore, the volume elements has no contribution to the expectations values of the energy-momentum
tensor. Moreover, as shown in Ref.[18], the expectation values of the annihilation and creation operators are zero
for thermal states, and we are considering thermal states for the baths. This turns to be enough to prove that the
expectation value of the energy-momentum tensor splits into two contributions, one associated to the initial conditions
of the field and the other one associated to the baths:
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where h...i
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= Tr
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...), denoting that each trace is taken in the corresponding part of the total Hilbert space.
Nevertheless, while for the baths we assume thermal states, for the field we will consider an intrinsic non-equilibrium

state that takes into account the possibility for the initial free field to be in a state with net radiation going from
left to right. Although the configuration is surrounded by free space, it is of phenomenological interest to consider a
scenario where the configuration of plates is in contact with a general reservoir (i.e., the plates are inside an oven)
with its left and right walls located at x = �1 and x = +1 respectively and having each one at di↵erent (inverse)
temperature �

�,L

and �

�,R

. Initially, before the appearance of the plates, having this situation clearly generates an
intrinsic flow of heat from the hottest wall to the coldest one. After the appearance of the plates, during the transient
stage, this flow is modified by the presence of the plates (as it happens in Ref.[18] for the field in an initial thermal
state) until reaching the (steady) long-time regime.
Therefore, as the walls of the (hypothetical) oven are held at di↵erent temperatures, the crucial point here is that

the modes representing traveling-waves from left to right (k > 0) will radiate at the inverse-temperature �

�,L

, while
the modes representing traveling-waves from right to left (k < 0) will radiate at the inverse-temperature �

�,R

. Then,
the intrinsic non-equilibrium state for the field will be defined by the expectation values:
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where the typical expectation values for a thermal state (see Ref.[18]) are simply recovered by setting �
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�,R

.
More about the intrinsic non-equilibrium state is shown in Appendix A.
Considering this, for a general configuration, both terms of the expectation value of the components of the energy-

momentum tensor can be calculated by employing the Green function and the homogeneous solutions for the given
problem, obtaining the following expressions:
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where �7 are the homogeneous solutions associated to the homogeneous field equation and satisfying only the bound-
ary condition on each limit of the variable value’s interval, bb
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0(�1) is the annihilation operator of the volume
element degree of freedom, while the over-lines are denoting Fourier transforms.

III. FORCE AND RADIATIVE HEAT EXCHANGE AT THE STEADY STATE

With the field operator at the steady state, we can evaluate both the Casimir force and the heat transfer between
two plates in an unified way by calculating the expectation values of the energy-momentum tensor operator. The
quantum version of the energy-momentum tensor is obtained by symmetrizing the classical expression after promoting
the field to a quantum operator, giving:
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As the field operator in the steady state is given by Eq.(5), by noting that the contribution associated to the volume
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. Therefore, the volume elements has no contribution to the expectations values of the energy-momentum
tensor. Moreover, as shown in Ref.[18], the expectation values of the annihilation and creation operators are zero
for thermal states, and we are considering thermal states for the baths. This turns to be enough to prove that the
expectation value of the energy-momentum tensor splits into two contributions, one associated to the initial conditions
of the field and the other one associated to the baths:
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Nevertheless, while for the baths we assume thermal states, for the field we will consider an intrinsic non-equilibrium

state that takes into account the possibility for the initial free field to be in a state with net radiation going from
left to right. Although the configuration is surrounded by free space, it is of phenomenological interest to consider a
scenario where the configuration of plates is in contact with a general reservoir (i.e., the plates are inside an oven)
with its left and right walls located at x = �1 and x = +1 respectively and having each one at di↵erent (inverse)
temperature �
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and �
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. Initially, before the appearance of the plates, having this situation clearly generates an
intrinsic flow of heat from the hottest wall to the coldest one. After the appearance of the plates, during the transient
stage, this flow is modified by the presence of the plates (as it happens in Ref.[18] for the field in an initial thermal
state) until reaching the (steady) long-time regime.
Therefore, as the walls of the (hypothetical) oven are held at di↵erent temperatures, the crucial point here is that

the modes representing traveling-waves from left to right (k > 0) will radiate at the inverse-temperature �
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the modes representing traveling-waves from right to left (k < 0) will radiate at the inverse-temperature �
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. Then,
the intrinsic non-equilibrium state for the field will be defined by the expectation values:
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where the typical expectation values for a thermal state (see Ref.[18]) are simply recovered by setting �
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More about the intrinsic non-equilibrium state is shown in Appendix A.
Considering this, for a general configuration, both terms of the expectation value of the components of the energy-

momentum tensor can be calculated by employing the Green function and the homogeneous solutions for the given
problem, obtaining the following expressions:
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Initial	free	field	fluctuations:
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where in the initial conditions’ contribution we have used the notation that �
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(x) = �>
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However, for a specific material configuration the homogeneous solutions � (from which the Green function can be

constructed in a straightforward way) have to be calculated. If we consider a configuration of two plates of thickness
d

L,R

respectively and di↵erent homogeneous materials separated by a distance a and surrounded by vacuum, those
solutions � can be determined easily (see Ref.[18]). As we are considering a non-equilibrium situation, the Casimir
force will be calculated from the expectation value of the xx�component of the energy-momentum tensor, evaluated
in the region between the plates and substracting it with the same quantity in absence of the plates configuration.
This prescription is exactly the Casimir prescription for regularizing the expression of the force, that here we apply
for a non-equilibrium situation. It is worth noting that the method employing the radiation pressures at each sides
of one of the plates (as it is done for instance in Ref.[18] and references therein) is not applicable for this situation
since it gives an incorrect regularization for the force and, moreover, di↵erent values of the force acting each plate.
However, we can say that both approaches agree when the same state (thermal or not) is considered for each plate
and for all the modes of the initial conditions’ contribution (as it happens in Ref.[18]). Therefore, the Casimir force
is given by:
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and the coe�cients for the plates configuration C
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However, for a specific material configuration the homogeneous solutions � (from which the Green function can be

constructed in a straightforward way) have to be calculated. If we consider a configuration of two plates of thickness
d

L,R

respectively and di↵erent homogeneous materials separated by a distance a and surrounded by vacuum, those
solutions � can be determined easily (see Ref.[18]). As we are considering a non-equilibrium situation, the Casimir
force will be calculated from the expectation value of the xx�component of the energy-momentum tensor, evaluated
in the region between the plates and substracting it with the same quantity in absence of the plates configuration.
This prescription is exactly the Casimir prescription for regularizing the expression of the force, that here we apply
for a non-equilibrium situation. It is worth noting that the method employing the radiation pressures at each sides
of one of the plates (as it is done for instance in Ref.[18] and references therein) is not applicable for this situation
since it gives an incorrect regularization for the force and, moreover, di↵erent values of the force acting each plate.
However, we can say that both approaches agree when the same state (thermal or not) is considered for each plate
and for all the modes of the initial conditions’ contribution (as it happens in Ref.[18]). Therefore, the Casimir force
is given by:
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Casimir	force

Casimir’s	prescription	for	regularization

Expectation	value	for	initial	state	of	the	field	in	
absence	of	material	bodies	(Thermal	or	not)

Heat	flux

8

It is worth noting that each contribution results symmetric under the interchange of the subscripts L and R, which
means that the force has the same absolute value for both plates (with opposite signs on each one) and also that the
inverted configuration of plates and oven’s walls provides the same forces.

In analogy, the heat between the plates is calculated as the expectation value of the Poynting vector in the region
between the plates. In 1+1 dimensions, the Poynting vector has only one component corresponding to minus the
x0�component of the energy-momentum tensor. Then, the heat presents the same structure of contributions as the
Casimir force:
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where each contribution is given by:
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In this case (contrary to what happens to the force), the interchange of L and R is antisymmetric in any of the
contributions, denoting the fact that if the configuration of plates and oven’s walls is reversed, the flux of heat goes
in the opposite direction as it is expected.

Eqs.(14)-(19) are the main results that we will analyze in the relevant (limit)-cases in order to study which is the
e↵ect of thickness in the total expressions for both, the force and heat in the non-equilibrium scenario.

Nevertheless, we get a simpler expression for the total heat by employing a relation between parts of the integrands
regarding the materials that are based on the fact that in equilibrium (�
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this gives us a relation between the part of the integrands in Eqs.(18) and (19) involving the material properties since
the thermal factors are the same for every term. Then, using this relation we can write the total heat (in general) by
mixing the contributions,
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where �7 are the homogeneous solutions associated to the homogeneous field equation and satisfying only the bound-
ary condition on each limit of the variable value’s interval, bb

0,x

0(�1) is the annihilation operator of the volume
element degree of freedom, while the over-lines are denoting Fourier transforms.

III. FORCE AND RADIATIVE HEAT EXCHANGE AT THE STEADY STATE

With the field operator at the steady state, we can evaluate both the Casimir force and the heat transfer between
two plates in an unified way by calculating the expectation values of the energy-momentum tensor operator. The
quantum version of the energy-momentum tensor is obtained by symmetrizing the classical expression after promoting
the field to a quantum operator, giving:
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As the field operator in the steady state is given by Eq.(5), by noting that the contribution associated to the volume

elements is independent of time and space, we have that for the derivatives holds @
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. Therefore, the volume elements has no contribution to the expectations values of the energy-momentum
tensor. Moreover, as shown in Ref.[18], the expectation values of the annihilation and creation operators are zero
for thermal states, and we are considering thermal states for the baths. This turns to be enough to prove that the
expectation value of the energy-momentum tensor splits into two contributions, one associated to the initial conditions
of the field and the other one associated to the baths:
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where h...i
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...), denoting that each trace is taken in the corresponding part of the total Hilbert space.
Nevertheless, while for the baths we assume thermal states, for the field we will consider an intrinsic non-equilibrium

state that takes into account the possibility for the initial free field to be in a state with net radiation going from
left to right. Although the configuration is surrounded by free space, it is of phenomenological interest to consider a
scenario where the configuration of plates is in contact with a general reservoir (i.e., the plates are inside an oven)
with its left and right walls located at x = �1 and x = +1 respectively and having each one at di↵erent (inverse)
temperature �

�,L

and �

�,R

. Initially, before the appearance of the plates, having this situation clearly generates an
intrinsic flow of heat from the hottest wall to the coldest one. After the appearance of the plates, during the transient
stage, this flow is modified by the presence of the plates (as it happens in Ref.[18] for the field in an initial thermal
state) until reaching the (steady) long-time regime.
Therefore, as the walls of the (hypothetical) oven are held at di↵erent temperatures, the crucial point here is that

the modes representing traveling-waves from left to right (k > 0) will radiate at the inverse-temperature �
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, while
the modes representing traveling-waves from right to left (k < 0) will radiate at the inverse-temperature �
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. Then,
the intrinsic non-equilibrium state for the field will be defined by the expectation values:
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where the typical expectation values for a thermal state (see Ref.[18]) are simply recovered by setting �

�,L

= �
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.
More about the intrinsic non-equilibrium state is shown in Appendix A.
Considering this, for a general configuration, both terms of the expectation value of the components of the energy-

momentum tensor can be calculated by employing the Green function and the homogeneous solutions for the given
problem, obtaining the following expressions:
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where �7 are the homogeneous solutions associated to the homogeneous field equation and satisfying only the bound-
ary condition on each limit of the variable value’s interval, bb

0,x

0(�1) is the annihilation operator of the volume
element degree of freedom, while the over-lines are denoting Fourier transforms.

III. FORCE AND RADIATIVE HEAT EXCHANGE AT THE STEADY STATE

With the field operator at the steady state, we can evaluate both the Casimir force and the heat transfer between
two plates in an unified way by calculating the expectation values of the energy-momentum tensor operator. The
quantum version of the energy-momentum tensor is obtained by symmetrizing the classical expression after promoting
the field to a quantum operator, giving:
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As the field operator in the steady state is given by Eq.(5), by noting that the contribution associated to the volume
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. Therefore, the volume elements has no contribution to the expectations values of the energy-momentum
tensor. Moreover, as shown in Ref.[18], the expectation values of the annihilation and creation operators are zero
for thermal states, and we are considering thermal states for the baths. This turns to be enough to prove that the
expectation value of the energy-momentum tensor splits into two contributions, one associated to the initial conditions
of the field and the other one associated to the baths:
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where h...i
�,B

= Tr
�,B

(b⇢
IC,B

...), denoting that each trace is taken in the corresponding part of the total Hilbert space.
Nevertheless, while for the baths we assume thermal states, for the field we will consider an intrinsic non-equilibrium

state that takes into account the possibility for the initial free field to be in a state with net radiation going from
left to right. Although the configuration is surrounded by free space, it is of phenomenological interest to consider a
scenario where the configuration of plates is in contact with a general reservoir (i.e., the plates are inside an oven)
with its left and right walls located at x = �1 and x = +1 respectively and having each one at di↵erent (inverse)
temperature �

�,L

and �

�,R

. Initially, before the appearance of the plates, having this situation clearly generates an
intrinsic flow of heat from the hottest wall to the coldest one. After the appearance of the plates, during the transient
stage, this flow is modified by the presence of the plates (as it happens in Ref.[18] for the field in an initial thermal
state) until reaching the (steady) long-time regime.
Therefore, as the walls of the (hypothetical) oven are held at di↵erent temperatures, the crucial point here is that

the modes representing traveling-waves from left to right (k > 0) will radiate at the inverse-temperature �

�,L

, while
the modes representing traveling-waves from right to left (k < 0) will radiate at the inverse-temperature �

�,R

. Then,
the intrinsic non-equilibrium state for the field will be defined by the expectation values:
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where the typical expectation values for a thermal state (see Ref.[18]) are simply recovered by setting �
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.
More about the intrinsic non-equilibrium state is shown in Appendix A.
Considering this, for a general configuration, both terms of the expectation value of the components of the energy-

momentum tensor can be calculated by employing the Green function and the homogeneous solutions for the given
problem, obtaining the following expressions:
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FIG. 3. Normalized total heat with respect to the blackbody radiation impinging (d = 0) as a function of the width of
the plates for a right temperature T�,R = TB,R = 300 K and di↵erent left temperatures T�,L = TB,L. Parameters are
�L,R = 10�3 nm�1, !0,i = 10�1 nm�1, !Pl,i = 10�1 nm�1. The dashed vertical lines corresponds to the value of the plasma
wavelength �Pl ⌘ 2⇡c

!Pl
⇡ 63 nm valid for both plates. a = 100 nm.

measured by adjusting the physical parameters of the configuration (materials’ properties and temperatures) in the
appropriate way.

Moreover, it is worth noting that, on the one hand, for d = 0 (corresponding to the left side of the Fig.2) we
have Q

B

1 ⌘ 0 while Q

IC

1 6= 0, giving the value corresponding to the heat transfer between to distant objects at given
temperatures T

L

, T

R

, which is the one given by Stefan’s law for heat exchange between two blackbodies (Eq.(A1)).
On the other hand, for d ! +1 (corresponding to the right side of Fig.2), we have that Q

IC

1 ⌘ 0, while Q

B

1 gives
Landauer-like formula expressed in Eq.(26).

Considering this, we can analyze the normalized total heat flux between the plates resulting from these contributions
at di↵erent separation distances a, obtaining Fig.3 for T

�,L

= T

B,L

⌘ T

L

and T

�,R

= T

B,R

⌘ T

R

, with T

L

> T

R

. The
normalization is with respect to the blackbody flux corresponding to the expressions for d = 0.

From the chosen normalization and previous comments about each contribution for d = 0 and d ! +1, on one
hand, we can identify the left value of each curves as the blackbody heat exchange between the walls of the big oven
where the configuration of plates will take place, i.e., they correspond to Q

IC

1(d = 0) for the di↵erent temperature
di↵erences and they are equal to 1 due to the chosen normalization. As this value is independent of the separation a,
it is appropriate to take this criterion for normalizing the total heat in Fig.3. However, it is worth noting that for each
temperature di↵erence, the absolute values of the total heat even at d = 0 are di↵erent. On the other hand, the right
value of the curves correspond to Q

B

1(d ! +1). The graph then can be interpreted as the competition between both
contributions for di↵erent values of the thickness d. It is worth noting that this competition gives rise to a minimum
of the total heat transfer for a given thickness in the scale of the separation of the plates. Physically, the appearance
of the minimum is related to the fact that the plates emitting radiation also act as a shield of the outside radiation
coming from the walls of the oven. This behavior is observed when the thickness of the plates d is larger than the
plasma wavelength (�

Pl

⌘ 2⇡c

!Pl
) for the material forming the plates, which in our case corresponds to 63nm. Then,

the net result between how much radiation coming from the walls is screened by the plates and how much is emitted
by them gives the total heat transfer at each thickness d. Thus, for small values of the thickness (with respect to the
separation a), we observe that the plates screen more than they emit in the gap, giving a decrease in the heat flux.
As the plates get thicker, the screening is increased (decreasing in the gap the amount of radiation coming from the
walls of the oven) but also the radiation emitted by the plates to the gap is enhanced. For a given thickness d, the
radiation emitted overcome the screening and the net heat transfer between the plates stop decreasing and begins to
increase until the asymptotic value for d ! +1, defined only by the radiation emitted by the plates. The scale at
which the value of the heat di↵ers in less than 5% is when the thickness is around 107nm, but it gets longer as the
separation a increases.

Moreover, although the attenuation of the heat flux with respect to the infinite-thickness (d ! +1) value is of
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for each contribution.
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Appendix A: Intrinsic Non-Equilibrium Initial State of the Field

This appendix is devoted to comment some of the properties of the mentioned ‘intrinsic non-equilibrium state’ for
the initial state of the field. Defined by the expectation values given in Eq.(11), the state basically represents the net
radiation flux given in a big oven with its vertical walls at di↵erent temperature �

�,L

and �

�,R

respectively.

Considering that the annihilation and creation operators for the initial conditions’ contribution (ba
k

(�1),ba†
k

(�1))
are the ones of the free field, we can calculate the expectation value of the Poynting vector without the presence of the

plates (i.e., free space) for the intrinsic non-equilibrium state. As in this case is also valid that
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and having the field operator given by an expression of the form of Eq.(6) but with the field modes � replaced by
plane waves e±ikx then, by using Eq.(11), we find:
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Both integrals are easily done as in Ref.[24], giving:
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which have the thermal dependence of the 1+1-dimensional version of Stefan’s law for the heat exchange through
blackbody radiation between two bodies at temperatures T

�,L

, T

�,R

. This is the crucial point that allow us to interpret
the state defined by Eq.(11) as a non-equilibrium state since it gives a heat flux even in free space. Moreover, since
the radiation is blackbody-like, which is far-field radiation, we can think that all the space is inside a big oven with
its walls at x = ±1 held at di↵erent temperatures T

�,L

, T

�,R

, causing that there is net heat transfer by radiation
going from the hottest side to the other one. In other words, the intrinsic non-equilibrium state represents the state
of the field when there are distant-sources in both sides emitting radiation at given di↵erent temperatures. Is clear
that when T

�,L

= T

�,R

, the Poynting vector for free space vanishes.
On the other hand, the energy density for this state is given by:

D
b
T

Free

00

E

�

=
D
b
T

Free

xx

E

�

=

Z
+1

0

dk k


coth

✓
�

�,L

k

2

◆
+ coth

✓
�

�,R

k

2

◆�
, (A3)

which is the typical expression for the energy density for a thermal state in free space, fully recognizable when setting
T

�,L

= T

�,R

.

Appendix B: Coe�cients

This Appendix is devoted to give the expressions of the coe�cients that appears in the contributions to the Casimir
force and the heat between the plates. For the given configuration of finite width plates (d

L,R

), the boundary
conditions on the modes were continuity of the mode and its spatial derivative at the interfaces between the material
slabs and the surrounding vacuum (see Ref.[18] and the references therein). The coe�cients then follow:

(										- )

Modes	traveling	from	left	to	right	(k>0)
Modes	traveling	from	right	to	left	(k<0)
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where �7 are the homogeneous solutions associated to the homogeneous field equation and satisfying only the bound-
ary condition on each limit of the variable value’s interval, bb

0,x

0(�1) is the annihilation operator of the volume
element degree of freedom, while the over-lines are denoting Fourier transforms.

III. FORCE AND RADIATIVE HEAT EXCHANGE AT THE STEADY STATE

With the field operator at the steady state, we can evaluate both the Casimir force and the heat transfer between
two plates in an unified way by calculating the expectation values of the energy-momentum tensor operator. The
quantum version of the energy-momentum tensor is obtained by symmetrizing the classical expression after promoting
the field to a quantum operator, giving:
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As the field operator in the steady state is given by Eq.(5), by noting that the contribution associated to the volume
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. Therefore, the volume elements has no contribution to the expectations values of the energy-momentum
tensor. Moreover, as shown in Ref.[18], the expectation values of the annihilation and creation operators are zero
for thermal states, and we are considering thermal states for the baths. This turns to be enough to prove that the
expectation value of the energy-momentum tensor splits into two contributions, one associated to the initial conditions
of the field and the other one associated to the baths:
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where h...i
�,B

= Tr
�,B

(b⇢
IC,B

...), denoting that each trace is taken in the corresponding part of the total Hilbert space.
Nevertheless, while for the baths we assume thermal states, for the field we will consider an intrinsic non-equilibrium

state that takes into account the possibility for the initial free field to be in a state with net radiation going from
left to right. Although the configuration is surrounded by free space, it is of phenomenological interest to consider a
scenario where the configuration of plates is in contact with a general reservoir (i.e., the plates are inside an oven)
with its left and right walls located at x = �1 and x = +1 respectively and having each one at di↵erent (inverse)
temperature �

�,L

and �

�,R

. Initially, before the appearance of the plates, having this situation clearly generates an
intrinsic flow of heat from the hottest wall to the coldest one. After the appearance of the plates, during the transient
stage, this flow is modified by the presence of the plates (as it happens in Ref.[18] for the field in an initial thermal
state) until reaching the (steady) long-time regime.
Therefore, as the walls of the (hypothetical) oven are held at di↵erent temperatures, the crucial point here is that

the modes representing traveling-waves from left to right (k > 0) will radiate at the inverse-temperature �

�,L

, while
the modes representing traveling-waves from right to left (k < 0) will radiate at the inverse-temperature �

�,R

. Then,
the intrinsic non-equilibrium state for the field will be defined by the expectation values:
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where the typical expectation values for a thermal state (see Ref.[18]) are simply recovered by setting �

�,L

= �

�,R

.
More about the intrinsic non-equilibrium state is shown in Appendix A.
Considering this, for a general configuration, both terms of the expectation value of the components of the energy-

momentum tensor can be calculated by employing the Green function and the homogeneous solutions for the given
problem, obtaining the following expressions:
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where �7 are the homogeneous solutions associated to the homogeneous field equation and satisfying only the bound-
ary condition on each limit of the variable value’s interval, bb

0,x

0(�1) is the annihilation operator of the volume
element degree of freedom, while the over-lines are denoting Fourier transforms.

III. FORCE AND RADIATIVE HEAT EXCHANGE AT THE STEADY STATE

With the field operator at the steady state, we can evaluate both the Casimir force and the heat transfer between
two plates in an unified way by calculating the expectation values of the energy-momentum tensor operator. The
quantum version of the energy-momentum tensor is obtained by symmetrizing the classical expression after promoting
the field to a quantum operator, giving:
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. Therefore, the volume elements has no contribution to the expectations values of the energy-momentum
tensor. Moreover, as shown in Ref.[18], the expectation values of the annihilation and creation operators are zero
for thermal states, and we are considering thermal states for the baths. This turns to be enough to prove that the
expectation value of the energy-momentum tensor splits into two contributions, one associated to the initial conditions
of the field and the other one associated to the baths:
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Nevertheless, while for the baths we assume thermal states, for the field we will consider an intrinsic non-equilibrium

state that takes into account the possibility for the initial free field to be in a state with net radiation going from
left to right. Although the configuration is surrounded by free space, it is of phenomenological interest to consider a
scenario where the configuration of plates is in contact with a general reservoir (i.e., the plates are inside an oven)
with its left and right walls located at x = �1 and x = +1 respectively and having each one at di↵erent (inverse)
temperature �
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and �
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. Initially, before the appearance of the plates, having this situation clearly generates an
intrinsic flow of heat from the hottest wall to the coldest one. After the appearance of the plates, during the transient
stage, this flow is modified by the presence of the plates (as it happens in Ref.[18] for the field in an initial thermal
state) until reaching the (steady) long-time regime.
Therefore, as the walls of the (hypothetical) oven are held at di↵erent temperatures, the crucial point here is that

the modes representing traveling-waves from left to right (k > 0) will radiate at the inverse-temperature �
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, while
the modes representing traveling-waves from right to left (k < 0) will radiate at the inverse-temperature �
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. Then,
the intrinsic non-equilibrium state for the field will be defined by the expectation values:
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where the typical expectation values for a thermal state (see Ref.[18]) are simply recovered by setting �
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.
More about the intrinsic non-equilibrium state is shown in Appendix A.
Considering this, for a general configuration, both terms of the expectation value of the components of the energy-

momentum tensor can be calculated by employing the Green function and the homogeneous solutions for the given
problem, obtaining the following expressions:
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where �7 are the homogeneous solutions associated to the homogeneous field equation and satisfying only the bound-
ary condition on each limit of the variable value’s interval, bb

0,x

0(�1) is the annihilation operator of the volume
element degree of freedom, while the over-lines are denoting Fourier transforms.

III. FORCE AND RADIATIVE HEAT EXCHANGE AT THE STEADY STATE

With the field operator at the steady state, we can evaluate both the Casimir force and the heat transfer between
two plates in an unified way by calculating the expectation values of the energy-momentum tensor operator. The
quantum version of the energy-momentum tensor is obtained by symmetrizing the classical expression after promoting
the field to a quantum operator, giving:
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As the field operator in the steady state is given by Eq.(5), by noting that the contribution associated to the volume
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. Therefore, the volume elements has no contribution to the expectations values of the energy-momentum
tensor. Moreover, as shown in Ref.[18], the expectation values of the annihilation and creation operators are zero
for thermal states, and we are considering thermal states for the baths. This turns to be enough to prove that the
expectation value of the energy-momentum tensor splits into two contributions, one associated to the initial conditions
of the field and the other one associated to the baths:
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where h...i
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= Tr
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...), denoting that each trace is taken in the corresponding part of the total Hilbert space.
Nevertheless, while for the baths we assume thermal states, for the field we will consider an intrinsic non-equilibrium

state that takes into account the possibility for the initial free field to be in a state with net radiation going from
left to right. Although the configuration is surrounded by free space, it is of phenomenological interest to consider a
scenario where the configuration of plates is in contact with a general reservoir (i.e., the plates are inside an oven)
with its left and right walls located at x = �1 and x = +1 respectively and having each one at di↵erent (inverse)
temperature �

�,L

and �

�,R

. Initially, before the appearance of the plates, having this situation clearly generates an
intrinsic flow of heat from the hottest wall to the coldest one. After the appearance of the plates, during the transient
stage, this flow is modified by the presence of the plates (as it happens in Ref.[18] for the field in an initial thermal
state) until reaching the (steady) long-time regime.
Therefore, as the walls of the (hypothetical) oven are held at di↵erent temperatures, the crucial point here is that

the modes representing traveling-waves from left to right (k > 0) will radiate at the inverse-temperature �

�,L

, while
the modes representing traveling-waves from right to left (k < 0) will radiate at the inverse-temperature �
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. Then,
the intrinsic non-equilibrium state for the field will be defined by the expectation values:
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where the typical expectation values for a thermal state (see Ref.[18]) are simply recovered by setting �
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.
More about the intrinsic non-equilibrium state is shown in Appendix A.
Considering this, for a general configuration, both terms of the expectation value of the components of the energy-

momentum tensor can be calculated by employing the Green function and the homogeneous solutions for the given
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where �7 are the homogeneous solutions associated to the homogeneous field equation and satisfying only the bound-
ary condition on each limit of the variable value’s interval, bb

0,x

0(�1) is the annihilation operator of the volume
element degree of freedom, while the over-lines are denoting Fourier transforms.

III. FORCE AND RADIATIVE HEAT EXCHANGE AT THE STEADY STATE

With the field operator at the steady state, we can evaluate both the Casimir force and the heat transfer between
two plates in an unified way by calculating the expectation values of the energy-momentum tensor operator. The
quantum version of the energy-momentum tensor is obtained by symmetrizing the classical expression after promoting
the field to a quantum operator, giving:

b
T

µ⌫

(x�

1

, t

0

) ⌘
✓
�

�

µ

�

↵

⌫

� 1

2
⌘

µ⌫

⌘

�↵

◆
1

2

⇣
@

�

b
�(x�

1

) @
↵

b
�(x�

1

) + @

↵

b
�(x�

1

) @
�

b
�(x�

1

)
⌘
. (9)

As the field operator in the steady state is given by Eq.(5), by noting that the contribution associated to the volume
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. Therefore, the volume elements has no contribution to the expectations values of the energy-momentum
tensor. Moreover, as shown in Ref.[18], the expectation values of the annihilation and creation operators are zero
for thermal states, and we are considering thermal states for the baths. This turns to be enough to prove that the
expectation value of the energy-momentum tensor splits into two contributions, one associated to the initial conditions
of the field and the other one associated to the baths:
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...), denoting that each trace is taken in the corresponding part of the total Hilbert space.
Nevertheless, while for the baths we assume thermal states, for the field we will consider an intrinsic non-equilibrium

state that takes into account the possibility for the initial free field to be in a state with net radiation going from
left to right. Although the configuration is surrounded by free space, it is of phenomenological interest to consider a
scenario where the configuration of plates is in contact with a general reservoir (i.e., the plates are inside an oven)
with its left and right walls located at x = �1 and x = +1 respectively and having each one at di↵erent (inverse)
temperature �
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and �

�,R

. Initially, before the appearance of the plates, having this situation clearly generates an
intrinsic flow of heat from the hottest wall to the coldest one. After the appearance of the plates, during the transient
stage, this flow is modified by the presence of the plates (as it happens in Ref.[18] for the field in an initial thermal
state) until reaching the (steady) long-time regime.
Therefore, as the walls of the (hypothetical) oven are held at di↵erent temperatures, the crucial point here is that

the modes representing traveling-waves from left to right (k > 0) will radiate at the inverse-temperature �

�,L

, while
the modes representing traveling-waves from right to left (k < 0) will radiate at the inverse-temperature �

�,R

. Then,
the intrinsic non-equilibrium state for the field will be defined by the expectation values:
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where the typical expectation values for a thermal state (see Ref.[18]) are simply recovered by setting �
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.
More about the intrinsic non-equilibrium state is shown in Appendix A.
Considering this, for a general configuration, both terms of the expectation value of the components of the energy-

momentum tensor can be calculated by employing the Green function and the homogeneous solutions for the given
problem, obtaining the following expressions:
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where �7 are the homogeneous solutions associated to the homogeneous field equation and satisfying only the bound-
ary condition on each limit of the variable value’s interval, bb
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0(�1) is the annihilation operator of the volume
element degree of freedom, while the over-lines are denoting Fourier transforms.

III. FORCE AND RADIATIVE HEAT EXCHANGE AT THE STEADY STATE

With the field operator at the steady state, we can evaluate both the Casimir force and the heat transfer between
two plates in an unified way by calculating the expectation values of the energy-momentum tensor operator. The
quantum version of the energy-momentum tensor is obtained by symmetrizing the classical expression after promoting
the field to a quantum operator, giving:
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As the field operator in the steady state is given by Eq.(5), by noting that the contribution associated to the volume
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. Therefore, the volume elements has no contribution to the expectations values of the energy-momentum
tensor. Moreover, as shown in Ref.[18], the expectation values of the annihilation and creation operators are zero
for thermal states, and we are considering thermal states for the baths. This turns to be enough to prove that the
expectation value of the energy-momentum tensor splits into two contributions, one associated to the initial conditions
of the field and the other one associated to the baths:
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...), denoting that each trace is taken in the corresponding part of the total Hilbert space.
Nevertheless, while for the baths we assume thermal states, for the field we will consider an intrinsic non-equilibrium

state that takes into account the possibility for the initial free field to be in a state with net radiation going from
left to right. Although the configuration is surrounded by free space, it is of phenomenological interest to consider a
scenario where the configuration of plates is in contact with a general reservoir (i.e., the plates are inside an oven)
with its left and right walls located at x = �1 and x = +1 respectively and having each one at di↵erent (inverse)
temperature �
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and �

�,R

. Initially, before the appearance of the plates, having this situation clearly generates an
intrinsic flow of heat from the hottest wall to the coldest one. After the appearance of the plates, during the transient
stage, this flow is modified by the presence of the plates (as it happens in Ref.[18] for the field in an initial thermal
state) until reaching the (steady) long-time regime.
Therefore, as the walls of the (hypothetical) oven are held at di↵erent temperatures, the crucial point here is that

the modes representing traveling-waves from left to right (k > 0) will radiate at the inverse-temperature �
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, while
the modes representing traveling-waves from right to left (k < 0) will radiate at the inverse-temperature �
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the intrinsic non-equilibrium state for the field will be defined by the expectation values:
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where the typical expectation values for a thermal state (see Ref.[18]) are simply recovered by setting �
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More about the intrinsic non-equilibrium state is shown in Appendix A.
Considering this, for a general configuration, both terms of the expectation value of the components of the energy-

momentum tensor can be calculated by employing the Green function and the homogeneous solutions for the given
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where in the initial conditions’ contribution we have used the notation that �
k

(x) = �>

�ik

(x) for k > 0 while
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k
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�ik

(x))⇤ for k < 0, and !

k

= |k|.
However, for a specific material configuration the homogeneous solutions � (from which the Green function can be

constructed in a straightforward way) have to be calculated. If we consider a configuration of two plates of thickness
d

L,R

respectively and di↵erent homogeneous materials separated by a distance a and surrounded by vacuum, those
solutions � can be determined easily (see Ref.[18]). As we are considering a non-equilibrium situation, the Casimir
force will be calculated from the expectation value of the xx�component of the energy-momentum tensor, evaluated
in the region between the plates and substracting it with the same quantity in absence of the plates configuration.
This prescription is exactly the Casimir prescription for regularizing the expression of the force, that here we apply
for a non-equilibrium situation. It is worth noting that the method employing the radiation pressures at each sides
of one of the plates (as it is done for instance in Ref.[18] and references therein) is not applicable for this situation
since it gives an incorrect regularization for the force and, moreover, di↵erent values of the force acting each plate.
However, we can say that both approaches agree when the same state (thermal or not) is considered for each plate
and for all the modes of the initial conditions’ contribution (as it happens in Ref.[18]). Therefore, the Casimir force
is given by:
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However, for a specific material configuration the homogeneous solutions � (from which the Green function can be

constructed in a straightforward way) have to be calculated. If we consider a configuration of two plates of thickness
d
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respectively and di↵erent homogeneous materials separated by a distance a and surrounded by vacuum, those
solutions � can be determined easily (see Ref.[18]). As we are considering a non-equilibrium situation, the Casimir
force will be calculated from the expectation value of the xx�component of the energy-momentum tensor, evaluated
in the region between the plates and substracting it with the same quantity in absence of the plates configuration.
This prescription is exactly the Casimir prescription for regularizing the expression of the force, that here we apply
for a non-equilibrium situation. It is worth noting that the method employing the radiation pressures at each sides
of one of the plates (as it is done for instance in Ref.[18] and references therein) is not applicable for this situation
since it gives an incorrect regularization for the force and, moreover, di↵erent values of the force acting each plate.
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respectively and di↵erent homogeneous materials separated by a distance a and surrounded by vacuum, those
solutions � can be determined easily (see Ref.[18]). As we are considering a non-equilibrium situation, the Casimir
force will be calculated from the expectation value of the xx�component of the energy-momentum tensor, evaluated
in the region between the plates and substracting it with the same quantity in absence of the plates configuration.
This prescription is exactly the Casimir prescription for regularizing the expression of the force, that here we apply
for a non-equilibrium situation. It is worth noting that the method employing the radiation pressures at each sides
of one of the plates (as it is done for instance in Ref.[18] and references therein) is not applicable for this situation
since it gives an incorrect regularization for the force and, moreover, di↵erent values of the force acting each plate.
However, we can say that both approaches agree when the same state (thermal or not) is considered for each plate
and for all the modes of the initial conditions’ contribution (as it happens in Ref.[18]). Therefore, the Casimir force
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solutions � can be determined easily (see Ref.[18]). As we are considering a non-equilibrium situation, the Casimir
force will be calculated from the expectation value of the xx�component of the energy-momentum tensor, evaluated
in the region between the plates and substracting it with the same quantity in absence of the plates configuration.
This prescription is exactly the Casimir prescription for regularizing the expression of the force, that here we apply
for a non-equilibrium situation. It is worth noting that the method employing the radiation pressures at each sides
of one of the plates (as it is done for instance in Ref.[18] and references therein) is not applicable for this situation
since it gives an incorrect regularization for the force and, moreover, di↵erent values of the force acting each plate.
However, we can say that both approaches agree when the same state (thermal or not) is considered for each plate
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8

It is worth noting that each contribution results symmetric under the interchange of the subscripts L and R, which
means that the force has the same absolute value for both plates (with opposite signs on each one) and also that the
inverted configuration of plates and oven’s walls provides the same forces.

In analogy, the heat between the plates is calculated as the expectation value of the Poynting vector in the region
between the plates. In 1+1 dimensions, the Poynting vector has only one component corresponding to minus the
x0�component of the energy-momentum tensor. Then, the heat presents the same structure of contributions as the
Casimir force:
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In this case (contrary to what happens to the force), the interchange of L and R is antisymmetric in any of the
contributions, denoting the fact that if the configuration of plates and oven’s walls is reversed, the flux of heat goes
in the opposite direction as it is expected.

Eqs.(14)-(19) are the main results that we will analyze in the relevant (limit)-cases in order to study which is the
e↵ect of thickness in the total expressions for both, the force and heat in the non-equilibrium scenario.

Nevertheless, we get a simpler expression for the total heat by employing a relation between parts of the integrands
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this gives us a relation between the part of the integrands in Eqs.(18) and (19) involving the material properties since
the thermal factors are the same for every term. Then, using this relation we can write the total heat (in general) by
mixing the contributions,
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where �7 are the homogeneous solutions associated to the homogeneous field equation and satisfying only the bound-
ary condition on each limit of the variable value’s interval, bb

0,x

0(�1) is the annihilation operator of the volume
element degree of freedom, while the over-lines are denoting Fourier transforms.

III. FORCE AND RADIATIVE HEAT EXCHANGE AT THE STEADY STATE

With the field operator at the steady state, we can evaluate both the Casimir force and the heat transfer between
two plates in an unified way by calculating the expectation values of the energy-momentum tensor operator. The
quantum version of the energy-momentum tensor is obtained by symmetrizing the classical expression after promoting
the field to a quantum operator, giving:
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As the field operator in the steady state is given by Eq.(5), by noting that the contribution associated to the volume

elements is independent of time and space, we have that for the derivatives holds @
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. Therefore, the volume elements has no contribution to the expectations values of the energy-momentum
tensor. Moreover, as shown in Ref.[18], the expectation values of the annihilation and creation operators are zero
for thermal states, and we are considering thermal states for the baths. This turns to be enough to prove that the
expectation value of the energy-momentum tensor splits into two contributions, one associated to the initial conditions
of the field and the other one associated to the baths:
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where h...i
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= Tr
�,B

(b⇢
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...), denoting that each trace is taken in the corresponding part of the total Hilbert space.
Nevertheless, while for the baths we assume thermal states, for the field we will consider an intrinsic non-equilibrium

state that takes into account the possibility for the initial free field to be in a state with net radiation going from
left to right. Although the configuration is surrounded by free space, it is of phenomenological interest to consider a
scenario where the configuration of plates is in contact with a general reservoir (i.e., the plates are inside an oven)
with its left and right walls located at x = �1 and x = +1 respectively and having each one at di↵erent (inverse)
temperature �
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and �

�,R

. Initially, before the appearance of the plates, having this situation clearly generates an
intrinsic flow of heat from the hottest wall to the coldest one. After the appearance of the plates, during the transient
stage, this flow is modified by the presence of the plates (as it happens in Ref.[18] for the field in an initial thermal
state) until reaching the (steady) long-time regime.
Therefore, as the walls of the (hypothetical) oven are held at di↵erent temperatures, the crucial point here is that

the modes representing traveling-waves from left to right (k > 0) will radiate at the inverse-temperature �
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the modes representing traveling-waves from right to left (k < 0) will radiate at the inverse-temperature �
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. Then,
the intrinsic non-equilibrium state for the field will be defined by the expectation values:
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where the typical expectation values for a thermal state (see Ref.[18]) are simply recovered by setting �
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.
More about the intrinsic non-equilibrium state is shown in Appendix A.
Considering this, for a general configuration, both terms of the expectation value of the components of the energy-
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(Initial	scenario)
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where in the initial conditions’ contribution we have used the notation that �
k

(x) = �>

�ik

(x) for k > 0 while
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k

(x) = (�<

�ik

(x))⇤ for k < 0, and !

k

= |k|.
However, for a specific material configuration the homogeneous solutions � (from which the Green function can be

constructed in a straightforward way) have to be calculated. If we consider a configuration of two plates of thickness
d

L,R

respectively and di↵erent homogeneous materials separated by a distance a and surrounded by vacuum, those
solutions � can be determined easily (see Ref.[18]). As we are considering a non-equilibrium situation, the Casimir
force will be calculated from the expectation value of the xx�component of the energy-momentum tensor, evaluated
in the region between the plates and substracting it with the same quantity in absence of the plates configuration.
This prescription is exactly the Casimir prescription for regularizing the expression of the force, that here we apply
for a non-equilibrium situation. It is worth noting that the method employing the radiation pressures at each sides
of one of the plates (as it is done for instance in Ref.[18] and references therein) is not applicable for this situation
since it gives an incorrect regularization for the force and, moreover, di↵erent values of the force acting each plate.
However, we can say that both approaches agree when the same state (thermal or not) is considered for each plate
and for all the modes of the initial conditions’ contribution (as it happens in Ref.[18]). Therefore, the Casimir force
is given by:
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However, for a specific material configuration the homogeneous solutions � (from which the Green function can be

constructed in a straightforward way) have to be calculated. If we consider a configuration of two plates of thickness
d

L,R

respectively and di↵erent homogeneous materials separated by a distance a and surrounded by vacuum, those
solutions � can be determined easily (see Ref.[18]). As we are considering a non-equilibrium situation, the Casimir
force will be calculated from the expectation value of the xx�component of the energy-momentum tensor, evaluated
in the region between the plates and substracting it with the same quantity in absence of the plates configuration.
This prescription is exactly the Casimir prescription for regularizing the expression of the force, that here we apply
for a non-equilibrium situation. It is worth noting that the method employing the radiation pressures at each sides
of one of the plates (as it is done for instance in Ref.[18] and references therein) is not applicable for this situation
since it gives an incorrect regularization for the force and, moreover, di↵erent values of the force acting each plate.
However, we can say that both approaches agree when the same state (thermal or not) is considered for each plate
and for all the modes of the initial conditions’ contribution (as it happens in Ref.[18]). Therefore, the Casimir force
is given by:
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where we have used the fact that the factor containing the temperatures reads coth
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the boson occupation numbers for each temperature.
Therefore, in general, the total heat flux does not have a Landauer’s form, but each of the terms contributing has.

As we have written the total heat flux, all the terms are expressed in terms of the di↵erences between the occupation
numbers of each part and the occupation number in the right plate. This can be changed by using the identity
resulting from Eq.(20) in a di↵erent way, taking as reference another of the occupation numbers.

IV. IMPACT OF THICKNESS - ANALYTICAL RESULTS

Once we have obtained general expressions for both the Casimir force and the heat transfer between the plates
of finite width, we can recover di↵erent well-known results as limiting cases and analyze particular features to gain
intuition on the physics enclosed in the general formulas.

For the case of the Casimir force, part of the features were studied in Ref.[18] for the case when �
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⌘ �
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.
Now, we will summarize the relevant findings of that work and give novel generalizations of them based on the
introduction of the intrinsic non-equilibrium initial state for the field.

First, the result for materials without dissipation can be recovered since Im(n
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) ⌘ 0, which immediately gives
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⌘ 0 and the Casimir force is only due to the initial conditions contribution and the regularization
term. Given the intrinsic non-equilibrium state, the Casimir force in this case is given directly by the substraction of
Eqs. (A3) and (15), but considering real refraction indexes.

Moreover, the Lifshitz formula for the Casimir force can also be deduced from our general expressions. However,
there is a subtle point that must be considered. This is how to impose Lifshitz’s scenario (consisting in two half-spaces
at thermal equilibrium) in our expressions. On one hand, we have to take the infinite-thickness limit as d
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and, on the other hand, we have to impose that all the temperatures are equal, �
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This last subtle point is crucial for derivating the correct expression for the force between half-spaces from the
finite-thickness’ result, since for the latter situation, three contributions enter in the expression of the force: initial
conditions and baths contributions and the regularization term, each one with its own pair of temperatures. However,
when taking d
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! +1, the initial conditions’ term vanishes (h bT IC,1
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! 0), while the others two do not. As it
was shown in Ref.[18], for a half-spaces configuration, there will be no initial conditions’ contribution at the steady
state because there is no infinite-size empty regions anywhere. In this sense, the pressure calculated and also the
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Nonetheless, as we are introducing the intrinsic non-equilibrium initial state, we can go further and give also

an expression for the non-equilibrium version of Lifshitz’s formula, i.e., the force between two half-spaces when its
temperature are di↵erent between each other. To do this, we have not only to take the limit of infinite thickness
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equilibrium case, it is clear that in the non-equilibrium case the temperatures must be grouped in left and right
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which is the generalization of Lifshitz’s formula for the case of non-equilibrium, from which the usual Lifshitz’s formula
is obtained by simply setting �

L

= �

R

⌘ �.
It is worth noting that the chosen prescription to obtain the Casimir force in this non-equilibrium situation gives the

correct expression, while the approach in which the force is calculated from the di↵erence of the radiation pressures
at each side of a given plate, gives an incorrect result in this scenario but a correct one in the equilibrium case.



Casimir	force

7

D
b
T

B,1
µ⌫

(x)
E

B

=

Z
dx

0
C(x0)

Z
+1

�1
d!

!

2

2
Re(n

x

0) Im(n
x

0) coth

✓
�

B,x

0
!

2

◆

⇥
⇣ ⇥

�

0

µ

(�i!) + �

1

µ

@

x

⇤
G

Ret

(x, x0
,!)

⇥
�

0

⌫

i! + �

1

⌫

@

x

⇤
G

⇤
Ret

(x, x0
,!)

+
⇥
�

0

µ

(�i!) + �

1

µ

@

x

⇤
G

⇤
Ret

(x, x0
,!)

⇥
�

0

⌫

i! + �

1

⌫

@

x

⇤
G

Ret

(x, x0
,!)

� ⌘

µ⌫

⇥
!

2|G
Ret

(x, x0
,!)|2 � |@

x

G
Ret

(x, x0
,!)|2⇤

⌘
, (13)

where in the initial conditions’ contribution we have used the notation that �
k

(x) = �>

�ik

(x) for k > 0 while
�

k

(x) = (�<

�ik

(x))⇤ for k < 0, and !

k

= |k|.
However, for a specific material configuration the homogeneous solutions � (from which the Green function can be

constructed in a straightforward way) have to be calculated. If we consider a configuration of two plates of thickness
d
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respectively and di↵erent homogeneous materials separated by a distance a and surrounded by vacuum, those
solutions � can be determined easily (see Ref.[18]). As we are considering a non-equilibrium situation, the Casimir
force will be calculated from the expectation value of the xx�component of the energy-momentum tensor, evaluated
in the region between the plates and substracting it with the same quantity in absence of the plates configuration.
This prescription is exactly the Casimir prescription for regularizing the expression of the force, that here we apply
for a non-equilibrium situation. It is worth noting that the method employing the radiation pressures at each sides
of one of the plates (as it is done for instance in Ref.[18] and references therein) is not applicable for this situation
since it gives an incorrect regularization for the force and, moreover, di↵erent values of the force acting each plate.
However, we can say that both approaches agree when the same state (thermal or not) is considered for each plate
and for all the modes of the initial conditions’ contribution (as it happens in Ref.[18]). Therefore, the Casimir force
is given by:
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where in the initial conditions’ contribution we have used the notation that �
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However, for a specific material configuration the homogeneous solutions � (from which the Green function can be

constructed in a straightforward way) have to be calculated. If we consider a configuration of two plates of thickness
d

L,R

respectively and di↵erent homogeneous materials separated by a distance a and surrounded by vacuum, those
solutions � can be determined easily (see Ref.[18]). As we are considering a non-equilibrium situation, the Casimir
force will be calculated from the expectation value of the xx�component of the energy-momentum tensor, evaluated
in the region between the plates and substracting it with the same quantity in absence of the plates configuration.
This prescription is exactly the Casimir prescription for regularizing the expression of the force, that here we apply
for a non-equilibrium situation. It is worth noting that the method employing the radiation pressures at each sides
of one of the plates (as it is done for instance in Ref.[18] and references therein) is not applicable for this situation
since it gives an incorrect regularization for the force and, moreover, di↵erent values of the force acting each plate.
However, we can say that both approaches agree when the same state (thermal or not) is considered for each plate
and for all the modes of the initial conditions’ contribution (as it happens in Ref.[18]). Therefore, the Casimir force
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However, for a specific material configuration the homogeneous solutions � (from which the Green function can be

constructed in a straightforward way) have to be calculated. If we consider a configuration of two plates of thickness
d

L,R

respectively and di↵erent homogeneous materials separated by a distance a and surrounded by vacuum, those
solutions � can be determined easily (see Ref.[18]). As we are considering a non-equilibrium situation, the Casimir
force will be calculated from the expectation value of the xx�component of the energy-momentum tensor, evaluated
in the region between the plates and substracting it with the same quantity in absence of the plates configuration.
This prescription is exactly the Casimir prescription for regularizing the expression of the force, that here we apply
for a non-equilibrium situation. It is worth noting that the method employing the radiation pressures at each sides
of one of the plates (as it is done for instance in Ref.[18] and references therein) is not applicable for this situation
since it gives an incorrect regularization for the force and, moreover, di↵erent values of the force acting each plate.
However, we can say that both approaches agree when the same state (thermal or not) is considered for each plate
and for all the modes of the initial conditions’ contribution (as it happens in Ref.[18]). Therefore, the Casimir force
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However, for a specific material configuration the homogeneous solutions � (from which the Green function can be

constructed in a straightforward way) have to be calculated. If we consider a configuration of two plates of thickness
d
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respectively and di↵erent homogeneous materials separated by a distance a and surrounded by vacuum, those
solutions � can be determined easily (see Ref.[18]). As we are considering a non-equilibrium situation, the Casimir
force will be calculated from the expectation value of the xx�component of the energy-momentum tensor, evaluated
in the region between the plates and substracting it with the same quantity in absence of the plates configuration.
This prescription is exactly the Casimir prescription for regularizing the expression of the force, that here we apply
for a non-equilibrium situation. It is worth noting that the method employing the radiation pressures at each sides
of one of the plates (as it is done for instance in Ref.[18] and references therein) is not applicable for this situation
since it gives an incorrect regularization for the force and, moreover, di↵erent values of the force acting each plate.
However, we can say that both approaches agree when the same state (thermal or not) is considered for each plate
and for all the modes of the initial conditions’ contribution (as it happens in Ref.[18]). Therefore, the Casimir force
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However, for a specific material configuration the homogeneous solutions � (from which the Green function can be

constructed in a straightforward way) have to be calculated. If we consider a configuration of two plates of thickness
d

L,R

respectively and di↵erent homogeneous materials separated by a distance a and surrounded by vacuum, those
solutions � can be determined easily (see Ref.[18]). As we are considering a non-equilibrium situation, the Casimir
force will be calculated from the expectation value of the xx�component of the energy-momentum tensor, evaluated
in the region between the plates and substracting it with the same quantity in absence of the plates configuration.
This prescription is exactly the Casimir prescription for regularizing the expression of the force, that here we apply
for a non-equilibrium situation. It is worth noting that the method employing the radiation pressures at each sides
of one of the plates (as it is done for instance in Ref.[18] and references therein) is not applicable for this situation
since it gives an incorrect regularization for the force and, moreover, di↵erent values of the force acting each plate.
However, we can say that both approaches agree when the same state (thermal or not) is considered for each plate
and for all the modes of the initial conditions’ contribution (as it happens in Ref.[18]). Therefore, the Casimir force
is given by:
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However, for a specific material configuration the homogeneous solutions � (from which the Green function can be

constructed in a straightforward way) have to be calculated. If we consider a configuration of two plates of thickness
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L,R

respectively and di↵erent homogeneous materials separated by a distance a and surrounded by vacuum, those
solutions � can be determined easily (see Ref.[18]). As we are considering a non-equilibrium situation, the Casimir
force will be calculated from the expectation value of the xx�component of the energy-momentum tensor, evaluated
in the region between the plates and substracting it with the same quantity in absence of the plates configuration.
This prescription is exactly the Casimir prescription for regularizing the expression of the force, that here we apply
for a non-equilibrium situation. It is worth noting that the method employing the radiation pressures at each sides
of one of the plates (as it is done for instance in Ref.[18] and references therein) is not applicable for this situation
since it gives an incorrect regularization for the force and, moreover, di↵erent values of the force acting each plate.
However, we can say that both approaches agree when the same state (thermal or not) is considered for each plate
and for all the modes of the initial conditions’ contribution (as it happens in Ref.[18]). Therefore, the Casimir force
is given by:
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At	which	scale	the	force	for	is	approximately	the	infinite-thickness	value?	

What	means	“infinite-thickness”	in	an	experiment?

• Dielectric,	a =	100nm
• FTOTAL(d =	0)	=	0
• Maximum	value	at	equilibrium

(extra	momentum	exchange)

d ≈	1𝜇m	=	10	a
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It is worth noting that each contribution results symmetric under the interchange of the subscripts L and R, which
means that the force has the same absolute value for both plates (with opposite signs on each one) and also that the
inverted configuration of plates and oven’s walls provides the same forces.

In analogy, the heat between the plates is calculated as the expectation value of the Poynting vector in the region
between the plates. In 1+1 dimensions, the Poynting vector has only one component corresponding to minus the
x0�component of the energy-momentum tensor. Then, the heat presents the same structure of contributions as the
Casimir force:
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In this case (contrary to what happens to the force), the interchange of L and R is antisymmetric in any of the
contributions, denoting the fact that if the configuration of plates and oven’s walls is reversed, the flux of heat goes
in the opposite direction as it is expected.

Eqs.(14)-(19) are the main results that we will analyze in the relevant (limit)-cases in order to study which is the
e↵ect of thickness in the total expressions for both, the force and heat in the non-equilibrium scenario.

Nevertheless, we get a simpler expression for the total heat by employing a relation between parts of the integrands
regarding the materials that are based on the fact that in equilibrium (�
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this gives us a relation between the part of the integrands in Eqs.(18) and (19) involving the material properties since
the thermal factors are the same for every term. Then, using this relation we can write the total heat (in general) by
mixing the contributions,
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Eq. TB,j =	T𝜙,k ≠	0 ≠	0 0
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Identical
TB,L =	TB,R ≠	0 0 ≠	0 (L)

T𝜙,L =	T𝜙,R 0 ≠	0 ≠	0 (L)
TB,j ≠	T𝜙,k ≠	0 ≠	0 ≠	0 (LC)

d	→	+	∞ 0 ≠	0 ≠	0 (L)

General ≠	0 ≠	0 ≠	0

For	which	situations,	QTOTAL is	Landauer-like?
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It is worth noting that each contribution results symmetric under the interchange of the subscripts L and R, which
means that the force has the same absolute value for both plates (with opposite signs on each one) and also that the
inverted configuration of plates and oven’s walls provides the same forces.

In analogy, the heat between the plates is calculated as the expectation value of the Poynting vector in the region
between the plates. In 1+1 dimensions, the Poynting vector has only one component corresponding to minus the
x0�component of the energy-momentum tensor. Then, the heat presents the same structure of contributions as the
Casimir force:
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In this case (contrary to what happens to the force), the interchange of L and R is antisymmetric in any of the
contributions, denoting the fact that if the configuration of plates and oven’s walls is reversed, the flux of heat goes
in the opposite direction as it is expected.

Eqs.(14)-(19) are the main results that we will analyze in the relevant (limit)-cases in order to study which is the
e↵ect of thickness in the total expressions for both, the force and heat in the non-equilibrium scenario.
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this gives us a relation between the part of the integrands in Eqs.(18) and (19) involving the material properties since
the thermal factors are the same for every term. Then, using this relation we can write the total heat (in general) by
mixing the contributions,
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FIG. 3. Normalized total heat with respect to the blackbody radiation impinging (d = 0) as a function of the width of
the plates for a right temperature T�,R = TB,R = 300 K and di↵erent left temperatures T�,L = TB,L. Parameters are
�L,R = 10�3 nm�1, !0,i = 10�1 nm�1, !Pl,i = 10�1 nm�1. The dashed vertical lines corresponds to the value of the plasma
wavelength �Pl ⌘ 2⇡c

!Pl
⇡ 63 nm valid for both plates. a = 100 nm.

measured by adjusting the physical parameters of the configuration (materials’ properties and temperatures) in the
appropriate way.

Moreover, it is worth noting that, on the one hand, for d = 0 (corresponding to the left side of the Fig.2) we
have Q

B

1 ⌘ 0 while Q

IC

1 6= 0, giving the value corresponding to the heat transfer between to distant objects at given
temperatures T

L

, T

R

, which is the one given by Stefan’s law for heat exchange between two blackbodies (Eq.(A1)).
On the other hand, for d ! +1 (corresponding to the right side of Fig.2), we have that Q

IC

1 ⌘ 0, while Q

B

1 gives
Landauer-like formula expressed in Eq.(26).

Considering this, we can analyze the normalized total heat flux between the plates resulting from these contributions
at di↵erent separation distances a, obtaining Fig.3 for T

�,L

= T

B,L

⌘ T

L

and T

�,R

= T

B,R

⌘ T

R

, with T

L

> T

R

. The
normalization is with respect to the blackbody flux corresponding to the expressions for d = 0.

From the chosen normalization and previous comments about each contribution for d = 0 and d ! +1, on one
hand, we can identify the left value of each curves as the blackbody heat exchange between the walls of the big oven
where the configuration of plates will take place, i.e., they correspond to Q

IC

1(d = 0) for the di↵erent temperature
di↵erences and they are equal to 1 due to the chosen normalization. As this value is independent of the separation a,
it is appropriate to take this criterion for normalizing the total heat in Fig.3. However, it is worth noting that for each
temperature di↵erence, the absolute values of the total heat even at d = 0 are di↵erent. On the other hand, the right
value of the curves correspond to Q

B

1(d ! +1). The graph then can be interpreted as the competition between both
contributions for di↵erent values of the thickness d. It is worth noting that this competition gives rise to a minimum
of the total heat transfer for a given thickness in the scale of the separation of the plates. Physically, the appearance
of the minimum is related to the fact that the plates emitting radiation also act as a shield of the outside radiation
coming from the walls of the oven. This behavior is observed when the thickness of the plates d is larger than the
plasma wavelength (�

Pl

⌘ 2⇡c

!Pl
) for the material forming the plates, which in our case corresponds to 63nm. Then,

the net result between how much radiation coming from the walls is screened by the plates and how much is emitted
by them gives the total heat transfer at each thickness d. Thus, for small values of the thickness (with respect to the
separation a), we observe that the plates screen more than they emit in the gap, giving a decrease in the heat flux.
As the plates get thicker, the screening is increased (decreasing in the gap the amount of radiation coming from the
walls of the oven) but also the radiation emitted by the plates to the gap is enhanced. For a given thickness d, the
radiation emitted overcome the screening and the net heat transfer between the plates stop decreasing and begins to
increase until the asymptotic value for d ! +1, defined only by the radiation emitted by the plates. The scale at
which the value of the heat di↵ers in less than 5% is when the thickness is around 107nm, but it gets longer as the
separation a increases.

Moreover, although the attenuation of the heat flux with respect to the infinite-thickness (d ! +1) value is of

17

for each contribution.
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Appendix A: Intrinsic Non-Equilibrium Initial State of the Field

This appendix is devoted to comment some of the properties of the mentioned ‘intrinsic non-equilibrium state’ for
the initial state of the field. Defined by the expectation values given in Eq.(11), the state basically represents the net
radiation flux given in a big oven with its vertical walls at di↵erent temperature �

�,L

and �

�,R

respectively.

Considering that the annihilation and creation operators for the initial conditions’ contribution (ba
k

(�1),ba†
k

(�1))
are the ones of the free field, we can calculate the expectation value of the Poynting vector without the presence of the

plates (i.e., free space) for the intrinsic non-equilibrium state. As in this case is also valid that
D
b
S

Free

x

E

�

= �
D
b
T

Free

x0

E

�

and having the field operator given by an expression of the form of Eq.(6) but with the field modes � replaced by
plane waves e±ikx then, by using Eq.(11), we find:

D
b
S

Free

x

E

�

=

Z
+1

0

dk k


coth

✓
�

�,L

k

2

◆
� coth

✓
�

�,R

k

2

◆�

= 2

Z
+1

0

dk k [N
�,L

(k)�N

�,R

(k)] . (A1)

Both integrals are easily done as in Ref.[24], giving:
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�

=
⇡

2

3
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�

2

�,L

� 1

�

2

�,R

!
=
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2
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�
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2

�,L

� T

2

�,R

�
, (A2)

which have the thermal dependence of the 1+1-dimensional version of Stefan’s law for the heat exchange through
blackbody radiation between two bodies at temperatures T

�,L

, T

�,R

. This is the crucial point that allow us to interpret
the state defined by Eq.(11) as a non-equilibrium state since it gives a heat flux even in free space. Moreover, since
the radiation is blackbody-like, which is far-field radiation, we can think that all the space is inside a big oven with
its walls at x = ±1 held at di↵erent temperatures T

�,L

, T

�,R

, causing that there is net heat transfer by radiation
going from the hottest side to the other one. In other words, the intrinsic non-equilibrium state represents the state
of the field when there are distant-sources in both sides emitting radiation at given di↵erent temperatures. Is clear
that when T

�,L

= T

�,R

, the Poynting vector for free space vanishes.
On the other hand, the energy density for this state is given by:

D
b
T

Free

00

E

�

=
D
b
T

Free

xx

E

�

=

Z
+1

0

dk k
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coth

✓
�

�,L

k

2

◆
+ coth

✓
�

�,R

k

2

◆�
, (A3)

which is the typical expression for the energy density for a thermal state in free space, fully recognizable when setting
T

�,L

= T

�,R

.

Appendix B: Coe�cients

This Appendix is devoted to give the expressions of the coe�cients that appears in the contributions to the Casimir
force and the heat between the plates. For the given configuration of finite width plates (d

L,R

), the boundary
conditions on the modes were continuity of the mode and its spatial derivative at the interfaces between the material
slabs and the surrounding vacuum (see Ref.[18] and the references therein). The coe�cients then follow:

(										- )

For	which	situations,	QTOTAL is	Landauer-like?
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It is worth noting that each contribution results symmetric under the interchange of the subscripts L and R, which
means that the force has the same absolute value for both plates (with opposite signs on each one) and also that the
inverted configuration of plates and oven’s walls provides the same forces.

In analogy, the heat between the plates is calculated as the expectation value of the Poynting vector in the region
between the plates. In 1+1 dimensions, the Poynting vector has only one component corresponding to minus the
x0�component of the energy-momentum tensor. Then, the heat presents the same structure of contributions as the
Casimir force:

Q1 ⌘
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), (17)

where each contribution is given by:
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In this case (contrary to what happens to the force), the interchange of L and R is antisymmetric in any of the
contributions, denoting the fact that if the configuration of plates and oven’s walls is reversed, the flux of heat goes
in the opposite direction as it is expected.

Eqs.(14)-(19) are the main results that we will analyze in the relevant (limit)-cases in order to study which is the
e↵ect of thickness in the total expressions for both, the force and heat in the non-equilibrium scenario.

Nevertheless, we get a simpler expression for the total heat by employing a relation between parts of the integrands
regarding the materials that are based on the fact that in equilibrium (�

�,L

= �

�,R

= �

B,L

= �

B,R

= �) the total heat
transfer is zero. In other words, as we have,
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this gives us a relation between the part of the integrands in Eqs.(18) and (19) involving the material properties since
the thermal factors are the same for every term. Then, using this relation we can write the total heat (in general) by
mixing the contributions,
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where we have used the fact that the factor containing the temperatures reads coth
h
�j,L!

2

i
� coth

h
�j,R!

2

i
=

2 (N
j,L

(!)�N

j,R

(!)), being N

j,L,R

the boson occupation numbers for each temperature.
Therefore, in general, the total heat flux does not have a Landauer’s form, but each of the terms contributing has.

As we have written the total heat flux, all the terms are expressed in terms of the di↵erences between the occupation
numbers of each part and the occupation number in the right plate. This can be changed by using the identity
resulting from Eq.(20) in a di↵erent way, taking as reference another of the occupation numbers.

IV. IMPACT OF THICKNESS - ANALYTICAL RESULTS

Once we have obtained general expressions for both the Casimir force and the heat transfer between the plates
of finite width, we can recover di↵erent well-known results as limiting cases and analyze particular features to gain
intuition on the physics enclosed in the general formulas.

For the case of the Casimir force, part of the features were studied in Ref.[18] for the case when �

�,L

= �

�,R

⌘ �

�

.
Now, we will summarize the relevant findings of that work and give novel generalizations of them based on the
introduction of the intrinsic non-equilibrium initial state for the field.

First, the result for materials without dissipation can be recovered since Im(n
i

) ⌘ 0, which immediately gives
h bTB,1

xx

iInt
B

|
NoDiss

⌘ 0 and the Casimir force is only due to the initial conditions contribution and the regularization
term. Given the intrinsic non-equilibrium state, the Casimir force in this case is given directly by the substraction of
Eqs. (A3) and (15), but considering real refraction indexes.

Moreover, the Lifshitz formula for the Casimir force can also be deduced from our general expressions. However,
there is a subtle point that must be considered. This is how to impose Lifshitz’s scenario (consisting in two half-spaces
at thermal equilibrium) in our expressions. On one hand, we have to take the infinite-thickness limit as d

L,R

! +1
and, on the other hand, we have to impose that all the temperatures are equal, �

B,L

= �

B,R

= �

�,L

= �

�,R

⌘ �.
This last subtle point is crucial for derivating the correct expression for the force between half-spaces from the
finite-thickness’ result, since for the latter situation, three contributions enter in the expression of the force: initial
conditions and baths contributions and the regularization term, each one with its own pair of temperatures. However,
when taking d

L,R

! +1, the initial conditions’ term vanishes (h bT IC,1
xx

iInt
�

! 0), while the others two do not. As it
was shown in Ref.[18], for a half-spaces configuration, there will be no initial conditions’ contribution at the steady
state because there is no infinite-size empty regions anywhere. In this sense, the pressure calculated and also the
regularization term will be both considered with �

B,L

and �

B,R

. For this case, having the same temperature for both
half-spaces (�

B,L

= �

B,R

⌘ �) is enough to obtain Lifshitz formula, regardless on the initial state of the field. However,
from a conceptual point of view, if we want to obtain Lifshitz formula as an infinite-thickness limit of the finite-width
result, taking d

L,R

! +1 together with �

B,L

= �

B,R

⌘ � it is not enough when �

�,L,R

6= � in the regularization
term. Clearly, by also putting �

�,L

= �

�,R

⌘ �, the total Casimir force takes the form of the Lifshitz formula
Nonetheless, as we are introducing the intrinsic non-equilibrium initial state, we can go further and give also

an expression for the non-equilibrium version of Lifshitz’s formula, i.e., the force between two half-spaces when its
temperature are di↵erent between each other. To do this, we have not only to take the limit of infinite thickness
(d

L,R

! +1) but also impose conditions over the temperatures �

�,L,R

,�

B,L,R

. From the analysis done for the
equilibrium case, it is clear that in the non-equilibrium case the temperatures must be grouped in left and right
realizing the fact that each of the half-spaces is in local equilibrium. Therefore, we have to impose �

�,L

= �

B,L
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L

and �

�,R

= �
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⌘ �

R

. As it is shown in Appendix C, the infinite-thickness limit of Eq.(16) is given by Eq.(C2) while
Eq.(15) vanishes.

Then, by setting �
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, the total Casimir force for the limit of infinite thickness
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F

C

[a, d
L,R

! +1,�

L

,�

R

,�

L

,�

R

] =

Z
+1

0

d! !

"
coth

✓
�

L

!

2

◆ 
1�

⇥
1� |r

nL |2
⇤ ⇥

1 + |r
nR |2

⇤

|1� r

nLrnR e

i2!a|2
!

+ coth

✓
�

R

!

2

◆ 
1�

⇥
1� |r

nR |2
⇤ ⇥

1 + |r
nL |2

⇤

|1� r

nLrnR e

i2!a|2
!#

, (22)

which is the generalization of Lifshitz’s formula for the case of non-equilibrium, from which the usual Lifshitz’s formula
is obtained by simply setting �

L

= �

R

⌘ �.
It is worth noting that the chosen prescription to obtain the Casimir force in this non-equilibrium situation gives the

correct expression, while the approach in which the force is calculated from the di↵erence of the radiation pressures
at each side of a given plate, gives an incorrect result in this scenario but a correct one in the equilibrium case.
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It is worth noting that each contribution results symmetric under the interchange of the subscripts L and R, which
means that the force has the same absolute value for both plates (with opposite signs on each one) and also that the
inverted configuration of plates and oven’s walls provides the same forces.

In analogy, the heat between the plates is calculated as the expectation value of the Poynting vector in the region
between the plates. In 1+1 dimensions, the Poynting vector has only one component corresponding to minus the
x0�component of the energy-momentum tensor. Then, the heat presents the same structure of contributions as the
Casimir force:
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where each contribution is given by:
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In this case (contrary to what happens to the force), the interchange of L and R is antisymmetric in any of the
contributions, denoting the fact that if the configuration of plates and oven’s walls is reversed, the flux of heat goes
in the opposite direction as it is expected.

Eqs.(14)-(19) are the main results that we will analyze in the relevant (limit)-cases in order to study which is the
e↵ect of thickness in the total expressions for both, the force and heat in the non-equilibrium scenario.

Nevertheless, we get a simpler expression for the total heat by employing a relation between parts of the integrands
regarding the materials that are based on the fact that in equilibrium (�
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= �
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= �
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= �) the total heat
transfer is zero. In other words, as we have,
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this gives us a relation between the part of the integrands in Eqs.(18) and (19) involving the material properties since
the thermal factors are the same for every term. Then, using this relation we can write the total heat (in general) by
mixing the contributions,

Q1(a, d
L

, d

R

,�

�,L

,�

�,R

,�

B,L

,�

B,R

) =

=

Z
+1

0

dk 2k

⇥
[N

�,L

(k)�N

B,R

(k)] |t
L

|2 �1� |r
R

|2�� [N
�,R

(k)�N

B,R

(k)] |t
R

|2 �1� |r
L

|2�⇤

|1� r

L

r

R

e

i2ka|2 (21)

+

Z
+1

0

dk

k

2

(1� |r
R

|2)
|1� r

L

r

R

e

i2ka|2 [N
B,L

(k)�N

B,R

(k)]
(1� |r

nL |2)
|1� r

2

nL
e

i2knLdL |2
"
(1 + |r

nL |2e�2kIm(nL)dL)(1� e

�2kIm(nL)dL)

+
4Im(n

L

) e�2kIm(nL)dL

|n
L

+ 1|2(1� |r
nL |2)

Im
h
r

nL

⇣
1� e

i2kRe(nL)dL

⌘i#
,

QIC QB QTOTAL

Eq. TB,j =	T𝜙,k ≠	0 ≠	0 0

d =	0 ≠	0 0 ≠	0 (L)

NO diss. ≠	0 0 ≠	0	(LC)

Identical
TB,L =	TB,R ≠	0 0 ≠	0 (L)

T𝜙,L =	T𝜙,R 0 ≠	0 ≠	0 (L)
TB,j ≠	T𝜙,k ≠	0 ≠	0 ≠	0 (LC)

d	→	+	∞ 0 ≠	0 ≠	0 (L)

General ≠	0 ≠	0 ≠	0

For	which	situations,	QTOTAL is	Landauer-like?

d d

nL =	nR



Heat	flux:	Some	cases

8

It is worth noting that each contribution results symmetric under the interchange of the subscripts L and R, which
means that the force has the same absolute value for both plates (with opposite signs on each one) and also that the
inverted configuration of plates and oven’s walls provides the same forces.

In analogy, the heat between the plates is calculated as the expectation value of the Poynting vector in the region
between the plates. In 1+1 dimensions, the Poynting vector has only one component corresponding to minus the
x0�component of the energy-momentum tensor. Then, the heat presents the same structure of contributions as the
Casimir force:
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In this case (contrary to what happens to the force), the interchange of L and R is antisymmetric in any of the
contributions, denoting the fact that if the configuration of plates and oven’s walls is reversed, the flux of heat goes
in the opposite direction as it is expected.

Eqs.(14)-(19) are the main results that we will analyze in the relevant (limit)-cases in order to study which is the
e↵ect of thickness in the total expressions for both, the force and heat in the non-equilibrium scenario.

Nevertheless, we get a simpler expression for the total heat by employing a relation between parts of the integrands
regarding the materials that are based on the fact that in equilibrium (�

�,L

= �

�,R

= �

B,L

= �

B,R

= �) the total heat
transfer is zero. In other words, as we have,

Q1(a, d
L

, d

R

,�,�,�,�) = Q

IC

1(a, d
L

, d

R

,�,�) +Q

B

1(a, d
L

, d

R

,�,�) ⌘ 0, (20)

this gives us a relation between the part of the integrands in Eqs.(18) and (19) involving the material properties since
the thermal factors are the same for every term. Then, using this relation we can write the total heat (in general) by
mixing the contributions,
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It is worth noting that each contribution results symmetric under the interchange of the subscripts L and R, which
means that the force has the same absolute value for both plates (with opposite signs on each one) and also that the
inverted configuration of plates and oven’s walls provides the same forces.

In analogy, the heat between the plates is calculated as the expectation value of the Poynting vector in the region
between the plates. In 1+1 dimensions, the Poynting vector has only one component corresponding to minus the
x0�component of the energy-momentum tensor. Then, the heat presents the same structure of contributions as the
Casimir force:
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In this case (contrary to what happens to the force), the interchange of L and R is antisymmetric in any of the
contributions, denoting the fact that if the configuration of plates and oven’s walls is reversed, the flux of heat goes
in the opposite direction as it is expected.

Eqs.(14)-(19) are the main results that we will analyze in the relevant (limit)-cases in order to study which is the
e↵ect of thickness in the total expressions for both, the force and heat in the non-equilibrium scenario.

Nevertheless, we get a simpler expression for the total heat by employing a relation between parts of the integrands
regarding the materials that are based on the fact that in equilibrium (�
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this gives us a relation between the part of the integrands in Eqs.(18) and (19) involving the material properties since
the thermal factors are the same for every term. Then, using this relation we can write the total heat (in general) by
mixing the contributions,
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It is worth noting that each contribution results symmetric under the interchange of the subscripts L and R, which
means that the force has the same absolute value for both plates (with opposite signs on each one) and also that the
inverted configuration of plates and oven’s walls provides the same forces.

In analogy, the heat between the plates is calculated as the expectation value of the Poynting vector in the region
between the plates. In 1+1 dimensions, the Poynting vector has only one component corresponding to minus the
x0�component of the energy-momentum tensor. Then, the heat presents the same structure of contributions as the
Casimir force:
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In this case (contrary to what happens to the force), the interchange of L and R is antisymmetric in any of the
contributions, denoting the fact that if the configuration of plates and oven’s walls is reversed, the flux of heat goes
in the opposite direction as it is expected.

Eqs.(14)-(19) are the main results that we will analyze in the relevant (limit)-cases in order to study which is the
e↵ect of thickness in the total expressions for both, the force and heat in the non-equilibrium scenario.

Nevertheless, we get a simpler expression for the total heat by employing a relation between parts of the integrands
regarding the materials that are based on the fact that in equilibrium (�
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this gives us a relation between the part of the integrands in Eqs.(18) and (19) involving the material properties since
the thermal factors are the same for every term. Then, using this relation we can write the total heat (in general) by
mixing the contributions,
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It is worth noting that each contribution results symmetric under the interchange of the subscripts L and R, which
means that the force has the same absolute value for both plates (with opposite signs on each one) and also that the
inverted configuration of plates and oven’s walls provides the same forces.

In analogy, the heat between the plates is calculated as the expectation value of the Poynting vector in the region
between the plates. In 1+1 dimensions, the Poynting vector has only one component corresponding to minus the
x0�component of the energy-momentum tensor. Then, the heat presents the same structure of contributions as the
Casimir force:
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In this case (contrary to what happens to the force), the interchange of L and R is antisymmetric in any of the
contributions, denoting the fact that if the configuration of plates and oven’s walls is reversed, the flux of heat goes
in the opposite direction as it is expected.

Eqs.(14)-(19) are the main results that we will analyze in the relevant (limit)-cases in order to study which is the
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this gives us a relation between the part of the integrands in Eqs.(18) and (19) involving the material properties since
the thermal factors are the same for every term. Then, using this relation we can write the total heat (in general) by
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FIG. 3. Normalized total heat with respect to the blackbody radiation impinging (d = 0) as a function of the width of
the plates for a right temperature T�,R = TB,R = 300 K and di↵erent left temperatures T�,L = TB,L. Parameters are
�L,R = 10�3 nm�1, !0,i = 10�1 nm�1, !Pl,i = 10�1 nm�1. The dashed vertical lines corresponds to the value of the plasma
wavelength �Pl ⌘ 2⇡c

!Pl
⇡ 63 nm valid for both plates. a = 100 nm.

measured by adjusting the physical parameters of the configuration (materials’ properties and temperatures) in the
appropriate way.

Moreover, it is worth noting that, on the one hand, for d = 0 (corresponding to the left side of the Fig.2) we
have Q

B

1 ⌘ 0 while Q

IC

1 6= 0, giving the value corresponding to the heat transfer between to distant objects at given
temperatures T

L

, T

R

, which is the one given by Stefan’s law for heat exchange between two blackbodies (Eq.(A1)).
On the other hand, for d ! +1 (corresponding to the right side of Fig.2), we have that Q

IC

1 ⌘ 0, while Q

B

1 gives
Landauer-like formula expressed in Eq.(26).

Considering this, we can analyze the normalized total heat flux between the plates resulting from these contributions
at di↵erent separation distances a, obtaining Fig.3 for T

�,L

= T

B,L

⌘ T

L

and T

�,R

= T

B,R

⌘ T

R

, with T

L

> T

R

. The
normalization is with respect to the blackbody flux corresponding to the expressions for d = 0.

From the chosen normalization and previous comments about each contribution for d = 0 and d ! +1, on one
hand, we can identify the left value of each curves as the blackbody heat exchange between the walls of the big oven
where the configuration of plates will take place, i.e., they correspond to Q

IC

1(d = 0) for the di↵erent temperature
di↵erences and they are equal to 1 due to the chosen normalization. As this value is independent of the separation a,
it is appropriate to take this criterion for normalizing the total heat in Fig.3. However, it is worth noting that for each
temperature di↵erence, the absolute values of the total heat even at d = 0 are di↵erent. On the other hand, the right
value of the curves correspond to Q

B

1(d ! +1). The graph then can be interpreted as the competition between both
contributions for di↵erent values of the thickness d. It is worth noting that this competition gives rise to a minimum
of the total heat transfer for a given thickness in the scale of the separation of the plates. Physically, the appearance
of the minimum is related to the fact that the plates emitting radiation also act as a shield of the outside radiation
coming from the walls of the oven. This behavior is observed when the thickness of the plates d is larger than the
plasma wavelength (�

Pl

⌘ 2⇡c

!Pl
) for the material forming the plates, which in our case corresponds to 63nm. Then,

the net result between how much radiation coming from the walls is screened by the plates and how much is emitted
by them gives the total heat transfer at each thickness d. Thus, for small values of the thickness (with respect to the
separation a), we observe that the plates screen more than they emit in the gap, giving a decrease in the heat flux.
As the plates get thicker, the screening is increased (decreasing in the gap the amount of radiation coming from the
walls of the oven) but also the radiation emitted by the plates to the gap is enhanced. For a given thickness d, the
radiation emitted overcome the screening and the net heat transfer between the plates stop decreasing and begins to
increase until the asymptotic value for d ! +1, defined only by the radiation emitted by the plates. The scale at
which the value of the heat di↵ers in less than 5% is when the thickness is around 107nm, but it gets longer as the
separation a increases.

Moreover, although the attenuation of the heat flux with respect to the infinite-thickness (d ! +1) value is of
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Conclusions

• We developed a full first-principles quantum approach based on a canonical quantization and open
quantum systems frameworks.

• We deduced the steady situation and describe the physics of each contribution to the field operator.
• We applied for the two finite width plates and studied the Casimir forces and heat fluxes in different non-

equilibrium scenarios.
• For the force, we reproduced all the known-results, giving also a consistent way to reobtain the non-

equilibrium half-spaces result as a limiting case of the non-equilibrium finite width case.
• For the heat flux, we showed that Landauer formula is obtained in different situations but it is not valid in

every situation in the two plates configuration.
• We showed that the scales of convergence of the force and the heat flux as functions of the thickness are

different.
• For the “two thermal sides” scenario, we showed that a minimum in the heat flux exists, which could result

in an attenuation of 60% for some materials.
• We showed that 0 heat flux between the plates can be obtained also in non-equilibrium scenarios.
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