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1. INTRODUCTION

In the past, it was believed that differences in theoretical 
predictions of the Drude and plasma models at small distances 
are of about a few percent.

In the difference force measurements by Bimonte and Decca, 
the predictions of both models can differ by a factor of 1000. 

We show that the Casimir free energy and pressure for thin 
metal films calculated using the Drude and plasma models  
are also quite different, both quantitatively and qualitatively.

This is not of theoretical importance only, but should be taken 
into account in the determination of stability of metallic coatings.



2. CASIMIR  FREE  ENERGY  AND  PRESSURE
OF  THIN  FILMS



Reflection coefficients for TM and TE polarizations



3. METALLIC  FILM  BETWEEN  DIELECTRIC  PLATES

The dielectric permittivity of metal at low frequencies 
is described: 

by the plasma model by the Drude model



Reflection coefficients at zero Matsubara frequency 
for nonmagnetic metals 



Reflection coefficients at zero Matsubara frequency 
for magnetic metals 



3.1. Results for Au film

Klimchitskaya, Mostepanenko,
PRA, v.92, 042109 (2015)

For a free-standing Au film



For a free-standing Au film



3.2. Classical limit and ideal metal limit

For the Drude model, the classical limit
starts from a thickness of about 100nm 

For the plasma model, there is no classical limit



This result is in contradiction with the fact that 
electromagnetic fluctuations cannot penetrate 
in the interior of an ideal metal and, thus, its 
Casimir free energy must be equal to zero.



If real metal is described by the plasma model, 

the Casimir free energy, caused by quantum 

fluctuations of the electromagnetic field, vanishes

when the metal becomes an ideal one, as it should be.



3.3. Results for magnetic Ni film

Klimchitskaya, Mostepanenko,
PRB, v.94, 045404 (2016)

The magnitudes of the free energy 
per unit area for a free-standing 
(solid lines) or sandwiched between
sapphire plates (dashed lines) Ni film
computed at 300K using the Drude
(lines 1) or plasma (lines 2) models
of dielectric permittivity.



4. LOW-TEMPERATURE BEHAVIOR OF THE CASIMIR FREE
ENERGY OF METALLIC FILMS

Klimchitskaya, Mostepanenko, PRA, v.95, 012130 (2017)

Metals described by the plasma model

The Casimir entropy of a metallic film 
described by the plasma model satisfies
the Nernst heat theorem. 



Metals described by the Drude model



Klimchitskaya, Mostepanenko, PRA, v.95, 012130 (2017)



Klimchitskaya, Mostepanenko, PRA, v.95, 012130 (2017)

The Casimir entropy of a metallic film with perfect

crystal lattice described by the Drude model 

DOES NOT SATISFY the Nernst heat theorem. 



5. CASIMIR  FREE  ENERGY  FOR DIELECTRIC  FILMS

Dielectric permittivity of perfect dielectrics

Dielectric permittivity with account of free charge carriers which 
are present in any dielectric material at nonzero temperature



5.1. Results for free-standing dielectric films

Klimchitskaya, Mostepanenko, J. Phys.: Condens. Matt., v.29, 275701 (2017)

The Casimir free energy per unit area
for films made of silica (the top pair of
lines) and sapphire (the bottom pair of
lines) multiplied by the third power of 
film thickness computed at 300K with 
neglected (the solid lines) and included
(the dashed lines) of dc conductivity of 
respective material.  



5.2. Classical limit for dielectric films

Perfect dielectrics



Classical limit for dielectric materials when the presence of 
free charge carriers at nonzero temperature is taken 
into account

This is the same result as for metals described 
by the Drude model.



5.3. Low-temperature behavior of the Casimir free energy

Perfect dielectrics:

The Casimir entropy of a film 
made of perfect dielectric 
satisfies the Nernst heat 
theorem. 



Dielectrics with account of free charge carriers 
at nonzero temperature:

Here the terms decreasing 
with temperature exponentially 
fast are omitted.

The Casimir entropy of a dielectric film with taken into

account free charge carriers at nonzero temperature  

DOES NOT SATISFY the Nernst heat theorem. 



6. CONCLUSIONS

1. For thin metallic films at nonzero temperature the 
use of the Drude and plasma models at low frequencies 
leads to significantly different results which can be 
easily discriminated. This is quite different from the case 
of two metallic plates interacting through a vacuum gap, 
where the difference by a factor of two is reached only at 
large separations of about 6 micrometers.



2. There is no classical limit for the Casimir free 
energy of thin metallic films described by the 
plasma model. Even for thick metallic films the 
Casimir free energy preserves its essentially 
quantum character. The Casimir entropy of thin 
metallic films described by the plasma model
satisfies the Nernst heat theorem.



3. If the film metal is described by the Drude model,
the classical limit for the Casimir free energy is 
reached for about 100nm film thickness. This results
in a nonzero Casimir free energy in an ideal-metal
limit which contradicts to the fact that electromagnetic
fluctuations cannot penetrate in the interior of an 
ideal metal. The Casimir entropy of thin metallic films 
described by the Drude model violates the Nernst
heat theorem.



4. The Casimir free energy of dielectric films depends
significantly on weather we include or omit the conductivity 
at nonzero temperature in the dielectric permittivity.
For perfect dielectrics with omitted conductivity the Nernst
heat theorem is satisfied. The inclusion of conductivity at
nonzero temperature leads to violation of the Nernst
heat theorem.


