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A Note on the Quantization of Dissipative Systems
WESLEY E. BRITTIN

University of Colorado, Boulder, Colorado
{Received September 16, 1949)

The work of E. Kanai shows that the quantization of dissipative systems by use of a Hamiltonian for-
malism involving the time explicitly leads to results in disagreement with experience. We discuss the quanti-
zation of dissipative systems in a manner such that the time does not enter explicitly. It is shown that in
the Heisenberg representation the only kind of dissipative forces consistent with the formalism are those
which are functions of the coordinates alone. There exists no Schrodinger representation unless the forces
are non-dissipative.

KANAF has shown that it may be possible to
put the equations of motion for a dissipative

system into Hamiltonian form and then quantize them
in the usual way. For example, the Hamiltonian of the
damped oscillator may be taken to be

H = (1/2m) e 'P'+ (1/2) meed'e 'x' (1)
where E=me 'i, with the corresponding canonical
commutation relation

d BL BL——=F, i=1, , f,27

dt Bg' Bq'
(6)

dissipative system. The observables of the sub-system
can then be inferred from the quantum mechanical
behavior of the larger non-dissipative system.
Assume that the motion of the dissipative system can

be described classically by the general Lagrange equa-
tions

[x, F]=ih

[x *]=ihe "/m-
(2) where

L=L(q, q) and F,=F,(q, q).
Define the momentum E, conjugate to q' by

or

F,= (BL)/(Bq*'), i=1,f,
where we assume

The quantized system has no stationary states, and
the expectation values of various dynamical variables
behave in a manner agreeing with the correspondence
principle. However, Kq. (3) which is equivalent to

Aux &~le ~'/m

violates the uncertainty principle. for an oscillator,

~xW &h/m.

Equation (5) is valid for the oscillator even when
damping is taken into account, but to get the correct
result one must treat the coupled system —oscillator
plus radiation field. Kanai conjectures that it is prob-
ably impossible to express adequately the interaction
between the electron and its own field by means of
simple dissipative forces.
The reason for the violation of the usual principle of

uncertainty would appear to stem from the explicit
dependence of H and E on the time. The purpose of the
present mote is to show that the quantization of dissi-
pative systems not involving the time explicitly can be
carried out consistently in the Heisenberg representa-
tion only if the generalized forces are functions of
position, and not at all in the Schrodinger representation.
%e thus support Kanai's conjecture, and it seems
probable that although the classical description of a
dissipative system is complete, a complete quantum
mechanical description can only be had by considering
the dissipative system as a sub-system of a non-

0 L
J=det $0.

Bg'Bg'

BA BII BA BH
[A, H]=

Bg' BE; BI; Bff}'
(12)

The passage to quantum theory is brought about in
the Heisenberg representation by replacing the dynam-

De6ne the Hamiltonian H(q, F) by
H(q F)=F q' L—

where repeated indices indicate summation from 1 to f.
Then Kqs. (6) may be expressed in "Hamiltonian
form, "'

q*= (~H)/(~F*), 2''= —(~H)/(~q')+Q*
i=1 f (10)

where Q;=Q;(q, P)=F,Iq, q(q, F)}. The equation of
motion of any dynamical variable A(q, F) which does
not depend explicitly upon time may be written

dA/dh=[A, H]+(BA/BF;)Q;, (11)
where the Poisson bracket [A, H] of A and H is
defined by

' E. Kanai, Prog. Theor. Phys. 3, 440 {1948). 'The reason for introducing the Hamiltonian is so that the
~See for example H. Bauer and J. H. D. Jensen, Zeits. f. theory will have the form of usual quantum theory if the F; are

Physik 124, 580 (1948). zero

396

2 Bauer & Jensen [Z Phys 1948]
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Irreversibility and generalized noise

Herbert B. Callen and Theodore A. Welton

Phys. Rev. 83 (1951) 34

quantum Johnson-Nyquist voltage noise

IRREVERSIBILITY AND GENERAL I ZE 0 NOISE

If t."(+) denotes the value of (4.1) corresponding to
the positive sign, we obtain, in an identical fashion,

X t I&F+k~lglE&l'p(F+k~)p(E)/(F)dF-, (4.6)
0

and from Eq. (3.6),

(V')= " IZI'k~ «1+exp( k&a/k—T)}

X " l&F+k~IQIE&l'p(E+k~)t(E)f(E)de~ (4 t)J,
Comparison of these equations yields directly our
fundamental theorem:

where

&V')= (2/s) it E((o)E(co, T)dcd,J, (4.8)

E(~, T)= ,'h~+h~ke-xp(k&/kT) 1j ' —(4.9-).
It may be recognised that F(co, T) is, formally, the
expression for the mean energy at the temperature T
of an oscillator of natural frequency m.
At high temperatures, F(ra, T) takes its equipartition

value
F&cd, T)~kT, (kT&)ka)) (4.10)

and the generalized Nyquist relation takes its most
familiar form

(V') (2/s)kT ~R(co)dry. (4.11)

To reiterate then, a system with a generalized
resistance A(co) exhibits, in equilibrium, a Quctuating
force given by Eq. (4.8) or, at high temperature, by
Eq. (4.11).
We shall now consider a few speci6c applications of

this theorem. The application to the electrical case is
obvious, the general Eq. (4.8) being identical with the
Nyquist relation if the force V is interpreted as the
voltage. The content of the general theorem is, however,
clari6ed by considering certain less trivial applications.

V. APPLICATION TO BROWNIAN MOTION

The fundamental result of the theory of the Brownian
motion of a smaH particle immersed in a Quid is that
the particle moves in response to a randomly Quctuating

C&+)= «1+e"p&—k~/kT)» i" I&F+""I&I+&I'
~0

Xp(Z+ka)) p(F)f(E)dF.. (4.5)

With these alternative expressions for (4.1), we can
write, from Eq. (2.15),

~( )/l~( ) I'= «1—em(—k /kT)}

force F(t) (with components F„F„,F,) such that

&F ')= (2/s)kTrt dco. (5.1)

Here g is a frictional constant, so dered that the
viscous drag on a particle moving with velocity e is

Frictional force= —qe. (5.2)
(If, in particular, the particle is spherical, q is known
by Stokes' law as 6s" (viscosity) (radius). )
It is interesting to recall brieQy the rather compli-

cated and circuitous chain of reasoning by which the
above result is obtained. One Qrst makes the ccssccmptiorc
that the particle moves in response to a randomly
Quctuating force which has a constant, but unknown,
spectral density. (The spectral density is, in actuality,
not constant, and Eq. (5.1) is not valid at high fre-
quencies. ) By application of the theory of stochastic
processes, one is then able to predict the distribution
functions for either the displacement or the velocity of
the particle. 4 The distribution function for displacement
yields the diBusion constant, which in turn may be
related by the Einstein relation' to the frictional
constant p, thus evaluating the spectral density. '
Alternatively, the distribution function for velocity
yields the energy, which is known by the equipartition
theorem and which therefore evaluates the spectral
density, yielding Eq. (5.1).
W'e now apply our general formalism to the Brownian

motion. We assume the existence of a viscous force as
given by Eq. (5.2). The system of a particle in a Quid,
the particle being acted on by an external force, is then
dissipative and linear. The real part of the impedance
is simply q (the inertial mass of the particle giving a
pure reactance of mar). We conclude immediately, in
accordance with Eq. (4.8), that a particle in a Quid is
acted upon by a spontaneously Quctuating force for
which

(F.')=(2/s)g " E(o), T)dcd.
0

(5.3)

For high temperatures or low frequencies, (kco«kT);
this reduces to Eq. (5.1).

4 See M. C. Wang and G. E. Uhlenbeck, Revs. Modern Phys.
17, 323 (1945); and J. L. Doob, Ann. Math. 43, 351 (1942).

See A. Einstein, Investigations un the Theory of the Brmoeiee
Mceemeet (Dutton and Company, New York); or A. Einstein,
Ann. Physik 17, 549 (1905).

6 A similar analysis has been applied to the Bow of heat by
L. S. Ornstein and J.M. W. Milatz, Physica 6, 1139 (1939).

VI. ELECTRIC DIPOLE RADIATION RESISTANCE AND
ELECTRIC FIELD FLUCTUATIONS

IN THE VACUUM

An oscillating electric charge radiates energy, leading
to a radiation resistance. We shall see that this radiation
resistance implies a Quctuating electric 6eM as given by
the Planck radiation law.

impedance δV = Zδ 9Q, R = ReZ

dissipation: system “acts on” bath

loss of coherence: bath fluctuations acting on system
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resistance R(ω) 7→ ρ(ω) spectral weight
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“remarkable formula”

Ford, Lewis & O’Connell [Phys Rev Lett 1985]

van Kampen, Nijboer & Schram [Phys Lett A 1968]

Davies [Chem Phys Lett 1972]

Obcemea [Int J Q Chem 1987]

impedance δV = Zδ 9Q, R = ReZ

dissipation: system “acts on” bath

loss of coherence: bath fluctuations acting on system
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Einige Probleme aus der Theorie der elektrischen Schwankungserscheinungen

W. L. Ginsburg

Fortschr. Phys. 1 (1953) 51

zero-point potential energy of damped circuit

Einige Probleme aua der Theone der elektrischen Schwankungserscheinugen 69 
a 

0 

1 a2 - 2 L arctg -1 
2 np-2; ‘ v c a i  a V 4 - a ~  

- - 

und fiir a = 2 ist a ( 0 )  = 
R = const unendlich, weil 

’-. Der Wert g(0) ist fiir a + 0 und 
TC 1/L c 

Die Beriicksichtigung der co-Abhangigkeit der GroSe R bei hohen Frequenzen 

fiihrt selbstverstiindlich zu einem endlichen g (0). F” u r a = -  C R  + ~ i s t i m  

Einklang mit (2,2) 6 (0) = g ( 0 )  = 

Fiii a + 0 sind die Energien u(0) und g(0) einmder nicht gleich und hiingen 

und - ab. Analog liegen die Dinge von den beiden Paramet,ern a = - 

auch fiir die temperaturabhilngigen Anteile von U und f, denen das Haupt- 
interesse gilt: 

ii VLT 
= L u J , / ~ ~ ) .  

4VLC 

ii C R  
ym p 

C R  i I a = -  

4m 

2 -a1 - 
1) Nimmt man etwa an, daIJ R(w)  = R fiir w < w, = - und R = 0 fiir w > wm ist, 

U(O), wobei der Wert des 80 ist K (0) = -- In [qk + (aZ - 2) 7; + I] + - 
VL-C 

h - 
4VL c 2 

ersten Teils von 
Anteil gegen Null. 
5’ 

(0) durch die hohen Frequenzen bestimmt wird; fiir a --+ 0 geht dieser 

〈U0〉

damping α = RCω, resonance ω = (LC)−1/2

dissipation: system “acts on” bath

loss of coherence:

bath fluctuations acting on system
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Theory of Electrical Fluctuations and Thermal Radiation

S. M. Rytov

(Academy of Sciences USSR 1953)

iωε(ω)E +∇×H = jth + jext ,

−iωµ(ω)H +∇×E = 0 ,

Maxwell–Langevin equations

〈jth〉 = 0

〈jth(x)jth(x′)〉 = κT Reσ δ(x− x′)

〈j∗thk(x, ω)jthl(x
′, ω′)〉 =

2h̄ω2

eh̄ω/κT − 1
Im εkl(ω)2πδ(ω − ω′) + magn.

fluctuation–dissipation theorem (“2nd”: W. Eckhardt 1982)

consistent quantization for linear, causal media (Scheel, Knöll & Welsch 1998)
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latter cross-section values taken from Fig. 1. Above 4
kev, the charge-transfer cross section becomes too small
for this method to be reliable. At the higher energies the
relative cross section for electron production was deter-
mined by comparing electron signals per unit ion current
as a function of ion energy. This high-energy relative
cross section was then normalized at 10 kev to the value
obtained by comparing the H +H electron-production
cross section with the p+H charge-transfer cross sec-
tion, the absolute value for the latter being taken from
the preceding paper. At energies of less than 500 ev,
the results obtained by comparing the cross sections for
electron production and charge transfer in H +H colli-
sions were not sufficiently reproducible to warrant their
being shown in Fig. 2. However, from these lower-energy
data, it appears that the cross section for electron pro-
duction does not decrease for ion energies down to 50 ev
and probably continues to increase. The experimental
uncertainties shown in Fig. 2 do not include uncer-
tainties in the charge-transfer cross sections which were
used as standards in this measurement.
The degree to which the experimental values should

be expected to agree with the results of McDowell and
Peach is not entirely clear. In their calculations, only
theprocess H +H~ H+H+e was considered, whereas
in our experiments, processes which would result in
ionization of the end products of the collisions also con-
tributed to the electron-production signal. Certainly the
condition that the experimental values should exceed
the cross section for only the simple electron-detach-
ment process is satisfied.

It would be expected that processes leading to ioniza-
tion of the final collision products would be operative
only at the higher ion energies in this experiment, and
that such processes cannot be invoked to explain the
deviations of the two curves in Fig. 2 as the energy is
reduced below 5 kev. It also seems unlikely that the
associative detachment process, H +H —+ H2+e, can
contribute appreciably to the electron-production proc-
esses at energies as high as the lower energies of these
measurements.
It is interesting to note that McDowell and Peach

calculate the energy distribution of the electrons pro-
duced in the simple detachment process and And that
where their approximation is valid, less than 10/o of
the ejected electrons should have energies exceeding
13.6 ev. In measuring the cross section for total slow
negative particle production, it was found that curves
of signal versus vertical magnetic field saturated at
about 20 oersteds for all ion energies. Considering the
experimental geometry, this implies that a negligible
fraction of the electrons had energies in excess of about
20 ev.

IV. ACKNOWLEDGMENTS

We are indebted to R. T. Brackmann and J. A.
Rutherford for their interest and assistance in these
measurements, and to Dr. M. R. C. McDowell for com-
munication of the McDowell and Peach calculations
prior to their publication.

' A. Daigarno (private communication).
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Dissipation in Quantum Mechanics. The Harmonic Oscillator
I. R. Szxn'zvv

U. S. Army Signa/ Research and Development Laboratory, Fort Monmogth, 3]em Jersey
(Received February 29, 1960)

The need for a quantum-mechanical formalism for systems with
dissipation which is applicable to the radiation field of a cavity
is discussed. Two methods that have been used in this connection
are described. The first, which starts with the classical Newtonian
equation of motion for a damped oscillator and applies the con-
ventional formal quantization techniques, leads to an exact
solution; but subsequent discussion shows that this method is
invalid, the results being unacceptable from a quantum-mechan-
ical viewpoint. The second method, which considers the inter-
action of two systems, the lossless oscillator and the loss mecha-
nism, is adopted in the present article. No special model is used
for the loss mechanism, but this mechanism is assumed to have
a large number of densely-spaced energy states.
The approximations with respect to the loss mechanism that

underlie the concept of dissipation are discussed. These approxi-
mations are then applied to the analysis, and a differential
equation for a coordinate operator of the harmonic oscillator is

obtained which has the formal appearance of the Newtonian
equation of motion for a driven damped harmonic oscillator, the
driving term being an operator referring to the loss mechanism.
The presence of the driving term is responsible for the difference
between the present theory and that of the first method mentioned
above. A solution of the differential equation for the coordinate
operator is given explicitly. An examination of the physical sig-
nificance of the solution shows that the driving term is responsible
not only for the thermal fluctuations which are due to the loss
mechanism, but also for the proper commutation relationship of
the conjugate coordinates of the oscillator and for its zero-point
fluctuations,
A generalization of the solution to provide for a classical driving

force and coupled atomic systems is given. The results are then
restated in a form that refers to the loss mechanism only through
the two parameters by which it is usually described —the dis-
sipation constant and the temperature.

INTRODUCTION

QST quantum-mechanical analyses deal with
microscopic phenomena, and since dissipation

is a macroscopic concept, there has been little interest,

during the historical development of quantum mechan-
ics, in a formalism for systems with dissipation. There
is, however, a type of problem, which has acquired
considerable interest in recent years, in which dissipa-

Phys Rev 119 (1960) 670

equation of motion for system energy

676 I. R. SEN I TZ KY

where

MQS—=— ~ dt~ dt2 exp[—Pt+-', P(t&+t2) j
%re'~p &p

since the energy has an additional signi6cance of its
own. From Eq. (2),

(H...)=2~c'(P')+ (oP/8~c') (Q')
X([r&0&(t,) r&o&(t,)])cos~(t t,) sin~(t t,) (48) Equation (42) and (43) can be used to evaluate (P')

and (Q'). Thus
From Eq. (17) one easily obtains

([r'o'(t, ),r' '(t, )3)
where

(P'-)=e t"(P&'&')+U (55)

so that

=2iA Q e ~'~ ~r; ['sin(o;p(tg —t2), (49) T= 0) 0! t' f
dt& ' d4 exp[—Pt+-'P(4+4) j32~'c4 ~ o "()

({rN&(tq),r&"(t2))) sinu&(t —t~) since(t—t2),
dE~ p(E~)

~

dEI. p(E~)
0

Xe ~~ I~rr2(E;', E~) exp[—Pt+~P(t~+t2)]
XcosN(t ty) SIIlco(t 4) sill(dye(t], 4) ~ (50)

and where the symmetrized product ({A,B) =AB-
+BA) is used for convenience. Since

({r&'& (t&),r &'& (tp) ))=2A Q e ~"i~
I r,, ~

'

Xcosco, q(ti—t2), (56)

This integral is evaluated in Appendix A with the result
that U=

(51)S= i'(1—e—s').
We therefore have, from Eq. (47),

(0Qc4 P P f
dt's dt2 dE; p(E~) ' dEg p(Eg)

16' c ~p

Xc z;iver exp[-—Pt+r'P(tg+t~)$r'(E E~)

[Q(t),P(t)j...=t5. (52)

We now see part of the significance of the driving
term [the r &'& termj in Eq. (38). If it were absent, then
S would be zero, and our commutation relationship
would be

[Q(t),P(t)]=t&c ", (53)

which means that the Heisenberg uncertainty principle
could not apply, and a correct quantum-mechanical
formalism would be impossible. This is, in fact, , the
case in the work of Stevens' and of Kerner. 5 They
start with the classical equation of motion [Eq. (38)
without the r&'& term( for the operator P, and therefore
have no choice but to obtain the commutation rela-
tionship (53). Thus, we see very clearly that while the
classical equations of motion follow from the quantum-
mechanical ones by taking expectation values of the
operators, we cannot, in the case of systems with dis-
sipation, derive quantum-mechanical operator equa-
tions from the classical ones. Incidentally, it should be
noted that the operator properties of P and Q in both
the oscillator and loss-mechanism spaces are needed in
order to obtain the correct commutation relationship.
Further insight into this matter is gained by con-

sidering fluctuations of P and Q, a significant aspect of
which is their (formal) determination of the spon-
taneous emission of microscopic systems coupled to the
cavity field. The fluctuation of an observable corre-
sponding to an operator 0 is given by (0')—(0)'. In
the case of the harmonic oscillator, the Quctuation of
the coordinates can therefore be obtained from the ex-
pectation value of the energy. We calculate thelatter,

so that

her 1+exp(—It(o/kT)U= (1—e—t"),
8mc' 1—exp(—A(u/kT) (58)

2mc (P')=2m. c'(P& &')e &'

1+ exp (—l'ta)/k T)+ fg~ (1 c Pt)—. (59)
1—exp (—ko/k T)

The evaluation of (Q-') is carried out in exactly the same
manner, and the term in (aP/8sc')(Q') due to r "~ turns
out to be equal to the last term in Eq. (59). (This
equality means that the magnetic energy is equal to
the electric energy when averaged over a cycle, a result
to be expected in view of our approximation P/~&&1.)
We therefore have

(H...)= (H.„&'&)e—~'
+5&u{~2+[exp(A&o/kT) —1) ')(1—e t"). (60)

It will be instructive to separate the last expression
into several parts and discuss them individually. The
energy obtained contains both energy due to the signal
which may have been present originally in the cavity
(and which is determined by the initial state of the
radiation field) and fluctuation energy. Any initial
signal energy present is contained in (H„,&") and, as
evident from Eq. (60), will be damped out like e &',

exactly as it is classically. We thus have a further

Xsmm(t —ty) slIlco(t t2) cosa),y(—tg—t2). (57)

The expression for U is evaluated in Appendix B. The
result, averaged over a cycle of the oscillator frequency,
ls

commutators preserved

zero point energy preserved

• dissipative losses balanced by fluctuating forces

Energy balance for a dissipative system

X. L. Li, G. W. Ford, and R. F. O’Connell,

Phys Rev E 48 (1993) 1547

comment by Senitzky: Phys Rev E 51 (1995) 5166

approximations:

– bath near thermal equilibrium (M. Lax)

– weak damping β � ω

– small renormalization



History

Coupled surface polaritons and the Casimir force

Carsten Henkel, Karl Joulain, Jean-Philippe Mulet, and Jean-Jacques Greffet

Phys. Rev. A 69 (2004) 023808

surface plasmon contribution to pressure
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where &!#1 corresponds to symmetric 'antisymmetric(
modes, respectively. The integral is dominated by the range
x)1 and $)* . To leading order in *d/c→0, we can thus
use the asymptotic form of rp valid for large u given by Eq.
'8(. Performing the integral over $ analytically and including
damping to first order in +/* yields
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dx x2 %
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where z!1$$0
2/*2. This result shows clearly that symmet-

ric and antisymmetric modes give Casimir forces of opposite
sign. The first term in the parenthesis can be computed by
expanding the square root in a power series in &ze$x, lead-
ing to an infinite series given in Refs. ,10,22-. The second
term, the correction due to damping, can be integrated in
terms of the polylogarithmic function, so that we finally have
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4"* # , '12(

where
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n3 . '14(

For completeness, we give the asymptotic series for small
$0 /*(z→1)

.'z (/0.1388$0.32'1$z (%0.4'1$z (2 '15(

Li3'z2(/0'3 ($
"2

3 '1$z (%$3$
"2

6 $2 log,2'1$z (-%
"'1$z (2, '16(

with 0(3)/1.202. 'The coefficient of the second order term
in Eq. '15( is only accurate up to a logarithmic correction.(
Our result ,Eq. '12(- for the short-distance Casimir force

agrees with the formula given in Refs. ,10,22- in the special
case +!0, $0!0 'lossless Drude model(. A very similar
expression was found in Ref. ,26-. We compare Eq. '12( in
Fig. 6 to the full integral ,Eq. '2(- for the case of aluminum:
it turns out to be quite accurate for distances d10.1 &SPP ,
where &SPP!115 nm is the wavelength of the SPP with the
largest frequency ,36-. In the case of aluminum, the first
order correction in +/* is 2.5% of the zeroth order value of
the force. The plot also shows that for the numerical integra-
tion, the tabulated data and the Lorentz-Drude model '7(
with parameters fitted around the surface resonance give very
close results over a large range of distances. This is another
indication that the short-range Casimir force between real
metals is dominated by a narrow frequency range. Differ-
ences of the order of a few percent appear at large distances
where the Casimir force is dominated by the low-frequency
behavior of the reflection coefficient that is not accurately
modeled with the fitted parameters.
We finally note that the correction of order +/* derived

here introduces the effects of losses and must not be con-
fused with the correction due to a finite real permittivity This
is already taken into account by the finite value of the plasma
frequency * and is responsible for the emergence of the
short-distance regime d&&SPP where the Casimir force
)1/d3 ,19-. At large distances, a finite * leads to a small
correction to the well-known Casimir force )1/d4 between
perfect conductors ,2,9,10-.

V. CONCLUSION

We have pointed out that the Casimir attraction between
realistic materials can be quantitatively understood, at short
distances, in terms of the interaction between electromag-
netic surface plasmon 'or phonon( polaritons. The modes
overlap across the vacuum gap and split into symmetric and
antisymmetric combinations which contribute with different
signs to the Maxwell stress tensor and hence to the Casimir
force. We discussed in particular the short-distance regime of

FIG. 6. 'Color online( Comparison of different expressions for
the Casimir force between aluminum surfaces. We plot the ratio
F(d)/FCas(d), where FCas(d)!!c"2/(240d4) is the Casimir force
for perfect mirrors. Solid line 'black(: numerical integration of Eq.
'2(, using tabulated optical data ,23,36-. Short-dashed line with
circles 'blue(: same, with a model dielectric function of Drude form
,Eq. '7(- with $0!0, *!1.66"1016 s$1, and +/*!0.036. These
parameters have been obtained from a plot of the reflection coeffi-
cient ,2($)$1-/,2($)%1- based on the tabulated data that has
been fitted to the form given in Eq. '8(. Long-dashed line 'red(:
short-distance asymptotics '12( with the same values for $0 , *,
and +.

COUPLED SURFACE POLARITONS AND THE CASIMIR FORCE PHYSICAL REVIEW A 69, 023808 '2004(

023808-5
short distance d,

Drude damping γ, surface plasmon frequency Ω,

metal: z = 1, α(1) ≈ 0.1388, Li3(1) = ζ(3)

summation over surface plasmons:

Intravaia and Lambrecht [Phys Rev Lett 2005] [Phys Rev A 2007]



Energy and Entropy

Energy flux balance

δ 9Qin = δ 9Qout

. . . otherwise climate heating

Net entropy flux

d 9Sin − d 9Sout '
δ 9Qin

T (@)
− δ 9Qout

T (J)
< 0

“solar information source”
[L. Boltzmann/E. Schrödinger]

entropy source/sink:

material bodies, complex many-body

systems



“Entanglement forces”

example: “quantum friction force”

F ~ v F ~ v

T

0 ←

heuristics:

lateral delay of image charge, dipole . . .

Barton [New J Phys ≥ 2010],

Behunin & Hu [Phys Rev A 2010],

Pieplow & Henkel [New J Phys 2013],

Intravaia & al [J. Phys. Condens. Matt. 2015], . . .

pair production (“unstable vacuum”)

plate-plate entangled state

“afresh” zero temperature baths

• non-equilibrium stationary state

Pendry [J mod Opt 1998],

Philbin & Leonhardt [New J Phys 2009]



Thermodynamic cut – toy model
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spectrum of heat current

competition: interaction vs bath coupling

standard language: ‘continuous variables’ (covariance matrix 〈qiqj〉, partial transpose . . . )

• goal here: extend the entanglement criterion to spectral correlations Sij(ω)← 〈qi(t)qj(t′)〉
Dorofeyev [Can J Phys 2013], Biehs & Agarwal [JOSA B 2013], Barton [J Stat Phys 2015] . . .

Two-Temperature van der Waals Potentials,

J. P. Rosenkrans, B. Linder, and R. A. Kromhout,

J Chem Phys 49 (1968) 2927



Summary & Perspectives

Mystery of vacuum fluctuations?

. . . challenge to cosmology

. . . down to earth: regularized by matter (de)coupling

System+bath physics

. . . roots of thermodynamics (fluctuation–dissipation)

. . . poor men’s master equations vs NEGF

Challenges

. . . thermal anomaly (low Matsubara frequencies)

. . . heat transport: take materials/interfaces seriously


