Publications by M. Bordag
(ORCID 0000-0002-6752-9983)

[1]   Michael Bordag and Irina G. Pirozhenko. Mass and Magnetic Moment of the Electron and the Stability of QED—A Critical Review. Physics, 6(1):237–250, 2024. URL: https://www.mdpi.com/2624-8174/6/1/17, doi:10.3390/physics6010017.

[2]   M. Bordag. Tachyon condensation in a chromomagnetic center-vortex background. Universe, 10:38, 2024. URL: https://doi.org/10.3390/universe10010038, arXiv:2311.13553.

[3]   Michael Bordag. On instabilities caused by magnetic background fields. Symmetry, 15(6), 2023. URL: https://www.mdpi.com/2073-8994/15/6/1137, doi:10.3390/sym15061137.

[4]   M. Bordag. Tachyon condensation in a chromomagnetic background field and the groundstate of QCD. Eur. Phys. J. A, 59:55, 2023. doi: 10.1140/epja/s10050-023-00966-0.

[5]   M. Bordag and V. Skalozub. Effective potential of gluodynamics in background of Polyakov loop and colormagnetic field. Eur. Phys. J. C, 82:390, 2022. arXiv 2112.01043. URL: https://doi.org/10.1140/epjc/s10052-022-10339-4, arXiv: 2112.01043.

[6]   M. Bordag, I. Fialkovsky, N. Khusnutdinov, and D. Vassilevich. Bulk contributions to the Casimir interaction of Dirac materials. Phys. Rev. B, 104:195431, 2021. ArXiv 2107.10369. URL: https://link.aps.org/doi/10.1103/PhysRevB.104.195431, arXiv:2107.10369, doi:10.1103/PhysRevB.104.195431.

[7]   M. Bordag and V. Skalozub. A0–condensation in quark-gluon plasma with finite baryon density. Eur. Phys. J. C, 81:998, 2021. ArXiv 2009.11734. URL: https://doi.org/10.1140/epjc/s10052-021-09776-4.

[8]   M. Bordag and I. G. Pirozhenko. The Closed Piecewise Uniform String Revisited. Vestnik Balt. Univ., Fiz-Mat Series, 1:51–72, 2021. ArXiv 2012.14301. URL: https://elibrary.ru/item.asp?id=46117909.

[9]   Michael Bordag. Vacuum Energy for a Scalar Field With Self-Interaction in (1 + 1) Dimensions. Universe, 7:55, 2021.

[10]   M. Bordag and I. G. Pirozhenko. Free Energy and Entropy for an Impurity in a Periodic Background in One Dimension. Journal of Physics and Electronics, 28:29, 2020.

[11]   M. Bordag, J. M. Munoz-Castaneda, and L. Santamaría-Sanz. Free energy and entropy for finite temperature quantum field theory under the influence of periodic backgrounds. Eur. Phys. J. C, 80(3), 2020. doi: {10.1140/epjc/s10052-020-7783-3}.

[12]   M. Bordag. Conditions for Bose-Einstein condensation in periodic background. J. Phys., A53(1):015003, 2020. doi:10.1088/1751-8121/ ab5b41.

[13]   M Bordag. Casimir effect for impurity in periodic background in one dimension. J. Phys. A: Math. Gen., 53(32):325401, 2020. URL: https://doi.org/10.1088%2F1751-8121%2Fab9463, doi:10.1088/ 1751-8121/ab9463.

[14]   M. Bordag. On Bose-Einstein condensation in one-dimensional lattices of delta functions. Mod. Phys. Lett., A35(03):2040005, 2020. doi: 10.1142/S0217732320400052.

[15]    J. M. Muñoz Castañeda, M. Bordag, and L. Santamaría-Sanz. Revisiting the Casimir Energy with General Boundary Conditions and applications in 1D Crystals. Mod. Phys. Lett., A35(03):2040018, 2020. arXiv:1910.08142, doi:10.1142/S0217732320400180.

[16]   M. Bordag, J. M. Muñoz-Castañeda, and L. Santamaría-Sanz. Free energy and entropy for finite temperature quantum field theory under the influence of periodic backgrounds. 2019. arXiv: 1911.05875. arXiv: 1911.05875.

[17]   M. Bordag and V. Skalozub. Photon dispersion relations in A0-background. EPJ Plus, 134:289, 2019. arXiv 1809.08117. arXiv: 1809.08117.

[18]   Michael Bordag, Jose M. Muñoz Castañeda, and Lucia Santamaría-Sanz. Vacuum energy for generalised Dirac combs at T = 0. Front. Phys., 7:38, 2019. arXiv:1812.09022.

[19]   M. Bordag. Entropy in some simple one-dimensional configurations. Arxiv: 1807.10354 [quant-ph], 2018.

[20]   M. Bordag. Free energy and entropy for thin sheets. Phys. Rev. D, 98:085010, 2018.

[21]   M Bordag and K Kirsten. On the entropy of a spherical plasma shell. J. Phys. A: Math. Gen., 51:455001, 2018.

[22]   M. Bordag and I.G. Pirozhenko. Dispersion forces between fields confined to half spaces. Symmetry, 10(3):74, 2018. URL: http://www.mdpi.com/2073-8994/10/3/74, arXiv:quant-ph/1803.08113, doi:10.3390/sym10030074.

[23]    M Bordag, G L Klimchitskaya, and V M Mostepanenko. Nonperturbative theory of atom-surface interaction: corrections at short separations. Journal of Physics: Condensed Matter, 30(5):055003, 2018.

[24]   M. Bordag. Vacuum and thermal energies for two oscillators interacting through a field. Theor. Mat. Phys., 195:834, 2018. arXiv:1707.06214.

[25]   M. Bordag. Casimir and Casimir-Polder forces with dissipation from first principles. Phys. Rev. A, 96:062504, 2017. doi:10.1103/PhysRevA.96. 062504.

[26]   M. Bordag, I. Fialkovsky, and D. Vassilevich. Casimir Interaction of Strained Graphene. Phys. Lett. A, 381:2439, 2017.

[27]   M. Bordag and I.G. Pirozhenko. Casimir Effect for Dirac Lattices. Phys. Rev. D, 95:056017, 2017. ArXiv: 1701.0261.

[28]   M. Bordag and I. G. Pirozhenko. Surface plasmon on graphene at finite T. Int. J. Mod. Phys. B, 30:1650120, 2016. arXiv:1508.07721.

[29]   M. Bordag, I. Fialkovsky, and D. Vassilevich. Enhanced Casimir effect for doped graphene. Phys.Rev.B, 93:075414, 2016.

[30]   M. Bordag and I.G. Pirozhenko. QED and surface plasmons on graphene. Int. J. Mod. Phys. A, 31:1641027, 2016.

[31]   M. Bordag and I.G. Pirozhenko. Surface plasmons for doped graphene. Phys. Rev. D, 91:085038, 2015.

[32]   M. Bordag and J.M. Muñoz Castañeda. Dirac Lattices, Zero-Range Potentials and Self Adjoint Extension. Phys. Rev. D, 91:065027, 2015.

[33]   M. Bordag, G. L. Klimchitskaya, V. M. Mostepanenko, and V. M. Petrov. Quantum field theoretical description for the reflectivity of graphene. Phys. Rev. D, 91:045037, 2015.

[34]   J.M. Munoz-Castaneda, Klaus Kirsten, and M. Bordag. QFT over the finite line. Heat kernel coefficients, spectral zeta functions and selfadjoint extensions. Lett.Math.Phys., 105:523–549, 2015.

[35]   Matthew Beauregard, Michael Bordag, and Klaus Kirsten. Casimir energies in spherically symmetric background potentials revisited. J. Phys. A: Math. Gen., 48:095401, 2015.

[36]   M. Bordag and V. Skalozub. On the type of the temperature phase transition in O(N) models within a perturbative analysis. Preprint arXiv:1404.6658, 2014.

[37]   M. Bordag. Low Temperature Expansion in the Lifshitz Formula. Adv. Math. Phys., page 981586, 2014. arXiv:quant-ph/1212.0213.

[38]   M. Bordag. Monoatomically thin polarizable sheets. Phys. Rev. D, 89:125015, 2014.

[39]   J.M. Munoz-Castaneda and M. Bordag. Quantum vacuum interaction between two cosmic strings revisited. Phys. Rev. D, 89:065034, 2014.

[40]   M. Bordag and I.G. Pirozhenko. Transverse-electric surface plasmon for graphene in the Dirac equation model. Phys. Rev. B, 89:035421, 2014.

[41]   Irina G. Pirozhenko and Michael Bordag. Casimir repulsion in sphere-plate geometry. Phys. Rev. D, 87:085031, 2013.

[42]   M. Bordag. Surface plasmon for graphene in the Dirac equation model. 2012. ArXiv 1212.1894. arXiv:1212.1894.

[43]   M. Bordag, G.L. Klimchitskaya, and V.M. Mostepanenko. Thermal Casimir effect in the interaction of graphene with dielectrics and metals. Phys. Rev. B, 86:165429, 2012.

[44]   M. Bordag, G.L. Klimchitskaya, and V.M. Mostepanenko. Comment on ’Casimir Force and In Situ Surface Potential Measurements on Nanomembranes’. Phys. Rev. Lett., 109:199701, 2012.

[45]   M. Bordag, V. I. Demchik, A. V. Gulov, and V. V. Skalozub. On the Type of the Temperature Phase Transition in O(N) Models. Problems Of Atomic Science And Technology, 1:43–47, 2012. 3rd International Conference on Quantum Electrodynamics and Statistical Physics (QEDSP), Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, UKRAINE, AUG 29-SEP 02, 2011.

[46]   M. Asorey, M. Bordag, and E. Elizalde. SPECIAL ISSUE - Selected Papers from the 10th Conference on Quantum Field Theory Under the Influence of External Conditions (QFEXT11) Spain, 18-24 September 2011 PREFACE. Int. J. Mod. Phys. A, 27, 2012.

[47]   G. L. Klimchitskaya, M. Bordag, and V. M. Mostepanenko. Comparison Between Experiment and Theory for the Thermal Casimir Force. Int. J. Mod. Phys. A, 27, 2012.

[48]   M. Bordag, V. Demchik, A. Gulov, and V. Skalozub. The Type of the Phase Transition and Coupling Values in Lambda Phi(4) Model. Int. J. Mod. Phys. A, 27, 2012.

[49]   M. Bordag and V. Skalozub. Groundstate projection of the charged SU(2) polarization tensor in a chromomagnetic background field at finite temperature. Phys. Rev. D, 85:065018, 2012.

[50]   M. Bordag. Electromagnetic Vacuum Energy for two Parallel Slabs in Terms of Surface, Wave Guide and Photonic Modes. Phys. Rev. D, 85:025005, 2012.

[51]   M. Bordag and J.M. Munoz-Castaneda. Quantum vacuum interaction between two sine-Gordon kinks. J. Phys. A: Math. Gen., 45:374012, 2012.

[52]   L. P. Teo, M. Bordag, and V. Nikolaev. On the corrections beyond proximity force approximation (PFA). Phys. Rev. D, 84:125037, 2011.

[53]   J. M. Munoz-Castaneda and M. Bordag. Quantum fields bounded by one-dimensional crystal plates. J. Phys. A: Math. Gen., 44:415401, 2011.

[54]   M. Bordag. Drude Model and Lifshitz Formula. Eur. Phys. J. C, 71:1788, 2011.

[55]   Michael Bordag and Irina G. Pirozhenko. The Low temperature corrections to the Casimir force between a sphere and a plane. In D. Sáez-Gómez, S. D. Odintsov, and S. Xambó, editors, Cosmology, The Quantum Vacuum, and Zeta Functions, pages 45–56. Springer Verlag, 2011.

[56]   G. L. Klimchitskaya, M. Bordag, E. Fischbach, D. E. Krause, and V. M. Mostepanenko. Observation of the Thermal Casimir Force is Open to Question. Int. J. Mod. Phys. A, 26:3918, 2011.

[57]   Sergey Antropov, Michael Bordag, Vadim Demchik, and Vladimir Skalozub. Long range chromomagnetic fields at high temperature. Int. J. Mod. Phys., A26:4831–4843, 2011. arXiv:1011.3147, doi: 10.1142/S0217751X11054747.

[58]   M. Bordag and V. Nikolaev. Analytic Corrections to the Electromagnetic Casimir Interaction Between a Sphere and a Plate at Short Distances. Int. J. Mod. Phys. A, 25:2171, 2010.

[59]   M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko. On the definition of dielectric permittivity for media with temporal dispersion in the presence of free charge carriers. J. Phys. A: Math. Gen., 43:015402, 2010.

[60]   M. Bordag and I. G. Pirozhenko. On the Casimir entropy for a ball in front of a plane. Phys. Rev. D, 82:125016, 2010. arXiv:1010.1217.

[61]   Michael Bordag and Irina G. Pirozhenko. The low temperature corrections to the Casimir force between a sphere and a plane. 2010. ArXiv 1007.2741.

[62]   M. Bordag, V. Demchik, and V.Skalozub. Characteristics of gluon plasma in chromomagnetic field at high temperature. In K.A. Milton and M. Bordag, editors, Proceedings of the 9th Conference on Quantum Field Theory Under the Influence of External Conditions (QFEXT09). World Scientific, Singapore, 2010.

[63]   M Bordag, V Demchik, A Gulov, and V Skalozub. On the type of the temperature phase transition in phi-4 model. arXiv preprint arXiv:1012.5383, 2010.

[64]   M. Bordag and I. Pirozhenko. Vacuum energy between a sphere and a plane at finite temperature. Phys. Rev. D, 81:085023, 2010.

[65]   M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko. On the definition of dielectric permittivity for media with temporal dispersion in the presence of free charge carriers. J. Phys., A43:015402, 2010. arXiv:0911.3231.

[66]   M. Bordag and V. Nikolaev. First analytic correction beyond the proximity force approximation in the Casimir effect for the electromagnetic field in sphere-plane geometry. Phys.Rev.D, 81:065011, 2010.

[67]   M. Bordag. Ultraviolet divergences, repulsive forces and a spherical plasma shell. J. Phys. Conf. Ser., 161:012018, 2009.

[68]   M. Bordag, I. V. Fialkovsky, D. M. Gitman, and D. V. Vassilevich. Casimir interaction between a perfect conductor and graphene described by the Dirac model. Phys. Rev. B, 80:245406, 2009.

[69]   M. Bordag and G.L. Klimchitskaya and U. Mohideen and V.M. Mostepanenko. Advances in the Casimir Effect. Oxford University Press, International Series of Monographs on Physics 145, 2009.

[70]   M. Bordag and V. Nikolaev. Beyond Proximity Force Approximation in the Casimir effect. Int. J. Mod. Phys. A, 24:1743–1747, 2009.

[71]   M. Bordag and V. Nikolaev. The vacuum energy for two cylinders with one increasing in size. J. Phys. A: Math. Gen., 42:415203, 2009.

[72]   M. Bordag and V. Mostepanenko, editors. Papers Presented at the 8th Workshop on Quantum Field Theory under the Influence of External Conditions (QFEXT07) (Leipzig, Germany, 16-21 September, 2007). IOP, 2008. appeared as Special Issue of J.. Phys. A, v. 41, Nr. 16, 2008.

[73]   M. Bordag and V. Skalozub. Polarization tensor of charged gluons in color magnetic background field at finite temperature. Phys. Rev. D, 77:105013, 2008.

[74]   M. Bordag and N. Khusnutdinov. On the vacuum energy of a spherical plasma shell. Phys.Rev.D, 77:085026, 2008.

[75]   M. Bordag and V. Nikolaev. Casimir force for a sphere in front of a plane beyond proximity force approximation. J. Phys. A: Math. Gen., 41:164002, 2008.

[76]   M. Bordag, A. Ferludin, N. Khandoga, and V. Skalozub. The green function of neutral gluons in color magnetic background field at finite temperature. J. Phys. A: Math. Gen., 41:164045, 2008.

[77]   M. Bordag. On the interaction of a charge with a thin plasma sheet. Phys. Rev. D, 76:065011, 2007.

[78]   M. Bordag, A. Ribayrol, G. Conache, L. E. Fröberg, S. Gray, L. Samuelson, L. Montelius, and H. Pettersson. Shear stress measurements on InAs nanowires by AFM manipulation. Small, 3:1398 – 1401, 2007.

[79]   M. Bordag and V. Skalozub. One-loop polarization tensor in color magnetic background at finite temperature. 2008. in: International school-seminar ”New physics and quantum chromodynamics at external conditions, May 3-6, 2007, Dnipropetrovsk, Ukraine.

[80]   M. Bordag. Generalized Lifshitz formula for a cylindrical plasma sheet in front of a plane beyond proximity force approximation. Phys.Rev.D, 75:065003, 2007.

[81]   M. Bordag and V. Skalozub. Neutral gluon polarization tensor in color magnetic background at finite temperature. Phys. Rev. D, 75:125003, 2007. arXiv:hep-th/0611256.

[82]   M Bordag, B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko. Lifshitz-type formulas for graphene and single-wall carbon nanotubes: van der Waals and Casimir interactions. Phys.Rev.B, 74:205431, 2006.

[83]   M. Bordag. The Casimir effect for a sphere and a cylinder in front of plane and corrections to the proximity force theorem. Phys. Rev. D, 73:125018, 2006. arXiv:hep-th/0602295.

[84]   M. Bordag, Y. O. Grebenyuk, and V. V. Skalozub. Nontransversality of the gluon polarization tensor in a chromomagnetic background field. Theoretical and Mathematical Physics, 148(1):910–922, 2006.

[85]   M. Bordag and V. Skalozub. Gluon polarization tensor in color magnetic background. Eur. Phys. J., C 45:159–178, 2006.

[86]   M. Bordag. The Casimir effect for thin plasma sheets and the role of the surface plasmons. J. Phys. A: Math. Gen., 39:6173–6185, 2006. arXiv:hep-th/0511269.

[87]   M. Bordag, I. G. Pirozhenko, and V. V. Nesterenko. Spectral analysis of a flat plasma sheet model. J. Phys., A38:11027, 2005. arXiv: hep-th/0508198.

[88]   I. G. Pirozhenko, V. V. Nesterenko, and M. Bordag. Integral equations for heat kernel in compound media. J. Math. Phys., 46:042305, 2005. arXiv:hep-th/0409289.

[89]   M. Bordag. Reconsidering the quantization of electrodynamics with boundary conditions. Int. J. Mod. Phys., A20:2505–2509, 2005.

[90]   M. Bordag. Reconsidering the quantization of electrodynamics with boundary conditions and some measurable consequences. Phys. Rev., D70:085010, 2004. arXiv:hep-th/0403222.

[91]   M. Bordag and D. V. Vassilevich. Nonsmooth backgrounds in quantum field theory. Phys. Rev., D70:045003, 2004. arXiv:hep-th/0404069.

[92]   M. Bordag. Fermioninc vacuum energy in the abelian higgs model. In Kimball A. Milton, editor, Proceedings of the 6th Workshop on Quantum Field Theory under the Influence of External Conditions, pages 152–157. Rinton Press, 2004.

[93]   M. Bordag and I. Drozdov. Fermionic vacuum energy from a Nielsen-Olesen vortex. Phys. Rev., D68:065026, 2003. arXiv:hep-th/ 0305002.

[94]   M. Bordag. Vacuum energy of a color magnetic vortex. Phys. Rev., D67:065001, 2003. arXiv:hep-th/0211080.

[95]   M. Bordag and A. Yurov. Spontaneous symmetry breaking and reflectionless scattering data. Phys. Rev., D67:025003, 2003. arXiv: hep-th/0206199.

[96]   M. Bordag. On the origin of the zero point energy. In R.T. Jantzen V.G. Gurzadyan and R. Ruffini, editors, Proceedings of the Ninth Marcel Grossmann Meeting on General Relativity, pages 1433–1436. World Scientific, 2002.

[97]   M. Bordag, editor. Proceedings of the Fifth Workshop on Quantum Field Theory under the Influence of External Conditions, Leipzig, Germany, September 10-14, 2001. World Scientific, Singapore, 2002. appeared as Special Issue of Int. J. Mod. Phys. A, v. 17, Nrs. 6&7, 2002.

[98]   Michael Bordag, Alfred Scharff Goldhaber, Peter van Nieuwenhuizen, and Dmitri Vassilevich. Heat kernels and zeta-function regularization for the mass of the susy kink. Phys. Rev., D66:125014, 2002. arXiv:hep-th/0203066.

[99]   M. Bordag and V. Skalozub. Super daisy resummations and an effective expansion parameter in the O(N)-model near the phase transition. Phys. Lett. B, 533:182–190, 2002.

[100]   M. Bordag and K. Kirsten. Heat kernel coefficients and divergencies of the Casimir energy for the dispersive sphere. Int. J. Mod. Phys. A, 17:813–819, 2002. arXiv:hep-th/0110217.

[101]   M. Bordag and V. Skalozub. Temperature phase transition and an effective expansion parameter in the O(N)-model. Phys. Rev. D, 65:085025, 2002. arXiv:hep-th/0107027.

[102]   M. Bordag and V. Skalozub. Summing Superdaisy Diagrams in the O(N)-Model near the Phase Transition Temperature. Theor.Mat.Phys., 131:450–458, 2001. (translated from Teor.Mat.Fiz, 131 (2002) p.4-14).

[103]   M. Bordag and K. Kirsten. Heat kernel coefficients and divergencies of the casimir energy for the dispersive sphere. In M. Bordag, editor, Proceedings of the Fifth Workshop on Quantum Field Theory under the Influence of External Conditions, Leipzig, Germany, September 10-14, 2001, pages 813–819. World Scientific, 2001.

[104]   M. Bordag, V. V. Nesterenko, and I. G. Pirozhenko. On the high temperature asymptotics of the free energy of quantum fields in confined regions. 2001. hep-th/0107024.

[105]   M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko. Reply to comment on ’Casimir force at both nonzero temperature and finite conductivity’. Phys. Rev. Lett., 87:259102, 2001.

[106]   Michael Bordag, Vladimir V. Nesterenko, and Irina G. Pirozhenko. High temperature asymptotics in terms of heat kernel coefficients: Boundary conditions with spherical and cylindrical symmetries. Nucl. Phys. Proc. Suppl., 104:228–231, 2002. arXiv:hep-th/0107005.

[107]   M. Bordag, U. Mohideen, and V. M. Mostepanenko. New Developments in the Casimir Effect. Phys. Rept., 353:1–205, 2001. arXiv:quant-ph/ 0106045.

[108]   Michael Bordag, D. Vassilevich, H. Falomir, and E. M. Santangelo. Multiple reflection expansion and heat kernel coefficients. Phys. Rev., D64:045017, 2001. arXiv:hep-th/0103037, doi:10.1103/PhysRevD. 64.045017.

[109]   M. Bordag and I. G. Pirozhenko. The heat kernel coefficients for the dielectric cylinder. Phys. Rev. D, 64:025019, 2001. arXiv:hep-th/ 0102193.

[110]   M. Bordag and V. Skalozub. Phase transition in scalar ϕ4 theory beyond the super daisy resummations. J. Phys. A: Math. Gen., 34:461–71, 2001. arXiv:hep-th/0006089.

[111]   M. Bordag, B. Geyer, G.L. Klimchitskaya, and V.M. Mostepanenko. Casimir force at both nonzero temperature and finite conductivity. Physical Review Letters, 85:503–6, 2000.

[112]   M. Bordag. Ground state energy for massive fields and renormalization. Comments on Atomic and Nuclear Physics, Comments on Modern Physics, 1, part D:347–361, 2000.

[113]   M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko. New constraints for non-Newtonian gravity in nanometer range from the improved precision measurement of the Casimir force. Physical Review D, 62:011701/1–5, 2000. arXiv:hep-ph/0003011.

[114]   M. Bordag and D. V. Vassilevich. Casimir force between Chern-Simons surfaces. Phys.Lett.A, 268:75–80, 2000. arXiv:hep-th/9911179.

[115]   Michael Bordag, Meik Hellmund, and Klaus Kirsten. Dependence of the vacuum energy on spherically symmetric background fields. Phys. Rev., D 61:085008, 2000.

[116]   M. Bordag and V. Skalozub. On Symmetry Restoration at Finite Temperature (Scalar Case). 1999. hep-th/9908003.

[117]   Vladimir Skalozub and Michael Bordag. Color ferromagnetic vacuum state at finite temperature. Nucl. Phys. B, 576:430–44, 2000. arXiv: hep-ph/9905302.

[118]   Vladimir Skalozub and Michael Bordag. Ring diagrams and electroweak phase transition in a magnetic field. Int. J. Mod. Phys. A, 15:349–361, 2000. arXiv:hep-ph/9904333.

[119]   M. Bordag (ed.). The Casimir Effect 50 Years Later (Proceedings of the Fourth Workshop on Quantum Field Theory under the Influence of External Conditions, Leipzig, Germany, September 14-18, 1998). World Scientific, Singapore, 1999.

[120]   D. Vassilevich M. Bordag, K. Kirsten. On the ground state energy for a dielectric ball. In M. Bordag, editor, The Casimir Effect 50 Years Later (Proceedings of the Fourth Workshop on Quantum Field Theory under the Influence of External Conditions, Leipzig, Germany, September 14-18, 1998), pages 50–61. World Scientific, 1999.

[121]   G. Lambiase, V. V. Nesterenko, and M. Bordag. Casimir energy of a ball and cylinder in the zeta function technique. Journ. Math. Phys., 40:6254–6265, 1999. arXiv:hep-th/9812059.

[122]   M. Bordag and K. Kirsten. The ground state energy of a spinor field in the background of a finite radius flux tube. Phys. Rev. D, 60:105019, 1999. arXiv:hep-th/9812060.

[123]   M. Bordag and D. V. Vassilevich. Heat kernel expansion for semitransparent boundaries. J. Phys. A., 32:8247–8259, 1999. arXiv: hep-th/9907076.

[124]   M. Bordag, K. Kirsten, and D.V. Vassilevich. On the ground state energy for a penetrable sphere and for a dielectric ball. Phys. Rev. D, 59:085011, 1999.

[125]   N. R. Khusnutdinov and M. Bordag. Ground state energy of massive scalar field in the background of finite thickness cosmic string. Phys. Rev., D59:064017, 1999. arXiv:gr-qc/9810066.

[126]   M. Bordag and K. Scharnhorst. O(alpha) radiative correction to the Casimir energy for penetrable mirrors. Phys. Rev. Lett., 81:3815–3818, 1998. arXiv:hep-th/9807121.

[127]   Vladimir Skalozub and Michael Bordag. Electroweak phase transition in a strong magnetic field. hep-ph/9807510, 1998.

[128]   M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko. Constraints for hypothetical interactions from a recent demonstration of the Casimir force and some possible improvements. Phys. Rev., D58:075003, 1998. arXiv:hep-ph/9804223.

[129]   M. Bordag, J. Lindig, and V. M. Mostepaneko. Particle creation and vacuum polarization of nonconformal scalar field near the isotropic cosmological singularity. Class. Quant. Grav., 15:581, 1998.

[130]   M. Bordag and J. Lindig. Radiative correction to the Casimir force on a sphere. Phys. Rev. D, 58:045003, 1998. arXiv:hep-th/9801129.

[131]   E. Elizalde, M. Bordag, and K. Kirsten. Casimir energy for a massive fermionic quantum field with a spherical boundary. J. Phys. A, A31:1743–1759, 1998. arXiv:hep-th/9707083.

[132]   M. Bordag, K. Kirsten, and D. V. Vassilevich. Path integral quantization of electrodynamics in dielectric media. J. Phys. A, 31:2381, 1998. arXiv: hep-th/9709084.

[133]   M. Bordag, G. T. Gillies, and V. M. Mostepanenko. New constraints on the Yukawa - type hypothetical interaction from the recent Casimir force measurement. Phys. Rev., D56:6–10, 1997. arXiv:hep-th/9705101.

[134]   M. Bordag, E. Elizalde, K. Kirsten, and S. Leseduarte. Casimir energies for massive fields in a spherical geometry. Phys. Rev. D, 56:4896–4904, 1997. arXiv:hep-th/9608071.

[135]   M. Bordag, K. Kirsten, and J.S. Dowker. Heat kernels and functional determinants on the generalized cone. Commun. Math. Phys., 182:371–394, 1996. arXiv:hep-th/9602089.

[136]   M. Bordag and N. Khusnutdinov. A Remark on bound states in conical space-time. Class. Quant. Grav., 13:L41–L46, 1996.

[137]   M. Bordag and K. Kirsten. Vacuum energy in a spherically symmetric background field. Phys. Rev. D, 53:5753–5760, 1996. arXiv:hep-th/ 9608070.

[138]   M. Bordag and J. Lindig. Vacuum energy density in arbitrary background fields. J. Phys., A29:4481–4492, 1996.

[139]   (ed. ) M. Bordag. Quantum field theory under the influence of external conditions. Proceedings, 3rd Workshop, Leipzig, Germany, September 18-22, 1995. Stuttgart, Germany: Teubner (1996) 279 p. (Teubner-Texte zur Physik), 1996.

[140]   J. S. Dowker, J. S. Apps, K. Kirsten, and M. Bordag. Spectral invariants for the Dirac equation on the d ball with various boundary conditions. Class. Quant. Grav., 13:2911–2920, 1996. arXiv:hep-th/9511060.

[141]   M. Bordag, B. Geyer, K. Kirsten, and E. Elizalde. Zeta function determinant of the Laplace operator on the D-dimensional ball. Commun. Math. Phys., 179:215–234, 1996. arXiv:hep-th/9505157.

[142]   M. Bordag, E. Elizalde, and K. Kirsten. Heat kernel coefficients of the Laplace operator on the D-dimensional ball. J. Math. Phys., 37:895–916, 1996. hep-th/9503023.

[143]   M. Bordag, B. Geyer, K. Kirsten, and E. Elizalde. Zeta function determinant of the Laplace operator on the D- dimensional ball. Commun. Math. Phys., 179:215, 1996. arXiv:hep-th/9505157.

[144]   M. Bordag, G. L Klimchitskaya, and V. M. Mostepaneko. The Casimir force between plates with small deviations from plane parallel geometry. Int. J. Mod. Phys., A10:2661–2682, 1995.

[145]   M. Bordag. Vacuum Energy in Smooth Background Fields. J. Phys., A28:755–766, 1995.

[146]   M. Bordag and A. A. Bytsenko. Quantum corrections to the entropy for higher spin fields in hyperbolic space. Grav. Cosmol., 1:266, 1995. arXiv:gr-qc/9412054.

[147]   M. Bordag, G. L. Klimchitskaya, and V. M. Mostepanenko. Corrections to the casimir force between plates with stochastic surfaces. Physics Letters A, 200(2):95–102, 1995.

[148]   S. A. Voropaev and M. Bordag. The Role of boundary conditions in the Aharonov-Bohm effect for particles with spin. J. Exp. Theor. Phys., 78:127, 1994. JINR-P4-93-136.

[149]   M. Bordag, G. L. Klimchitskaya, and V. M. Mostepanenko. Casimir force between two parallel plates with small distortions of different types. Mod. Phys. Lett., A9:2515–2526, 1994.

[150]   M. Bordag, V. M. Mostepanenko, and I. Yu. Sokolov. Corrections to the Casimir force due to small distortions of the surfaces of the test bodies. 1993. LEIPZIG-21-1993.

[151]   M. Bordag, V. M. Mostepannko, and I. Yu. Sokolov. Restrictions on the hypothetical long range interactions from the Casimir type null experiment with three test bodies. Mod. Phys. Lett., A9:2671–2680, 1994.

[152]   M. Bordag, V. M. Mostepanenko, and I. Yu. Sokolov. On the strengthening of restrictions on hypothetical Yukawa type forces with extremely small range of action. Phys. Lett., A187:35, 1994.

[153]   M. Bordag and S. Voropaev. Bound states and scattering of an electron in the field of the magnetic string. Phys. Lett., B333:238, 1994.

[154]   M. Bordag and S. Voropaev. Charged particle with magnetic moment in the Aharonov-Bohm potential. J. Phys. A, A26:7637, 1993. arXiv: hep-th/9304017.

[155]   M. Bordag. Hydrogen levels between plates. 1992. In *Leipzig 1992, Proceedings, Quantum field theory under the influence of external conditions* 242-256.

[156]   M. Bordag, D. Hennig, and D. Robaschik. Vacuum energy in quantum field theory with external potentials concentrated on planes. J. Phys. A, A25:4483, 1992.

[157]   M. Bordag, D. Robaschik, and E. Wieczorek. Problems with the zeta function method. Lett. Math. Phys., 25:1–6, 1992.

[158]   M. Bordag. The Vacuum interaction of magnetic strings. Annals Phys., 206:257, 1991.

[159]   M. Bordag. On the vacuum interaction of two parallel cosmic strings. Annalen Phys., 47:93, 1990.

[160]   M. Bordag, D. Hennig, and D. Robaschik. Quantum field theory with external potentials concentrated on planes. 2: Vacuum energy of two parallel idealized potential wells. 1989. Leipzig Univ. - KMU-NTZ-89-16 (89, rec.May 90) 19 p.

[161]   M. Bordag, D. Robaschik, and E. Wieczorek. Electromagnetic Mass Correction for a Charged Particle Due to Conducting Boundaries. Phys. Lett. A, 132:145–150, 1988.

[162]   M. Bordag, L. Kaschluhn, D. Robaschik, and V. A. Matveev. Generating Functionals of P Wave Singlet Green Functions in Gauge Field Theories. 1987. IN *SCHLADMING 1987, PROCEEDINGS, RECENT DEVELOPMENTS IN MATHEMATICAL PHYSICS* 256-260.

[163]   M. Bordag, D. Robaschik, and E. Wieczorek. The Casimir Effect in Second Order of Perturbation Theory. 1984. In *Tbilisi 1984, Proceedings, QUARKS 84, VOL. 2* 104-111.

[164]   M. Bordag, L. Kaschluhn, D. Robaschik, and V. A. Matveev. Generating Functionals for Green’s Functions in Gauge Field Theories. Theor. Math. Phys., 70:278, 1987.

[165]   F. Kaschluhn, D. Robaschik, M. Bordag, and V. A. Matveev. Generating Functionals of one 1PI Green Functions in Gauge Field Theories. 1985. In *Ahrenshoop 1985, Proceedings, Special Topics In Gauge Field Theories*, 219-227.

[166]   M. Bordag. Photon Propagator with Boundary Conditions in Covariant Gauge. 1985. In *Ahrenshoop 1985, Proceedings, Special Topics In Gauge Field Theories*, 117-125.

[167]   M. Bordag. The Magnetic Moment of an Electron Between Mirrors in a Homogeneous Magnetic Field. 1985. JINR-E2-85-409.

[168]   M. Bordag. On the Apparatus Dependence of the Anomalous Magnetic Moment of the Electron. Phys. Lett., B171:113, 1986.

[169]   M. Bordag, F. M. Dittes, and D. Robaschik. Casimir Effect with Uniformly Moving Mirrors. Sov. J. Nucl. Phys., 43:1034, 1986.

[170]   M. Bordag, E. Wieczorek, and D. Robaschik. Radiative Corrections for the Casimir Effect. 1983. JINR-P2-83-302.

[171]   B. Geyer, D. Robaschik, M. Bordag, and J. Horejsi. Nonlocal Light Cone Expansions and Evolution Equations. Z. Phys., C26:591, 1985.

[172]   M. Bordag, E. Wieczorek, and D. Robaschik. Radiation Corrections to the Casimir Effect. (in Russian). Yad. Fiz., 39:1053, 1984.

[173]   M. Bordag, D. Robaschik, and E. Wieczorek. Radiative Corrections to the Casimir Effect. 1983. In *Ahrenshoop 1983, Proceedings, Special Topics In Gauge Field Theories*, 195-200.

[174]   M. Bordag, G. Petrov, and D. Robaschik. Casimir Effect for Scalar Fields with the Simplest Nonstatic Boundary Conditions. 1983. In *Ahrenshoop 1983, Proceedings, Special Topics In Gauge Field Theories*, 190-194.

[175]   B. Geyer, D. Robaschik, M. Bordag, and J. Horejsi. Nonlocal Light Cone Expansions in Quantum Chromodynamics and Derivation of Evolution Equations. 1983. In *Ahrenshoop 1983, Proceedings, Special Topics In Gauge Field Theories*, 168-179.

[176]   S. A. Anikin, M. Bordag, and O. I. Zavyalov. Infrared Divergences of Green’s Functions and Renormalization in Massless Theories. III. Theor. Math. Phys., 56:741–745, 1984.

[177]   M. Bordag, B. Geyer, and D. Robaschik. Why Different Forms of the Light Cone Expansion? 1983. JINR-E2-83-301.

[178]   M. Bordag. Radiative Corrections to Photon States Between Plates. 1984. JINR-E2-84-126.

[179]   M. Bordag. On the Canonical Quantization of QED with Boundary Conditions. 1984. JINR-P2-84-115.

[180]   M. Bordag, D. Robaschik, and E. Wieczorek. Quantum Field Theoretic Treatment of the Casimir Effect. Ann. Phys., 165:192, 1985.

[181]   M. Bordag, G. Petrov, and D. Robaschik. Calculation of the Casimir Effect for Scalar Fields with the Simplest Nonstationary Boundary Conditions. Sov. J. Nucl. Phys., 39:828, 1984.

[182]   M. Bordag, T. Braunschweig, F. M. Dittes, and B. Geyer. On an Appropriate Choice of Basic Operators to Determine Nonforward Anomalous Dimensions Especially in QCD. 1981. In *Ahrenshoop 1981, Proceedings, Special Topics In Gauge Field Theories*, 92-98.

[183]   M. Bordag and L. Kaschluhn. On the Light Cone Expansion in Gauge Field Theories (QED). Annalen Phys., 44:265–282, 1987.

[184]   M. Bordag, L. Kaschluhn, G. Petrov, and D. Robaschik. Nonlocal Operators in Light Cone Expansion of QCD. Sov. J. Nucl. Phys., 37:112, 1983.

[185]   M. Bordag, L. Kaschluhn, V. A. Matveev, and D. Robaschik. Representations of 1-P-I Functionals in Gauge Field Theories. 1981. JINR-E2-81-38.

[186]   M. Bordag and D. Robaschik. The Altarelli-Parisi Equations as Renormalization Group Equations for the Coefficients of the Nonlocal Light Cone Expansion. Theor. Math. Phys., 49:1063, 1982.

[187]   M. Bordag, B. Dörfel, D. Robaschik, and E. Wieczorek. The Asymptotic Behavior of Form-Factors. Nucl. Phys., B188:46, 1981.

[188]   M. Bordag. Operator Product Light Cone Expansion in Perturbation Theory. (in Russian). 1978. Leipzig Univ - KMU-QFT 78-1 (78,REC.AUG) 15p.

[189]   M. Bordag and D. Robaschik. Light Cone Expansion in Renormalized Perturbation Theory. Nucl. Phys., B169:445, 1980.

[190]   M. Bordag and A.N. Vasilev. Hidden Connections and Functional Integral-Representation of Partition-Function of Canonical Ensemble. Theor. Math. Phys., 34:232–238, 1978.