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6
Integrable Dynamics

Marguerite Martyn, 1914

wikimedia/public domain
Figure 6.1: The point-particle ide-
alization of a girl on a swing is the
mathematical pendulum of Figures 1.2
and 1.3.

In Chapter 5 we considered objects that consist of a mass points
with fixed relative positions, like a flying and spinning ping-pong
ball. Rather than providing a description of each individual mass
element, we established equations of motion for their center of mass
and the orientation of the body in space. From the perspective of
theoretical mechanics the fixing of relative positions is a constraint
to their motion, just as the ropes of a swing enforces a motion on
a one-dimensional circular track, rather than in two dimensions.
The deflection angle θ of the pendulum, and the center of mass and
orientation of the ball are examples of generalized coordinates that
automatically take into account the constraints.

In this chapter we discuss how to set up generalized coordinates
and how to find the associated equations of motion. The discussion
will be driven by examples. The examples will be derived from the
realm of integrable dynamics. These are systems where conserva-
tion laws can be used to break down the dynamics into separate
problems that can be interpreted as motion with a single degree of
freedom.

At the end of the chapter you know why coins run away rolling
on their edge, and how the speed of a steam engine was controlled
by a mechanical device. Systems where the dynamics is not inte- add more pics

grable will subsequently be addressed in Chapter 7.

https://commons.wikimedia.org/wiki/File:Sketch_by_Marguerite_Martyn_of_a_girl_standing_on_a_swing_in_a_bathing_suit_getting_dry_from_the_breeze,_1914.png


162 6. Integrable Dynamics

6.1 Motivation and Outline:
How to deal with constraint motion?

Figure 6.2: Forces acting for the motion
of a swing, or its equivalent idealiza-
tion of of a mathematical pendulum.

Almost all interesting problems in mechanics involve constraints
due to rails or tracks, and due to mechanical joints of particles.
The most elementary example is a swing (Figure 6.1), where a rope
forces a mass M to move on a path with positions constrained to
a circle with radius given by the length L of the rope. Gravity M g
and the pulling force Fr of the rope acting act on the mass (Fig-
ure 6.2). However, how large is the latter force? At the topmost
point of its trajectory the mass is at rest, and no force is needed
along the rope to keep it on its track. At the lowermost point,
where the swing goes with its maximum speed, there is a sub-
stantial force. Newton’s formalism requires a discussion of these
forces. Lagrange established an alternative approach that provides
equations of motion with substantially less effort. The key idea of
this formalism is to select generalized coordinates adapted to the
problem.

Definition 6.1: Generalized Coordinates

We consider N particles moving in D dimensions. There are
forces that keep the particles on a subset of space with a di-
mension smaller than D, and their relative positions may be
constrained by bars and joints. Due to the constrains the sys-
tem only has M < D N degrees of freedom. In this chapter
we denote the positions of the particles as x ∈ RD N , and we
specify position compatible with the constraints as x(q(t)),
where q ∈ RM are the generalized coordinates adapted to the
constrained motion.

Example 6.1: Generalized coordinates for a pendulum

We describe the position of the mass in a mathematical pen-
dulum by the angle θ(t), as introduced in Example 1.10.
The position of the mass in the 2D pendulum plane is thus
described by the vector

x(t) = L

(
sin θ(t)
− cos θ(t)

)
= L R̂(θ(t)) .

In view of the chain rule its velocity amounts to

ẋ = L θ̇ ∂θ R̂(θ(t)) = L θ̇ θ̂(θ(t)) with θ̂(θ(t)) =

(
cos θ(t)
sin θ(t)

)

Remark 6.1. Note that R̂(θ) and θ̂(θ) are orthonormal vectors that
describe the position of the mass in terms of polar coordinates
rather than fixed-in-space Cartesian coordinates. �

© Jürgen Vollmer — 2022-02-05 05:50:55+01:00



6.1. Motivation and Outline: How to deal with constraint motion? 163

Theorem 6.1: Basis vectors for polar coordinates

Let {x̂, ẑ} be a basis of R2, and (R, θ) be the polar coordi-
nates1 associated to a point with Cartesian coordinates (x, z).
Then

• R =
√

x2 + z2 is the distance of the point from the origin

• θ = − arctan(x/z) the angle with respect to −ẑ,

We denote the vector from the origin to (R, θ) as R R̂(θ).
Then the following statements hold

a) R̂(θ) is a normal vector at the position (R, θ) of a circle CR

with center at the origin at radius R.

b) θ̂ = ∂θ R̂ is a vector tangential to CR at the position (R, θ).

c) ∂θ θ̂ = −R̂.

d) For every θ ∈ [0, 2π) the vectors {R̂(θ), θ̂(θ)} form an or-
thonormal basis of R2.

1 The choice of the axes and the angle
reflects the notations adopted in
Figures 1.2 and 1.3.

Remark 6.2. The coordinate representation of R̂(θ) and θ̂(θ) in
Cartesian coordinates is provided in Example 6.1. �

Remark 6.3. The assertions of Theorem 6.1 also apply when the unit
vectors of R2 are denoted as {x̂, ŷ}, and when the angle θ denotes
the angle with respect of the x̂ axis. The different reference axis only
changes the coordinate representation of the vectors. �

Example 6.2: Generalized coordinates for a ping-pong ball

A ping-pong ball consists of N atoms located in the three-
dimensional space. During a match they follow an intricate
trail in the vicinity of the ping-pong players. At any time
during their motion the atoms are located on a thin spherical
shell with fixed positions with respect to each other. Rather
than specifying the position of each atom one can therefore
specify the position of the ball in terms of six generalized
coordinates (Figure 6.3): Three coordinates provide its cen-
ter of mass. The orientation of the ball can be provided by
specifying the orientation of a body fixed axis in terms of its
polar and azimuthal angle, and a third angle specifies the
orientation of a point on its equator when rotating the ball
around the axis.

Figure 6.3: The position of a ball in
space can be described in terms of a
3D vector Q that describes the center
of the ball (red dot), angles θ, φ that
describe the orientation in space of
a fixed axes in the ball (green line),
and another angle ψ that describes the
position of point that is not on the axis
(blue point).

Generalized coordinates describe only positions complying with
the constraints of the motion, and they do not account for other po-
sitions from the very beginning. Lagrange’s key observation is that
constraint forces, e. g. the force on the rope of the swing, only act
in a direction orthogonal to the positions described by generalized
coordinates. Therefore, the constraint forces do not affect the time
evolution of generalized coordinates. For the pendulum and the
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164 6. Integrable Dynamics

ping-pong ball one only has to account for gravity to find the evo-
lution of the generalized coordinates. There is no need to deal with
the force along the rope in the swing, and the atomic interaction
forces that keep atoms in their positions in the ping-pong ball.

Outline

In Section 6.2 we will introduce the Lagrange formalism that will
allow us without much ado to determine the EOM for generalized
coordinates. Subsequently, in Section 6.3 we deal with systems
with a single degree of freedom. In Section 6.4 we will see how
symmetries in the dynamics allow us to eliminate a second degree
of freedom based on an informed choice of generalized coordinates.
Section 6.5 deals with two-particle systems and other problems
where one deals with several degrees of freedom. In all cases we
will eventually reduce the dynamics to one-dimensional problems.
The final Section 6.6 deals with the relation between continuous
symmetries of the dynamics and conservation laws.

6.1.1 Self Test

Problem 6.1. Different reference axes for polar coordinates
Verify the assertions of Theorem 6.1 and Remark 6.3:

a) Specify the coordinate representation of {R̂(θ), θ̂(θ)} for the case
where θ denotes the angle with respect to the positive x̂ axis.

b) Verify the assertion of Theorem 6.1.

Problem 6.2. Describing the orientation of dice
We place a die on the table such that its center lies at the origin

of a 3D Cartesian coordinate frame, and its axes are aligned with
the coordinate axes. We characterize the configuration of the die
by the number of dots on the faces pointing in the three positive
coordinate directions.

a) Show that there are 24 different possibilities to place the die.

b) Determine the angles (θ, φ, ψ) (cf. Figure 6.3) that will turn a die
from the configuration be (1, 2, 3) to

b1) (2, 3, 4) b2) (4, 6, 2) b3) (1, 3, 5)

6.2 Lagrange formalism

The Lagrange formalism provides an effective approach to derive
the EOM for generalized coordinates. We first provide a derivation
in a Cartesian coordinate frame. Then we discuss how the EOM for
generalized coordinates are determined.

© Jürgen Vollmer — 2022-02-05 05:50:55+01:00



6.2. Lagrange formalism 165

6.2.1 Euler-Lagrange equations for Cartesian coordinates

In Section 5.5 we saw that a mobile will be at rest in a position
characterized by the coordinate vector x when the leading order
correction δx · ∇Φ(x) to its potential energy Φ(x) vanishes for ev-
ery perturbation δx of the position. In the following we denote the
leading order corrections term of the Taylor expansion as variation.

Definition 6.2: Variation of a scalar function

Let f : D × [tI , tE] → R with D ⊂ RD be function that
has continuous first derivatives for all x ∈ D. The variation of
f for a small deviation δx of x such that x + δx ∈ D amounts
to the linear-order term of the Taylor expansion of f ,

δ f (x, t) = δx · ∇x f (x, t) =
D

∑
i=1

δxi
∂ f (x, t)

∂xi

In Section 5.5 we showed that δΦ(x0) = 0 for every critical point
x0 where the system is (and remains) at rest. We now also account
fort explicitly time-dependent potentials Φ(x, t) and consider the
variations δx(t) of time dependent trajectories x(t) with t ∈ [tI , tF].
Here δx(t) describes the deviation of the perturbed trajectory from
the reference trajectory x(t) at time t, and it is understood that
δx(tI) = δx(tF) = 0 Now we have

δΦ(x, t) = δx · ∇xΦ(x, t) = −δx · F(x, t) = −δx ·m ẍ

The velocity and acceleration for the perturbed trajectory x + δx are
ẋ + δẋ and ẍ + δẍ such that

d
dt

(m ẋ · δx) = m ẍ · δx + m ẋ · δẋ = m ẍ · δx + δ
m ẋ2

2

where T = m ẋ2/2 is the kinetic energy. Hence, we can express the
variation of the potential as

δΦ(x, t) = − d
dt

(δx ·m ẋ) + δT(ẋ)

⇒ δ
(
T(ẋ)−Φ(x, t)

)
= − d

dt
(δx ·m ẋ)

The difference between the kinetic and potential energy is a total
time derivative. Integrating the expression over time from tI to tF

therefore provides∫ tF

tI

dt δ
(
T(ẋ)−Φ(x, t)

)
= −

∫ tF

tI

dt
d
dt

(δx ·m ẋ) (6.2.1)

= δx(tI) ·m ẋ(tI)− δx(tF) ·m ẋ(tF) = 0
(6.2.2)

The integral vanishes because x is fixed a the start and the end
point.

Up to mathematical identities that are always true we only used
Newton’s law F(x, t) = mẍ to arrive at this conclusion. This ob-
servation is denoted as the principle of least action. Rather than on

© Jürgen Vollmer — 2022-02-05 05:50:55+01:00



166 6. Integrable Dynamics

Newton axioms we may therefore base mechanics on the principle
of least action.

Definition 6.3: Lagrangian

We consider a dynamics with kinetic energy T(ẋ(t)) and po-
tential energy Φ(x(t), t) for trajectories x(t). The difference

L(x, ẋ, t) = T(ẋ)−Φ(x, t)

will be called Lagrangian or Lagrange function of the dynam-
ics.

Definition 6.4: Action of a trajectory

For a dynamics with Lagrangian L(x, ẋ, t) the action
S[x(t), ẋ(t)] of a trajectory x(t), tI ≤ t ≤ tF with velocity
ẋ(t) is defined as

S[x(t), ẋ(t)] =
∫ tF

tI

dt L(x(t), ẋ(t), t) (6.2.3)

The variation of the action will be defined as

δS[x(t), ẋ(t)] =
∫ tF

tI

dt δL(x(t), ẋ(t), t)

Axiom 6.1: Principle of least action

Let x(t) with tI ≤ t ≤ tF be a trajectory from x(tI) to x(tF)

that satisfies Newton’s law F(x, t) = mẍ with a force that is
derived from a potential Φ(x, t). Then the variation of the
action associated the trajectory will vanish

0 = δS[x(t), ẋ(t)]

Remark 6.4. The principle is called the principle of least action.
However, it only requires that the action has a critical point. There
are many examples in physics where the action takes a saddle
point, rather than a minimum. �

The principle provides an alternative way to determine the EOM
that proceeds as follows.

0 = δS[x(t), ẋ(t)] =
∫ tF

tI

dt δL(x(t), ẋ(t), t)

=
∫ tF

tI

dt [δẋ∇ẋL(x, ẋ, t) + δx∇xL(x, ẋ, t)]

=
∫ tF

tI

dt δx
[(
− d

dt
∇ẋL(x, ẋ, t)

)
+∇xL(x, ẋ, t)

]
In the last step we performed a partial integration.2 The integral2 The boundary term of the partial

integration vanishes,

[δx∇ẋL(x, ẋ, t)]tF
tI

= δx(tF) [∇ẋL(x, ẋ, t)]t=tF

− δx(tI) [∇ẋL(x, ẋ, t)]t=tF

= 0

must vanish for every choice of the variation δx. In particular we
may choose a function δx that takes the same sign as the square
bracket whenever it does not vanish. However, in that case the
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6.2. Lagrange formalism 167

integral is strictly positive unless the square bracket vanishes. This
provides the EOM of the dynamics in terms of the Euler-Lagrange
equation.

Theorem 6.2: Euler-Lagrange equations

Let xi(t) be a coordinates of a trajectory x(t) of a dynamics
with Lagrangian L(x, ẋ, t). Then xi(t) is a solution of the
Euler-Lagrange equation

d
dt

∂

∂ẋi
L(x, ẋ, t) =

∂

∂xi
L(x, ẋ, t) (6.2.4)

6.2.2 Mathematical background: variational calculus

The principle of least action is an application of variational calcu-
lus to the action integral, Equation (6.2.3). In order to provide a
better intuition of the mathematical concept of the variation, we
demonstrate now how one can derive a differential equation of the
shortest path on a plane.

Shortest path in a 2d plane. We describe a curve from the origin,
(0, 0) to the position (xe, ye) in the plane by a function f (x) with
f (0) = 0 and f (xe) = ye. Hence, the curve follows the coordinates
q = (x, f (x)), and according to Remark 3.7 the length of a curve is
determined by the line integral

L[ f (x)] =
∫ xe

0
dxDplane

(
f (x), f ′(x)

)
with Dplane

(
f (x), f ′(x)

)
=

∣∣∣∣dq
dx

∣∣∣∣ = √1 +
(

f ′(x)
)2

where f ′(x) = d f (x)/dx. Paths of minimal length must therefore
be solutions of the Euler-Lagrange equation

0 =
∂D
∂ f

=
d

dx
∂D
∂ f ′

=
d

dx
f ′(x)√

1 +
(

f ′(x)
)2

which implies that there is a constant K with

K =
f ′(x)√

1 +
(

f ′(x)
)2

⇒ K2
(

1 +
(

f ′(x)
)2
)
=
(

f ′(x)
)2

⇒ f ′(x) =
K√

1− K2
= const

Consequently, the shortest connection between two points in the
plane is a straight line, where the slope is constant. We urge the
reader to go through the steps of the derivation of the Euler-
Lagrange equation for this problem, and to take not of the im-
portant requirement that the variation of the path δq must vanish at
both endpoints of the trajectory. An example of a variational prob-
lem where this requirement is relaxed is provided in Problem 6.4.

© Jürgen Vollmer — 2022-02-05 05:50:55+01:00



168 6. Integrable Dynamics

Shortest path on a cylinder surface. We describe a curve on a cylin-
der with radius R by adopting cylinder coordinates and specifying
z(θ) for the range I = [θI , θE]. The values at the boundary of I will
be denoted as z(θI) = zI and z(θE) = zE. Hence, the curve follows
the coordinates q = z(θ) ẑ + R r̂(θ) along a path with direction

q′(θ) =
dq
dθ

= z′(θ) ẑ + R θ̂(θ)

The length of this curve is determined by the line integral

L[z(θ)] =
∫ θE

θI

dθ Dcyl
(
z(θ), z′(θ)

)
with Dcyl

(
z(θ), z′(θ)

)
=

∣∣∣∣dq
dθ

∣∣∣∣ = R
√

1 +
(
z′(θ)/R

)2

The distance function Dcyl of this problem is identical to the one
for the plane, up to replacing f (x) by z(θ) and x by R θ. Hence, the
solutions will be paths of the form

Figure 6.4: Paths of extremal length
on a cylinder. In this pictures we have
θE − θI = π/3, hE − hI = 3 R, and
we show paths with winding numbers
n ∈ {0,−1,−2}.

z(θ) = zI +
zE − zI

θE − θI + 2π n
(θ − θI) with n ∈ Z

When one makes sure that θE ∈ (θI − π, θI + π) then the solution
for n = 0 represents the shortest path from zI to zE. For θE − θI = π

the path for n = 0 and n = −1 have the same length. All other
paths represent local minima of L. Small perturbations of the path
will increase the length. However, trajectories that reach the final
point with a smaller number of loops around the cylinder will in
general be shorter. An example is shown in Figure 6.4.

Shortest path on a catenoid. A catenoid is the surface of revolution
of the hyperbolic cosine function. We describe a curve on a catenoid
with radius cosh z at height z by adopting cylinder coordinates
and specifying θ(z) for the range I = [zI , zE].3 The values at the3 The surface is no longer translation

invariant along the axis, but still ro-
tation symmetric. As a consequence,
θ(z) will turn out to be a cyclic vari-
able, while a parameterization in terms
of z(θ) will involve nontrivial deriva-
tives with respect to z. You may check
this in Problem 6.3.

boundary of I are now denoted as z(θI) = zI and z(θE) = zE.
Hence, the curve follows the coordinates q = z ẑ + cosh z r̂(θ(z))
along a path with direction

q′(z) =
dq
dz

= ẑ + sinh z(θ) r̂(θ(z)) + cosh z(θ) z′(θ) θ̂(θ(z))

The length of this curve is determined by the line integral

L[z(θ)] =
∫ zE

zI

dzDcat
(
θ(z), θ′(z)

)
with Dcat

(
θ(z), θ′(z)

)
=

∣∣∣∣dq
dθ

∣∣∣∣ = √(1 + θ′(z)2
)

cosh2 z + sinh2 z

Consequently, the Euler-Lagrange function takes the form

0 =
∂Dcat

∂θ
=

d
dz

∂Dcat

∂θ′
=

d
dz

θ′(z) cosh2 z√(
1 + θ′(z)2

)
cosh2 z + sinh2 z

© Jürgen Vollmer — 2022-02-05 05:50:55+01:00



6.2. Lagrange formalism 169

The variable θ is cyclic and we denote the entailed conservation law
as K. Rearranging terms provides

θ′(z) = K

√
1 + tanh2 z

cosh2 z− K2

such that

θ(z) = θI + K
∫ z

zI

dz

√
1 + tanh2 z

cosh2 z− K2

The shortest paths on the catenoid must be determined by numeri-
cal evaluation of this integral. make fig with paths on

catenoidProblem 6.5 extends the present discussion to situations where
one minimizes the surface area of a soap film, rather than a feature
of a one-dimensional object. Problem 6.11 addresses extremal paths
on a sphere. Unless two points lie exactly on opposite sides of the
sphere (like North and South pole) there are exactly two trajectories
of extremal length. One of them is the shortest trajectory. The other
one is a saddle point.

6.2.3 Euler-Lagrange equations for generalized coordinates

The Euler-Lagrange equations derive from a variational principle
stating that the gradient of the Lagrange function with respect to
the phase-space coordinate Γ = (x, ẋ) must vanish for physically
admissible trajectories. This holds for all directions in phase space.
However, generalized coordinates do not qualify as a vector such
that some care is needed to derive their EOM.

Example 6.3: Rollercoaster trail

The position x(t) on the trail of a rollercoaster can uniquely
be described by the (dimensionless) distance ` along the trail
that it has gone. Hence, generalized coordinate `(t) uniquely
describes the configuration x(`(t)) of the rollercoaster at
time t.

Example 6.4: Driven pendulum

A driven pendulum is a mathematical pendulum where the
position of the fulcrum X f and the length of the pendulum
arm L(t) are subjected to a prescribed temporal evolution.
The position of the pendulum weight, x, may then be de-
scribed by the angle θ ∈ [0, 2π] = D,

x(θ, t) = X f (t) + R(t)

(
cos θ

sin θ

)

Here, the time dependence of X f (t) and R(t) reflect the
temporal evolution of the time-dependent setup of the pen-
dulum. The temporal evolution of the pendulum will be
described in terms of the generalized coordinate θ(t).
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170 6. Integrable Dynamics

Let q be the generalized coordinates of a system and x(q) the
associated configuration vector of the system. It will be provided in
Cartesian coordinates from the point of view of an observer who is
at rest. Hence, x is a vector with all properties discussed in Chap-
ter 2. In contrast, q will in general only be a tuple of functions that
provide a convenient parameterization of valid configurations. We
address the situation where the forces in the system are conser-
vative, arising from a potential energy Φ

(
x(q), t

)
. Moreover, we

assume that the potential energy can be represented as a sum of
Φc
(

x(q), t
)

and U
(
x(q), t

)
. The contribution Φc

(
x(q), t

)
accounts

for forces that constraint the coordinates of the system such that
they comply with positions x(q). The part U

(
x(q), t

)
accounts for

all other forces.
We will now explore the implications of the principle of least

action for variations of the path that refer only to accessible coordi-
nates. For the kth coordinate of the variation we write

δxk = xk(q + δq, t)− xk(q, t) =
d

∑
ν=1

∂xk
∂qν

δqν

and for the associated time derivative we have

δẋk =
d
dt

δxk =
d

∑
ν=1

∂ẋk
∂qν

δqν +
d

∑
ν=1

∂xk
∂qν

δq̇ν

As a consequence the variation of the Lagrangian takes the form

δL = δx · ∇xL+ δẋ · ∇ẋL = δx · (Fc + Fe) + δẋ ·mẋ

where Fc represent the constraint forces. We consider variations
δx that relate trajectories complying with the constraints such that
δx · Fc = 0. Therefore, in the setting of generalized coordinates
one need not account for constraint forces.4 We will now express4 This constraint is commonly denoted

as d’Alembert’s principle. the variation of the Lagrangian in terms of the variations of the
generalized coordinates,

δL =
D

∑
k=1

[
δxk

∂L
∂xk

+ δẋk
∂L
∂ẋk

]

=
D

∑
k=1

[(
d

∑
ν=1

∂xk
∂qν

δqν

)
∂L
∂xk

+
d

∑
ν=1

(
∂ẋk
∂qν

δqν +
∂xk
∂qν

δq̇ν

)
∂L
∂ẋk

]

=
d

∑
ν=1

δqν

D

∑
k=1

(
∂xk
∂qν

∂L
∂xk

+
∂ẋk
∂qν

∂L
∂ẋk

)
+

d

∑
ν=1

δq̇ν

D

∑
k=1

∂xk
∂qν

∂L
∂ẋk
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On the other hand

∂L
(

x(q, t), ẋ(q, q̇, t), t
)

∂qν
=

D

∑
k=1

(
∂xk
∂qν

∂L
∂xk

+
∂ẋk
∂qν

∂L
∂ẋk

)
∂L
(

x(q, t), ẋ(q, q̇, t), t
)

∂q̇ν
=

D

∑
k=1

∂L
(

x(q, t), ẋ(q, q̇, t), t
)

∂ẋk

∂ẋk
∂q̇ν

=
D

∑
k=1

∂L
∂ẋk

∂

∂q̇ν

(
∂xk
∂t

+
d

∑
µ=1

∂xk
∂qµ

q̇µ

)

=
D

∑
k=1

∂L
∂ẋk

∂xk
∂qν

Therefore,

δS =
∫

dtδL =
∫

dt
d

∑
ν=1

(
δqν

∂L
∂qν

+ δq̇ν
∂L
∂q̇ν

)

=
∫

dt
d

∑
ν=1

δqν

(
∂L
∂qν
− d

dt
∂L
∂q̇ν

)
The equations of motion are derived from the Lagrangian, Defini-
tion 6.5, by Algorithm 6.1.

Definition 6.5: Lagrangian in generalized coordinates

The Lagrange function L amounts to the difference of the
kinetic energy T and the potential energy U of the system,

L = T −U = ∑
α

mα

2
ẋ2

α(q)−U
(
x(q)

)
(6.2.5)

Constraint forces are not considered.

Algorithm 6.1: Euler Lagrange EOMs

a) Identify generalized coordinates q that describe the ad-
missible configurations of the system.

b) Determine x(q), and the resulting expression of the po-
tential energy in terms of q,

U(q) = U
(

x(q)
)

c) Evaluate the kinetic energy based on the chain rule

T(q, q̇) = ∑
α

mα

2
ẋ2

α(q) = ∑
α

mα

2

(
∑

i

∂xα

∂qi
q̇i

)2

where xα is the α-component of the configuration vector x
and mα the mass of the associated particle.

Hence, we establish the Lagrange function

L(q, q̇) = T(q, q̇)−U(q)

expressed in terms of the generalized coordinates q and
their time derivatives q̇.
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d) Determine the EOM for the component qi of q by evaluat-
ing the Euler-Lagrange equation

d
dt

∂L
∂q̇i

=
∂L
∂qi

(6.2.6)

In the next section we will apply the formalism to models with a
single degree of freedom.

6.2.4 Self Test

Problem 6.3. Shortest path on a catenoid
In footnote 3 we pointed out that it is a good idea to parameter-

ize the paths on a body of revolution in terms of z(θ) rather than
θ(z).

Adopt the latter parameterization and work out for yourself that
this leads to a second order ODE while the former one provides
a conserved quantity, and subsequently immediately a first order
ODE.

Problem 6.4. Fermat’s principle

© Zátonyi Sándor (ifj.) Fizped (talk)
CC BY-SA 3.0, wikimedia commons

Fermat’s principle states that a light beam propagates along
a path minimizing the flight time. When passing from air into
glass it changes direction according to Sellius’ refraction law. Here,
we consider a setting where the beam starts in air at the position,
(x, y) = (0, 0), to the top left in the figure, with coordinates where
x̂ points downwards and ŷ to the right. The path of the light is
described by a function y(x). We require that beam passes from
air into the glass at the position (a, u) such that it will eventually
proceed through the prescribed position (b, w) in the glass. The
speed of light in air and in glass will be denoted as cA and cG,
respectively.

a) Show that the time of flight T for a (hypothetical) trajectory y(x)
with derivative y′(x) can be determined as follows

T = c−1
A

∫ a

0
dx
√

1 + (y′(x))2 + c−1
G

∫ b

a
dx
√

1 + (y′(x))2 .

b) In the following we consider a glass body with a planar surface,
and align the coordinates such that glass surface is aligned par-
allel to the y-axis. Hence, we know that the light passes from
air to glass at the fixed position a, but we still have to determine
u. Determine δT for a variation y(x) + δy(x) of the trajectory.
What does this imply for δy(x)|x=0, δy(x)|x=a and δy(x)|x=b?
What does it imply for the boundary terms that arise from the
integration by parts, when determining δT?

c) Show that the beam must go in a straight line in air and in glass.
Show that this implies that

T(u) =
1

cA

√
u2 + a2 +

1
cG

√
(w− u)2 + (b− a)2 .
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Derive Snellius’ law from the condition that 0 = dT(u)/du.

d) Snellius’ Law can also be directly obtained from Fermat’s princi-
ple. How?

Problem 6.5. Stability of soap films
When a soap film is suspended between two rings, it takes a

cylinder-symmetric shape of minimal surface area. We discuss here
the form of the film for rings of radius R0 and R1 positioned at the
height x0 and x1, respectively. At the Mathematikum in Gießen
there is a nice demonstration experiment: x0 is the surface height
of soap solution in a vessel around the platform where the children
are standing, and x1 is the height of the ring pulled upwards by the
children.

© Mathematikum Gießen
http://mathematikum.df-kunde.de/

Wanderausstellung/index.php?m=2&

la=de&id=314

a) Let w(x) be the radius of the cylinder-symmetric soap films at
the vertical position x. Sketch the setup and mark the relevant
notations for the problem.

b) Show that the surface area A of the soap film takes the form

A =
∫ x1

x0

dx w(x) f (w′(x)) ,

Here, the factor f (w′(x)) takes into account that the area is larger
when the derivative w′(x) = dx/dx increases. Determine the
function f (w′(x)) in this expression.

c) Show that A is extremal for shapes w(x) that obey the differen-
tial equation

w′′(x) =
1 + (w′(x))2

w(x)
.

d) Determine the solutions of the differential equation.
Hint: Rewrite the equation into the form

w′(x) w′′(x)
1 + (w′(x))2 =

w′(x)
w(x)

.

e) Consider now solutions with −x0 = x1 = a and R0 = R1 = R,
and denote the radius at the thinnest point of the soap film as
w0. Show that w0 is the solution of

R
a
=

w0

a
cosh

a
w0

.

f) Sketch R/a as function of a/w0. For given R and a you can then
find w0. For small separation of the rings you should find two
solutions. What happens when one slowly rises the ring? Will an
adult ever manage to pull up the ring to head height before the
film ruptures?
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6.3 Dynamics with one degree of freedom

We will now illustrate the application of the Lagrange formalism
for three examples with a single degree of freedom of the motion:

1. The mathematical pendulum, Example 6.1, will give a first
idea of how to find EOMs with the Lagrange formalism. This EOM
can also easily be found by other approaches. It serves here to
illustrate problems where one adopt 2D polar coordinates.

2. The motion of a pearl on a rotating ring constitutes a system
with an explicit time dependence. In that case the Lagrange formal-
ism dramatically simplifies the the derivation of the EOM. We will
also discuss for this model how to account for dissipative forces
and we will see how the solutions of a problem can change quali-
tatively upon varying a parameter. In this example we will adopt
spherical coordinates.

3. The motion of a weight on a carousel we will discussed as
an example of a system that needs a dedicated treatment for the
description of admissible positions. The discussion will be based on
cylindrical coordinates.

6.3.1 The EOM for the mathematical pendulum

The parameterization introduced in Example 6.1 provides the ki-
netic energy

T =
M
2

ẋ2 =
M
2

L2 θ̇2 θ̂(θ(t))2 =
M
2

L2 θ̇2

and the potential energy in the gravitational field

U = −Mg · x = −M L R̂
(
θ(t)

)
· g = −M L g cos θ(t)

since g = g R̂
(
0
)
.

Consequently,
L =

M
2

L2 θ̇2 + M g L cos θ(t)

⇒ M L2 θ̈(t) =
d
dt

∂L
∂θ̇

=
∂L
∂θ

= −M g L sin θ(t)

⇒ θ̈(t) = − g
L

sin θ(t) (6.3.1)

The EOM (6.3.1) can be integrated once by multiplication with
2θ̇(t)

θ̇2(t)− θ̇2(t0) =
∫ t

t0

dt 2θ̇θ̈ =
∫ t

t0

dt 2θ̇
(
− g

L
sin θ(t)

)
= 2

∫ θ(t)

θ(t0)
dθ

d
dθ

( g
L

cos θ
)
= 2

g
L
(
cos θ(t)− cos θ(t0)

)
This is a Mattheiu differential equation. For most initial conditions
it can not be solved by simple means. However, the first integral
provides the phase-space trajectories θ̇(θ) for every given set of
initial conditions

(
θ(t0), θ̇(t0)

)
,

Figure 6.5: The potential U(θ) (top)
and the phase-space plot (bottom) for
the EOM (6.3.1) of the mathematical
pendulum. The numbers marked on
the contour lines indicated the energy
of a trajectory in units of MgL.
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θ̇ = ±
√

θ̇2(t0) +
2 g
L
(
cos θ(t)− cos θ(t0)

)
The phase-space portrait is shown in Figure 6.5. There are trivial
solutions where the pendulum is resting without motion at its sta-
ble and unstable rest positions θ = 0 and θ = π, These positions are
denoted as fixed points of the dynamics. There are closed circular
trajectories close to the minimum, θ = 0, of the potential where
it is harmonic to a good approximation. These are solutions with
energies 0 < 1 + E/MgL . 1.

For larger amplitudes the amplitude of the swinging grows, and
the circular trajectories get deformed. When E approaches MgL the
phase-space trajectories arrive close to the tipping points θ = ±π

where they form very sharp edges. For θ close to θ = ±π the
trajectories look like the hyperbolic scattering trajectories for the
potential −a x2/2 that was discussed in Problem 4.25. When the
non-dimensional energy is exactly one, the pendulum starts on top,
goes through the minimum and returns to the top again. Apart
from the fixed points, this is the only case where the evolution
can be obtained in terms of elementary functions. For the initial
condition θ̇(ti) = 0 and cos θi = −1 we find

ω−1 θ̇H(t) = ±
√

2 + 2 cos θH(t) = ±2 cos
θH(t)

2

The same equation is also obtained for the initial condition θ0 = 0
and θ̇(t0) =

√
2g/L half-way on the way from the top back to the

top. For this initial condition the ODE for θ̇H can be integrated, and
we find

±2 ω (t− t0) =
∫ θ(t)

0

dθ

cos θ
2

= ln tan
θ + π

4

⇒ θH(t) = −π + 4 arctan e±2ω (t−t0) (6.3.2)

The ± signs account for the possibility that the pendulum can move
clockwise and counterclockwise. The counterclockwise trajectory is
shown in Figure 6.6. In the limit t → −∞ it starts in the unstable
fixed point θ = −π. It falls down till it reaches the minimum θ = 0
at time t0, and then it rises again, reaching the maximum θ = π for
time t→ ∞. Such a trajectory is called a homocline.

−10 −5 0 5 10

ω (t− t0)

−π

0

π

θ(
t)

Figure 6.6: Anticlockwise moving
heterocline for the mathematical
pendulum.

Definition 6.6: Homoclines and Heteroclines

Homoclines and heteroclines are trajectories that approach a
fixed points of a dynamics in their infinite past and future.
A homocline returns to the same fixed point from where it
started. A heterocline connects two different fixed points.

The take-home message of this example is that the minima and
maxima of a potential organize the phase space flow. Close to each
minimum a conservative system will have closed trajectories that
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represent oscillations in a potential well. The well is confined by
maxima to the left and right of the minimum of the potential.
When these maxima have different height there is a homoclinic
orbit coming down from and returning to the shallower maximum.
When they have the same height, they are connected by heteroclinic
orbits. Thus, the homoclines and heteroclines divide the phase
space into different domains. Initial conditions within the same
domain show qualitatively the same dynamics. Initial conditions in
different domains feature qualitatively different dynamics. For the
mathematical pendulum the heteroclines divide phase space into
three domains, up to the 2π translation symmetry of θ:

a) There are trajectories oscillating around θ = 0, with energies
smaller than MgL. The region of these oscillations is bounded by
the heteroclines provided in Equation (6.3.2).

b) Trajectories with initial conditions lying above the anticlockwise
moving heterocline will persistently rotate anticlockwise and
never reverse their motion.

c) Trajectories with initial conditions lying below the clockwise
moving heterocline will persistently rotate clockwise and never
reverse their motion.

]

]

]
Figure 6.7: Step by step sketch of a
phase-space plot.

The general strategy for sketching phase-space plots is summa-
rized in the following algorithm and illustrated in Figure 6.7.

Algorithm 6.2: Phase space plots

a) Identify the minima and maxima of the potential. Mark
the minima as (marginally) stable fixed points with veloc-
ity zero. Mark the maxima as unstable fixed points with
velocity zero.

b) Identify the fate of trajectories departing from the unsta-
ble fixed points. Identify to this end the closest positions
on the potential that have the same height as the maxi-
mum. When it is another extremum the orbit will form an
heterocline. Otherwise, it will be reflected and return to
the initial maximum, forming a homocline. If there is no
further point of the same height, the trajectory will escape
to infinity.

c) Add characteristic trajectories close to the minima, in
between and outside of homo- and heteroclines.

In these steps it is advisable to

• Observe the symmetries of the system. To the very least
the plot is symmetric with respect to reflection at the
horizontal axis, i. e. swapping the sign of the velocity.

• Observe energy conservation (if it applies): The modulus
of the velocity takes a local minimum for a maximum of
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the potential, and a local maximum for a minimum of the
potential.

6.3.2 The EOM for a pearl on a rotating ring

Figure 6.8: Motion of a pearl mov-
ing on a ring rotating with a fixed
frequency Ω.

We consider a pearl of mass M that can freely move on a ring. The
ring is mounted vertically in the gravitational field and it spins with
angular velocity Ω around its vertical symmetry axis. The setup
constrains the position of the pearl to lie on a spherical shell. The
position of the pearl on the ring is fully described by the angle θ(t)
of the deflection of the pearl from the direction of gravity (see Fig-
ure 6.8. In addition we must specify the orientation of the ring. This
will be done by the angle φ(t) = Ωt that enters as a parameter in
this time-dependent problem. Hence, the position of the pearl is
most conveniently specified in terms of polar coordinates (R, θ, φ)

where R takes the constant value `, and φ(t) = Ωt enters as a
time-dependent parameter.

Theorem 6.3: Basis vectors for spherical coordinates

Let {x̂, ŷ, ẑ} be a fixed Cartesian basis of R3, and (R, θ, φ) be
the spherical coordinates associated to a point (x, y, z) ∈ R3.
Then

• R =
√

x2 + y2 + z2 is the distance from the origin

• θ = arctan(
√

x2 + y2/z) is the angle with respect to ẑ,

• φ = arctan(y/x) the angle with respect to x̂ of the projec-
tion of the position into the (x, y) plane.

We denote the vector from the origin to (R, θ, φ) as R R̂(θ, φ).
Then the following statements apply

a) θ̂ = ∂θ R̂ is a vector pointing along the grant circle of the
unit sphere selected by (θ, φ) and ẑ

b) φ̂ = R̂× θ̂ is a vector tangential to the unit sphere at (θ, φ)

and vertical to ẑ

c) For every θ ∈ [0, π] and φ ∈ [0, 2π) the vectors {R̂, θ̂, φ̂}
form a right-handed orthonormal basis of R3.

add sketch of unit vec-
tors for spherical coordi-
natesRemark 6.5. The directions of the basis vectors {R̂, θ̂, φ̂} depend on

θ and φ. �
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Theorem 6.4: Derivatives of the basis vectors for spherical
coordinates

The partial θ and φ derivatives of the basis vectors {R̂, θ̂, φ̂}
obey the following relations

∂θ R̂ = θ̂ ∂φR̂ = sin θ φ̂

∂θ θ̂ = −R̂ ∂φθ̂ = cos θ φ̂ (6.3.3)

∂θφ̂ = 0 ∂φφ̂ = − sin θ R̂− cos θ θ̂

Proof. The proofs of Theorems 6.3 and 6.4 are given as Problem 6.6.

In polar coordinates the position of the pearl is

x(t) = ` R̂
(
θ(t), φ(t)

)
We adopt the Lagrange formalism to determine the equation of
motion for θ(t), which is the only coordinate in this setting. (The
motion of the pearl has a single degree of freedom.)

The potential energy takes the same form as for the pendulum,

U = −M g · x = −M g ` cos θ(t) .

The kinetic energy is obtained based on its velocity

ẋ = `
d
dt

R̂(θ(t), Ωt) = ` θ̇ ∂θ R̂(θ(t), Ωt) + `Ω ∂φR̂(θ(t), Ωt)

= ` θ̇ θ̂
(
θ(t), Ωt

)
+ `Ω sin θ(t) φ̂

(
θ(t), Ωt

)
which provides the Lagrange function

L(θ, θ̇) =
M
2

`2 θ̇2 +
M
2

`2 Ω2 sin2 θ(t) + M g ` cos θ(t)

It only differs from the expression for the spherical pendulum
by the fact that φ(t) is not a coordinate whose evolution must be
determined from an EOM. Rather it is a parameter φ(t) = Ω t
provided by the setting of the problem.

The motion only has a single DOF, θ(t), with EOM

θ̈(t) = − g
`

sin θ(t)
(

1− `Ω2

g
cos θ(t)

)
(6.3.4)

This EOM can once be integrated by the same strategy adopted for
the swing and the spherical pendulum. Thus, one finds the effective
potential

Ueff(θ) = −ω2 cos θ

[
1−

(
Ω
ω

)2
cos θ

]

Figure 6.9 shows the effective potential and phase space portraits
for different values of angular momentum, i. e. of the dimension-
less control parameter κ = Ω/ω. For κ < 1 the phase space has the
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U
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Figure 6.9: The left panel shows the
effective potential for the pearl on a
ring for parameter values (Ω/ω) ∈
{0, 2−1/2, 1, 1.2, 1.5, 2, 5} from bottom
to top. The subsequent panels show
phase-space portraits of the motion for
Ω/ω = 2−1/2, 1, and 2, respectively.

same structure as that of a mathematical pendulum, with a stable
fixed point at θ = 0. When κ passes through one, this minimum
of Ueff turns into a maximum, and two new minima emerge at the
positions

θc = ± arccos κ−2 = ± arccos
(ω

Ω

)2
(6.3.5)

that are indicated by a dotted gray line in the left panel of Fig-
ure 6.9. The new maximum at zero is always shallower than the
maxima at ±π. Hence, it gives rise to two homoclinic orbit that
wind around the new stable fixed points. The maxima at ±π will
further we connected by heteroclinic orbits. Hence, phase space
is divided into five distinct regions. For energies smaller than
Ueff(θ = 0) the trajectories wiggle around one of the stable fixed
points. They stay on one side of the ring and oscillate around the
angle θc. There are two regions of this type because the pearl can
stay on both sides of the ring. For Ueff(θ = 0) < E < Ueff(θ = π)

the trajectories show oscillations back and forth between the two
sides of the ring, For E > Ueff(θ = π) they rotate around the ring
in clockwise or counter-clockwise direction for θ̇ < 0 or θ̇ > 0,
respectively.

There are two take-home message from this example:
1. There are no conservation laws in the dynamics when there

are explicitly time-dependent constraints. Hence, the strategies
of Chapter 4 to establish and discuss the EOM can no longer be
applied. However, the Lagrange formalism still provides the EOM
in a straightforward manner.

1.0 2.0 3.0 4.0

−π
−3

4
π

−1
2
π

−1
4
π

1
4
π

1
2
π

3
4
π

π

θc

Figure 6.10: Parameter dependence
of the positions of the fixed points of
the rotation governor. Solid lines mark
stable fixed points, and unstable fixed
points are marked by dashed lines.

2. In general, the structure of the phase-space flow changes upon
varying the dimensionless control parameters of the dynamics.
These changes are called bifurcations, and they are a very active
field of contemporary research in theoretical mechanics. The pearl
on the ring features a pitchfork bifurcation since the positions of the
fixed points resemble the shape of a pitch fork (see Figure 6.10).
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Definition 6.7: Pitchfork bifurcation

Upon variation of a parameter p a stable fixed point x∗ of a
one-dimensional ODE may loose stability at some parameter
pc, turning into an unstable fixed point. In that case one will
encounter one of the following scenarios:

supercritical pitchfork bifurcation At pc two new stable fixed
points emerge to its left and right of x∗.

subcritical pitchfork bifurcation There were unstable fixed
points to the left and right of x∗ that merge with x∗ at the
parameter pc. Subsequently there is only a single unstable
fixed point.

Remark 6.6. The supercritical pitchfork bifurcation is commonly
simply denoted as pitchfork bifurcation. �

Remark 6.7. In classical mechanics a pitchfork bifurcation, Fig-
ure 6.10, emerges whenever a minimum of a potential is dented to
turn it into a maximum that is then surrounded minima on both
sides, as shown in Figure 6.9.

The supercritical pitchfork bifurcation refers to a situation where
we initially have a minimum surrounded by two maxima, and then
the minimum is pushed until it disappears. When this happens the
maxima approach each other, and eliminate the dent in between.
An example is provided in Problem 6.8. �add fig for supercritical

pitchfork

6.3.3 Centrifugal Governor

The sharp increase of θc in Equation (6.3.5), when the rotation
frequency ω rises beyond Ω is used in a feedback mechanism of
the governor to control the rotation speed of steam engines (Fig-
ure 6.11).

Figure 6.11: Rotational governor and
throttle valve. When the rotation
speed exceeds a critical value the
weights move outward and the arm
opens a valve that reduces pressure
in the steam engine. (Image from
“Discoveries & Inventions of the
Nineteenth Century” by R. Rout-
ledge, 13th edition, published
1900, Public domain, via Wikime-
dia Commons)

Oscillations around the stable fixed points is an undesirable
feature of the governor such that some dissipation is welcome. We
revisit Equation (6.2.1) to extend the Lagrange formalism for forces
that do not derive from a potential

0 = −
∫ tF

tI

dt
d
dt

(δx ·m ẋ) = −
∫ tF

tI

dt (δẋ ·m ẋ + δx ·m ẍ)

= −
∫ tF

tI

dt
(
δẋ · ∇ẋL+ δx ·m

(
Fd −∇xΦ

))
=
∫ tF

tI

dt δx
(
−Fd +∇xL−

d
dt
∇ẋL

)
Thus, and additional dissipative force Fd = −γ θ̇ θ̂ will give rise
to an additional additive term in Equation (6.3.4) such that the
rotational governor has an EOM

θ̈(t) = − g
`

sin θ(t)
(

1− `Ω2

g
cos θ(t)

)
− γ

M
θ̇(t)
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and the energy evolves as

d
dt

(
θ̇2

2
+ Ueff(θ)

)
= − γ

M
θ̇2(t)

Small friction deflects the trajectories towards smaller values of the
effective potential, until the system comes to rest in a stable fixed
point. For Ω/ω = 2 the impact of dissipation γ/M = 0.2 and 2.0 is
shown in Figure 6.12.
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Figure 6.12: Phase-space plot for a
rotational governor with rotation fre-
quency Ω = 2ω. The colors of gray in
the background show contour levels of
the energy. The streamlines indicated
the evolution of the dynamics for (left)
weak dissipation, γ = 0.2, and (right)
strong dissipation, γ = 2, dissipation.
Due to dissipation the trajectories
acquire a component downwards in
energy.

6.3.4 Carousel

The positions in the systems that we treated so far were described
in terms of polar coordinates (mathematical pendulum, Section 6.3.1)
and spherical coordinates (pearl on a rotating ring, Section 6.3.2).
We will now address a system where we adopt cylindrical coordi-
nates to describe particle positions: the motion of the beats of a toy
carousel that is shown in Figure 6.13. The carousel is composed
of four cantilever beams of length R that extend outwards from a
vertical axis that is rotating with angular velocity Ω. At the far end
of each beam there is a pendulum attached that freely swings in
outward direction. The inclination of the pendulum arm towards
gravity will be denoted as θ. (Oscillations parallel to the motion of
the beams are not be considered.) The pendulum arm has a length
L and it carries a weight m. Due to a magnetic contact the pendu-
lum experiences minimal friction in its motion. Henceforth we the
focus on the motion of one of the beats.

We pick the origin of the coordinate system on the ration axes
right on the height of the cantilever. The rotation is around the
vertical axes characterized the the unit vector ẑ. Looking from the
top (right panel of Figure 6.13) the pendulum arm sticks out in
direction φ = Ωt. We adopt polar coordinates, as introduced in
Remark 6.3, in the horizontal plane vertical to ẑ. We denote the
position of the fulcrum of the pendulum as R = R r̂(φ), and express
the vector from the fulcrum to the weight as L sin θ r̂(φ)− L cos θẑ.
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This amounts to a representation of the position of the mass in
terms of cylindrical coordinates (see ??).add sketch of unit vec-

tors for cylindrical coor-
dinates Theorem 6.5: Basis vectors for cylindrical coordinates

Let {x̂, ŷ, ẑ} be a basis of R3, and (R =
√

x2 + y2, φ =

tan(y/x), z) be the cylindrical coordinates associated to a
point with Cartesian coordinates (x, y, z). Then

• R =
√

x2 + y2 is the distance of the point from the ẑ axis

• φ = arctan(y/x) the angle with respect to x̂ of the projec-
tion of the position into the (x, y) plane.

We denote the vector from the origin to (R, φ, z) as x = z ẑ +

R R̂(φ). Then, the following statements apply

a) φ̂ = ∂φR̂ and ẑ are the horizontal and vertical unit vectors
tangential to the surface of a cylinder with axis pointing
along ẑ

b) For every φ ∈ [0, 2π) the vectors {R̂(φ), φ̂(φ), ẑ} form a
right-handed orthonormal basis of R3.

The φ-derivatives of R̂ and φ̂ follow the same rules as for
polar coordinates, Theorem 6.1.

Proof. The proof is left to the reader.

The position x and the velocity ẋ of the weight attached to the
carousel are

x = (R + L sin θ) r̂(Ωt)− L cos θẑ

ẋ = (R + L sin θ) Ω φ̂(Ωt) + L cos θ θ̇ r̂(Ωt) + L sin θ θ̇ẑ
Figure 6.13: Experimental setup and
description of configurations for a toy
carousel.
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The kinetic energy and potential energy are

T =
m
2

ẋ2 =
m
2

[
L2 θ̇2 + (R + L sin θ)2 Ω2

]
V = −mgL cos θ

and the Euler-Lagrange equation for θ(t) take the form

m L2 θ̈(t) =
d
dt

∂L
∂θ̇

=
∂L
∂θ

= m Ω2 (R + L sin θ) cos θ −mgL sin θ

We introduce

• the eigenfrequency of the hanging arm, ω =
√

g/L

• the ratio of frequencies, τ = Ω/ω

• the ratio of the length of the arms, λ = R/L

and absorb ω into the dimensionless time scale. Thus, we find

θ̈ = τ2 (λ + sin θ) cos θ − sin θ

which admits a conserved energy-like quantity

E =
θ̇2

2
+ Ueff(θ)

with an effective potential

Ueff(θ) = −
τ2

2
(λ + sin θ)2 − cos θ (6.3.6)

The left panel of Figure 6.14 shows the effective potential for a fixed
ratio L/R = 4 and different values of Ω/ω. For small frequen-
cies, Ω/ω = 0.2, the masses are pushed outwards such that the
equilibrium position is no longer at θ = 0. Otherwise, the phase
space plot looks like the one of a mathematical pendulum. For in-
creasing τ = Ω/ω a shoulder emerges in the potential, and for
τ > τc ' 1.5 this leads to the emergence of a new minimum with
−π/2 < θ− < 0. It is separated from the previous minimum by
a maximum at θ+ with −θ− � −θ+ > 0. For τ > τc there are
two stable fixed points that lie in regions surrounded by homoclinic
trajectories that start and end at θ+. Further outside there are oscil-
lating trajectories that move around both fixed points, and beyond
the heteroclinic trajectories that connect the maxima of the potential
one finds trajectories that keep rotating in the same direction.

When increasing the rotation frequency beyond τc a second sta-
ble solution emerges in the system. To find the parameters where it
emerges we observe that fixed points emerge at positions θ where
the effective force vanishes

sin θ = τ2 (λ + sin θ) cos θ

⇒ λτ(θ) =
tan θ

τ2 − sin θ
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Figure 6.14: The effective potential
(left) and phase space plots for the
parameter values L = 4R and Ω/ω =
0.5, 1.5 and 2.0 (from left to right).

This equation is solved for a unique angle θc when λτ(θ) is mono-
tonic, and potential extrema of λτ(θ) must fulfill

0 =
dλ

dθ
=

1
τ2

1
cos2 θc

− cos θc ⇒ cos θc = τ−2/3

Consequently,

for τ < 1 the function λτ(θ) is monotonous such that there is a
unique fixed point. It is a minimum.

for τ > 1 the function λτ(θ) has a maximum and a minimum
such that there can be up to three fixed point: two minima and a
maximum.

1 minimum

2 minima

0 1 1.46 2.11 3 3.7
Ω/ω

0

0.5

1

1.5

R
/L

Figure 6.15: Phase diagram with posi-
tions of the bifurcations as function of
τ and λ.

The range values λ = R/L where there are two minima is
bounded by the extrema λτ(θc),

λc(θc) = sin θc

(
1

τ2 cos θc
− 1
)
= ∓

√
1− cos2 θc

(
1

τ2 cos θc
− 1
)

= ±
(

1− τ−4/3
)3/2

Hence, there is a single maximum for τ = Ω/ω < 1 and when

R/L >
(

1− τ−4/3
)3/2

for τ > 1. In Figure 6.15 this conclusion is
visualized in a phase diagram where this aspect of the behavior is
marked in the parameter plane of the problem, i. e. as function of
τ = Ω/ω and λ = R/L.

Definition 6.8: Phase Diagram

A phase diagram for some property of a dynamics is a plot
that shows for which parameters this property can be ob-
served.

It is illuminating to observe that the motion of the pearl on the
rotating ring is recovered as the special case R = 0 of the carousel
dynamics. For λ = 0 the effective potential, Equation (6.3.6), has
three critical points for τ > 1, and two of them disappear in a
pitchfork bifurcation when they all meet at θ = 0 for τ = 1. In
terms of the condition on the forces this happens when at θ = 0
the slope of τ2 sin θ becomes larger than the one of tan θ. For τ > 0
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6.3. Dynamics with one degree of freedom 185

there will be three intersections of the two functions rather than a
single one.

The scenario for λ > 0 is different. This is most easily seen by
considering a value τ > 1 and increasing λ. For λ = 0 there are
intersections of τ2 sin θ and tan θ at θ ∈ {0,±θc}. Increasing λ

amounts to a vertical displacement of the sine function. The critical
points that are initially at ±θc will then move right and the one in
the middle moves to the left because λ + sin θ > 0 for λ > 0 and
θ = 0. Therefore, the minimum to the right will persist, and the
minimum to the left will at some point merge with the maximum
and they will annihilate. Such a scenario is called a saddle-node
bifurcation.

Definition 6.9: Saddle-node bifurcation

We consider a one-dimensional ODE for a real variable x
that depends on a parameter p. In a certain range of param-
eters p ∈ U the systems has a stable fixed point at xs and an
unstable fixed point at xu. A saddle-node bifurcations emerges
at p∗ ∈ ∂U when xu(p) and xs(p) meet and annihilate at
x∗ = xu(p∗) = xx(p∗).

Remark 6.8. In classical mechanics a saddle-node bifurcation emerges
when the height difference between a minimum and a neighbor-
ing maximum of a potential diminishes, becomes zero in a saddle
point, and subsequently, the potential will no longer have no critical
point in the considered region. �

6.3.5 Self Test

Problem 6.6. Basis vectors for spherical coordinates

a) Verify by explicit calculation that R̂, θ̂, and φ̂ obey the relations

θ̂ =
∂R̂
∂θ

and φ̂ = R̂× θ̂ ,

and that they form an orthonormal basis.

b) How is φ̂ related to ∂R̂/∂φ?

c) Verify also the other expressions, Equation (6.3.3), for the partial
derivatives of the basis vectors.

Problem 6.7. Phase-space analysis for a pearl on a rotating ring

a) Evaluate ẋ(t) = ` ˙̂R(θ(t), Ωt) based on the relations established
in Problem 6.6.

b) Determine the kinetic energy T and the potential energy V of the
pearl.

c) Fill in the steps in the derivation of the EOM for θ, as provided
in Equation (6.3.4).
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d) Verify that neither the energy nor any of the coordinates of mo-
mentum and angular momentum are conserved for this motion.

Problem 6.8. An EOM with a subcritical pitchfork bifurcation
Consider the equation of motion

ẍ = x
(

x2 − 1
) (

x2 − a
)

where the right-hand side is considered as a dimensionless force
on a particle that resides at the dimensionless position x ∈ R. The
dynamics depends on the parameter a ∈ R.

a) Determine the fixed points of the dynamics, and verify that x = 0
is a stable fixed point for a < 0 and an unstable fixed point for
a > 0.

b) Verify that the dynamics has a subcritical pitchfork bifurcation at
a = 0.

c) Sketch the bifurcation diagram, i.e. a plot analogous to Fig-
ure 6.10 where the positions of the fixed points are indicated as
function of a. Use solid lines for stable fixed points and dotted
lines for unstable fixed points.

d) Sketch the form of the potential for dynamics with a < 0, 0 <

a < 1, and a > 1.

Problem 6.9. An EOM with a saddle-node bifurcation
Consider the equation of motion

ẍ = (1− x)
(

x2 + a
)

where the right-hand side is considered as a dimensionless force
on a particle that resides at the dimensionless position x ∈ R. The
dynamics depends on the parameter a ∈ R.

a) Determine the fixed points of the dynamics, and verify that the
EOM has three fixed points for a < 0, two fixed points for a = 1,
and a single fixed point for a < 0.

b) Sketch the bifurcation diagram, i.e. a plot analogous to Fig-
ure 6.10 where the positions of the fixed points are indicated as
function of a. Use solid lines for stable fixed points and dotted
lines for unstable fixed points.

c) Sketch the form of the potential for dynamics with a < −1,
−1 < a < 0, and a > 0.

6.4 Dynamics with two degrees of freedom

In Section 6.3 we discussed the EOM of systems with one degree
of freedom. In the present section this analysis will be extended to
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systems with two degrees of freedom. Again the discussion will be
based on three examples:

1. For the spherical pendulum we will learn how to exploit con-
servation laws to reduce a two degrees of freedom dynamics based
on the solution of a dynamics with a single degree of freedom.

2. The Foucault pendulum will allow us to further explore the
impact of rotation.

3. For the double pendulum we will see that conservation laws
can in general at best be found for special parameters of the dy-
namics.

6.4.1 The EOM for the spherical pendulum

The spherical pendulum describes the motion of a mass M that
is mounted on a bar of fixed length ` whose other end is fixed to
a pivot. Thus, the position of the mass is constraint to a spherical
shell. We adopt spherical coordinates to describe the position as

x(t) = `

sin θ(t) cos φ(t)
sin θ(t) sin φ(t)
− cos θ(t)

 = ` R̂
(
θ(t), φ(t)

)
Note that the angle θ is measured here with respect the negative
z axis, in contrast to the definition adopted in Theorem 6.3. As a
consequence, we have now

θ̂(θ, φ) =

cos θ cos φ

cos θ sin φ

sin θ

 and φ̂(θ, φ) =

− sin θ sin φ

sin θ cos φ

0


with 0 < θ < π and 0 ≤ φ < 2π. The same rules for the derivatives
apply as provided in Theorem 6.4, but now {R̂, φ̂, θ̂) provides a
right handed coordinate system, i. e. R̂× θ̂ = −φ̂.

The angle θ denotes the angle between the position the mass and
the gravitational field. Consequently, the potential energy in the
gravitational field is obtained

U = −M g · x = −M g ` cos θ(t) .

The angle φ describes in which direction the mass is deflected
from the vertical line, in a plane orthogonal to the action of gravity
(see Figure 6.16).

Figure 6.16: Spherical coordinates
adopted to describe the motion of a
spherical pendulum.

For the velocity we find based on the chain rule and the deriva-
tives of the unit vectors, Equation (6.3.3),

ẋ = ` θ̇ ∂θ R̂
(
θ(t), φ(t)

)
+ ` φ̇ ∂φR̂

(
θ(t), φ(t)

)
= ` θ̇ θ̂

(
θ(t), φ(t)

)
+ ` φ̇ sin θ(t) φ̂

(
θ(t), φ(t)

)
The expression for ẋ and θ̂ · φ̂ = 0 immediately provide the kinetic
energy

T =
M
2

ẋ2 =
M
2

`2 θ̇2(t) +
M
2

`2 sin2 θ(t) φ̇2(t)
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Consequently, the Lagrange function for the spherical pendulum
takes the form

L(θ, φ, θ̇, φ̇) =
M
2

`2 θ̇2 +
M
2

`2 sin2 θ(t) φ̇2(t) + M g ` cos θ(t)

We observe that L does not depend on φ. In that case it is advis-
able to first discuss the EOM for φ. It takes the form

M `2 d
dt

(
φ̇ sin2 θ(t)

)
=

d
dt

∂L
∂φ̇

=
∂L
∂φ

= 0

The derivative of the Lagrange function with respect to φ vanishes
because L does not depend on φ. Such a coordinate is called a
cyclic, and it always implies a conservation law, C. For the spher-
ical pendulum it signifies conservation of the z-component of the
angular momentum, and it provides an expression of φ̇ in terms
of θ

C = φ̇ sin2 θ(t) = const ⇒ φ̇(t) =
C

sin2 θ(t)
(6.4.1)

where C is proportional to the z-component of the angular momen-
tum.

The general case is summarized in the following definition:

Definition 6.10: Cyclic coordinates

A coordinate qi is called cyclic when the Lagrange function
depends only on its time derivative q̇i, and not on qi. In that
case the associated Euler-Lagrange equation establishes a
conservation law,

C =
∂L
∂q̇i

After all d C
dt

=
d
dt

∂L
∂q̇i

=
∂L
∂qi

= 0

Remark 6.9. The constant value of C is determined by the initial
conditions on q̇i and on the other coordinates. �

Let us now consider to the other coordinate of the spherical
pendulum. The EOM for θ(t) takes the form

M `2 θ̈(t) =
d
dt

∂L
∂θ̇

=
∂L
∂θ

= M `2 φ̇2(t) sin θ(t) cos θ(t)−M g ` sin θ(t)

In this equation the unknown function φ̇(t) can be eliminated by
means of the conservation law, Equation (6.4.1), yielding

θ̈(t) =
C2 cos θ(t)

sin3 θ(t)
− g

`
sin θ(t)

The resulting EOM can be integrated once by multiplication with 2θ̇(t)

θ̇2(t)− θ̇2(t0) =
∫ t

t0

dt 2θ̇

(
C2 cos θ(t)

sin3 θ(t)
− g

`
sin θ(t)

)
= −2

∫ θ(t)

θ(t0)
dθ

d
dθ

(
− C2

sin2 θ
+

g
`

cos θ

)
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The result can be written in the form

E =
θ̇2

2
+ Φeff(θ) = const

where Φeff(θ) =
C2

sin2 θ
− g

`
cos θ

Again a closed solution for θ(t) is out of reach. However, Φeff(θ)

can serve as an effective potential for the 1DOF motion of θ with
kinetic energy θ̇2/2. This interpretation of the dynamics provides
ready access to a qualitative discussion of of the solutions of the
EOM based on a phase-space plot.

For C = 0 the particle swings in a fixed plane selected by φ =

const. Its motion amounts to that of a mathematical pendulum.
Figure 6.17 shows the effective potential and phase space por-

traits for different positive values of C. Conservation of angular
momentum implies that for C 6= 0 the particle can no longer access
the region close to its rest position at the lowermost point of the
sphere. Rather it always has to go in circles around the bottom of
the well, and the sign of C specifies whether it moves clockwise or
anti-clockwise. The divergence of the effective potential at θ = ±π

is called rotation barrier. It emerges due to a combination of the
conservation of energy and angular momentum. add problem: rotation

barrier
Theorem 6.6: Rotation barrier

Let a particle of mass m follow a dynamics where the energy
E and a component Ln = n̂ · L of the angular momentum
L are conserved. Then the particle will keep a minimum
distance

Rmin =
Ln√

2m (E−Φmin)

from the axis n̂. Here, Φmin is a lower bound to the potential
energy.

Proof. We adopt cylinder coordinates (R, φ, z) with a symmetry axis
ẑ aligned along n̂. Then the kinetic energy and Ln amount to

T =
m
2

(
ż2 + R2 φ̇2

)
Ln = m R2 φ̇

As a consequence, we have

E−Φmin ≥ E−U(R, φ) = T ≥ m
2

R2 φ̇2 =
L2

n
2m R2

The bound is obtained by solving this inequality for R.

The effective potential has a single minimum for 0 < θc(C) <

π/2, and not further extrema. The minimum describes motion
where the particle moves at constant height with a constant speed
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Figure 6.17: The left panel shows the
effective potential for the spherical
pendulum at parameter values C2 ∈
{0, 0.01, 0.1, 0.5, 1, 2, 3} from bottom
to top. The subsequent panels show
phase-space portraits of the motion for
C2 = 0.01, 0.1, and 1, respectively.

in a circle. When this orbit is perturbed oscillations are superim-
posed on the circular motion. In a projection to the plane vertical
to the action of gravity, this will lead to trajectories similar to those
drawn by a Spirograph, Problem 2.42.add traces in the (x, y)

plane The take-home message of this example is that cyclic variables
entail conservation laws of the dynamics. In the very same manner
as for the Kepler problem they can be used to eliminate a variable
from the EOM of the other coordinates. The additional contribu-
tions in the EOMs for the other coordinate(s) are interpreted as part
of an effective potential.

6.4.2 Foucault pendulum

6.4.3 Double pendulum

6.5 Dynamics of 2-particle systems

revisit Kepler

6.6 Conservation laws, symmetries, and the Lagrange formal-
ism

6.7 Worked problems: spinning top and running wheel

spinning top

rolling wheel

6.8 Problems

horizontal driven double pendulum

free carousel
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stabilizing satellites

Lagrange points

steel can pendulum

6.8.1 Rehearsing Concepts

Problem 6.10. Kitchen pendulum

We consider a pendulum that is built from two straws (length
L1 and L2), two corks (masses m1 and m2), a paper clip, and some
Scotch tape (see picture to the right). It is suspended from a shash-
lik skewer, and its motion is stabilized by means of the spring taken
from a discharged ball-pen. Hence, the arms move vertically to the
skewer. We denote the angle between the arms as α, and the angle
of the right arm with respect to the horizontal as θ(t).

Figure 6.18: Setup of the kitchen
pendulum.

a) Determine the kinetic energy, T, and the potential energy, V, of
the pendulum. Argue that T and V can only depend on θ and θ̇,
and determine the resulting Lagrangian L(θ, θ̇).

b) Determine the EOM of the pendulum.

c) Find the rest positions of the pendulum, and discuss the motion
for small deviations from the rest positions. Sketch the according
motion in phase space.

d) The EOM becomes considerably more transparent when one
selects the center of mass of the corks as reference point. Show
that the center of mass lies directly below the fulcrum when the
pendulum it at rest.

e) Let ` be the distance of the center of mass from the fulcrum, and
ϕ(t) be the deflection of their connecting line from the vertical.
Determine the Lagrangian L(ϕ, ϕ̇) and the resulting EOM for
ϕ(t).

� f) Do you see how the equations for θ̈(t) and ϕ̈(t) are related?

6.8.2 Mathematical Foundation

Problem 6.11. Shortest path on a sphere
We describe the position on the surface of a three-dimensional

sphere by the angle θ with its “North pole”, and the azimuthal an-
gle φ in the horizontal plane. A trajectory on the sphere with radius
R can then be specified as q(t) = R r̂

(
θ(t), φ(t)

)
, or alternatively by

θ(φ) or φ(θ). We will now derive conditions for a path of extremal
length on the sphere.

a) Without restriction of generality we restrict our discussion to
spheres with unit radius, R = 1. Why is this admissible?
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b) Show that the length of the path from
(
θ(ti), φ(ti)

)
= (θi, φi) to(

θ(te), φ(te)
)
= (θe, φe) amounts to

L =
∫ te

ti

dt
∣∣∣ ˙̂r(θ(t), φ(t)

)∣∣∣ = ∫ φe

φi

dφ

√
sin2 θ(φ) +

(
dθ(φ)

dφ

)2

=
∫ θe

θi

dθ

√
1 + sin2 θ

(
dφ(θ)

dθ

)2

Under which conditions do the expressions apply? Why and
when do they provide the same length?

c) A necessary condition for the extremality of L is that the varia-
tion δL vanishes for the integrals that have been defined in (b).
Introduce the variation θ(φ) + ε δθ(φ) into the second represen-
tation of the length (i.e., the one involving an integral over φ),
calculate δL, and determine the resulting differential equation for
paths θ(φ) of extremal length.

d) Repeat the same steps for the variation φ(θ) + δφ(θ) and the
representation of the length in terms of φ(θ). Determine the
resulting differential equation for paths φ(θ) of extremal length.
Which derivation is simpler? How could you have seen this
before performing the calculations?

e) The result of (d) can be integrated once. Show that this results in
the following first order differential equation

dφ

dθ
=

cos α

sin θ

[
sin2 α− cos2 θ

]−1/2
.

where sin α is an integration constant.

f) Verify that the following function is a solution of the differential
equation

φ(θ) = φ0 − arcsin
cos α cos θ

sin α sin θ
.

Hint: Express sin(φ− φ0) as a function of θ. Take the θ deriva-
tive of both sides of the equation. Subsequently, you can deter-
mine φ′(θ) by eliminating cos(φ − φ0) by means of the known
expression for sin(φ− φ0).

g) Show that all the coordinates

q(θ) = (sin θ cos φ(θ), sin θ sin φ(θ), cos θ)

of the trajectory obtained in (f) are orthogonal to the vector
(0, sin α, cos α).
Then: How does the path look like on the sphere?

h) The path from the initial point to the final point on the sphere
is not unique! One of the solutions is the shortest path on the
sphere. What type of an extremum does the other path repre-
sent?
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? i) Consider the following ODE for a path on the sphere

˙̂r
(
θ(t), φ(t)

)
=
(

q̂1 × q̂2

)
× r̂
(
θ(t), φ(t)

)
where q̂1 and q̂2 are two distinct points on the sphere. Show that
for the initial condition q̂1 the trajectory will proceed through q̂2.

How long does it take to arrive at q̂2?

Does the trajectory represent an extremal path on the sphere?
Under which conditions would it be a path of minimal length?

add torus and cone

Problem 6.12. 1D dynamical systems with pitchfork and saddle-
node bifurcations

We consider the dynamical systems

ẋa(t) = a + x2(t) (6.8.1)

We will analyze now how the solutions x(t) change upon varying
the parameter a ∈ R.

a) With no loss of generality we will assume that t0 = 0 and x0 =

x(t0) = 1. Why is this admissible?
Hint: 1. How would the solutions differ when one chooses t0 = 1
rather than t0 = 0?
2. Consider the evolution of x(t)/x2

0 with a suitable change of
the time unit and the parameter a.

b) With no loss of generality we will assume that a ∈ {−1, 0, 1}.
Why is this admissible?
Hint: For a 6= 0 you may divide the ODE by

√
a2 = (

√
|a|)2.

c) Solve the differential equation by separation of variables and
partial fraction decomposition.

d) Plot the solutions xa(t) for a = −1, a = 0, and a = 1.
What does this plot tell about the solutions for general t0, x0, and
a?

e) Determine the fixed points of Equation (6.8.1) and plot the bifur-
cation diagram.
Can you see how the structure of the bifurcation diagram fits
with the explicit solutions obtained in d)?

f) Repeat the analysis for the system

ẋ(t) = a x(t) + x3(t)
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