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6
Integrable Dynamics

Marguerite Martyn, 1914

wikimedia/public domain
Figure 6.1: The point-particle ide-
alization of a girl on a swing is the
mathematical pendulum of Figures 1.2
and 1.3.

In Chapter 5 we considered objects that consist of a mass points
with fixed relative positions, like a flying and spinning ping-pong
ball. Rather than providing a description of each individual mass
element, we established equations of motion for their center of mass
and the orientation of the body in space. From the perspective of
theoretical mechanics the fixing of relative positions is a constraint
to their motion, just as the ropes of a swing enforces a motion on
a one-dimensional circular track, rather than in two dimensions.
The deflection angle θ of the pendulum, and the center of mass and
orientation of the ball are examples of generalized coordinates that
automatically take into account the constraints.

In this chapter we discuss how to set up generalized coordinates
and how to find the associated equations of motion. The discussion
will be driven by examples. The examples will be derived from the
realm of integrable dynamics. These are systems where conserva-
tion laws can be used to break down the dynamics into separate
problems that can be interpreted as motion with a single degree of
freedom.

At the end of the chapter you know why coins run away rolling
on their edge, and how the speed of a steam engine was controlled
by a mechanical device. Systems where the dynamics is not inte- add more pics

grable will subsequently be addressed in Chapter 7.

https://commons.wikimedia.org/wiki/File:Sketch_by_Marguerite_Martyn_of_a_girl_standing_on_a_swing_in_a_bathing_suit_getting_dry_from_the_breeze,_1914.png


162 6. Integrable Dynamics

6.1 Motivation and Outline:
How to deal with constraint motion?

Figure 6.2: Forces acting for the motion
of a swing, or its equivalent idealiza-
tion of of a mathematical pendulum.

Almost all interesting problems in mechanics involve constraints
due to rails or tracks, and due to mechanical joints of particles.
The most elementary example is a swing (Figure 6.1), where a rope
forces a mass M to move on a path with positions constrained to
a circle with radius given by the length L of the rope. Gravity M g
and the pulling force Fr of the rope acting act on the mass (Fig-
ure 6.2). However, how large is the latter force? At the topmost
point of its trajectory the mass is at rest, and no force is needed
along the rope to keep it on its track. At the lowermost point,
where the swing goes with its maximum speed, there is a sub-
stantial force. Newton’s formalism requires a discussion of these
forces. Lagrange established an alternative approach that provides
equations of motion with substantially less effort. The key idea of
this formalism is to select generalized coordinates adapted to the
problem.

Definition 6.1: Generalized Coordinates

We consider N particles moving in D dimensions. Their
motion is constrained to lie on a prescribed track and their
relative positions may be constrained by bars and joints. Due
to the constrains the system only has M < D N degrees of
freedom. In this chapter we denote the positions of the par-
ticles as x ∈ RD N , and we specify position compatible with
the constraints as x(q(t)), where q ∈ RM are the generalized
coordinates adapted to the constrained motion.

Example 6.1: Generalized coordinates for a pendulum

We describe the position of the mass in a mathematical pen-
dulum by the angle θ(t), as introduced in Example 1.10.
The position of the mass in the 2D pendulum plane is thus
described by the vector

x(t) = L

(
sin θ(t)
− cos θ(t)

)
= L R̂(θ(t)) .

In view of the chain rule its velocity amounts to

ẋ = L θ̇ ∂θ R̂(θ(t)) = L θ̇ θ̂(θ(t)) with θ̂(θ(t)) =

(
cos θ(t)
sin θ(t)

)

Note that R̂(θ) and θ̂(θ) are orthonormal vectors that de-
scribe the position of the mass in terms of polar coordinates
rather than fixed-in-space Cartesian coordinates.

© Jürgen Vollmer — 2021-10-07 04:51:19+02:00



6.2. Lagrange formalism 163

Example 6.2: Generalized coordinates for a ping-pong ball

A ping-pong ball consists of N atoms located in the three-
dimensional space. During a match they follow an intricate
trail in the vicinity of the ping-pong players. At any time
during their motion the atoms are located on a thin spherical
shell with fixed positions with respect to each other. Rather
than specifying the position of each atom one can therefore
specify the position of the ball in terms of six generalized
coordinates (Figure 6.3): Three coordinates provide its cen-
ter of mass. The orientation of the ball can be provided by
specifying the orientation of a body fixed axis in terms of its
polar and azimuthal angle, and a third angle specifies the
orientation of a point on its equator when rotating the ball
around the axis.

Figure 6.3: The position of a ball in
space can be described in terms of a
3D vector Q that describes the center
of the ball (red dot), angles θ, φ that
describe the orientation in space of
a fixed axes in the ball (green line),
and another angle ψ that describes the
position of point that is not on the axis
(blue point).

Generalized coordinates describe only positions complying with
the constraints of the motion, and they do not account for other po-
sitions from the very beginning. Lagrange’s key observation is that
constraint forces, e. g. the force on the rope of the swing, only act
in a direction orthogonal to the positions described by generalized
coordinates. Therefore, the constraint forces do not affect the time
evolution of generalized coordinates. For the pendulum and the
ping-pong ball one only has to account for gravity to find the evo-
lution of the generalized coordinates. There is no need to deal with
the force along the rope in the swing, and the atomic interaction
forces that keep atoms in their positions in the ping-pong ball.

Outline

In Section 6.2 we will introduce the Lagrange formalism that will
allow us without much ado to determine the EOM for generalized
coordinates. Subsequently, in Section 6.3 we deal with systems
with a single degree of freedom. In Section 6.4 we will see how
symmetries in the dynamics allow us to eliminate a second degree
of freedom based on an informed choice of generalized coordinates.
Section 6.5 deals with two-particle systems and other problems
where one deals with several degrees of freedom. In all cases we
will eventually reduce the dynamics to one-dimensional problems.
The final Section 6.6 deals with the relation between continuous
symmetries of the dynamics and conservation laws.

6.2 Lagrange formalism

The Lagrange formalism provides an effective approach to derive
the EOM for generalized coordinates. We first provide a derivation
in a Cartesian coordinate frame. Then we discuss how the EOM for
generalized coordinates are determined.

© Jürgen Vollmer — 2021-10-07 04:51:19+02:00



164 6. Integrable Dynamics

6.2.1 Euler-Lagrange equations for Cartesian coordinates

In Section 5.5 we saw that at mobile will be at rest in a position
characterized by the coordinate vector x when the leading order
correction δx · ∇Φ(x) to its potential energy Φ(x) vanishes for ev-
ery perturbation δx of the position. In the following we denote the
leading order corrections term of the Taylor expansion as variation.

Definition 6.2: Variation of a scalar function

Let f : D × [tI , tE] → R with D ⊂ RD be function that
has continuous first derivatives for all x ∈ D. The variation of
f for a small deviation δx of x such that x + δx ∈ D amounts
to the linear-order term of the Taylor expansion of f ,

δ f (x, t) = δx · ∇x f (x, t) =
D

∑
i=1

δxi
∂ f (x, t)

∂xi

In Section 5.5 we showed that δΦ(x0) = 0 for every critical point
x0 where the system is (and remains) at rest. We now also account
fort explicitly time-dependent potentials Φ(x, t) and consider the
variations δx(t) of time dependent trajectories x(t) with t ∈ [tI , tF].
Here δx(t) describes the deviation of the perturbed trajectory from
the reference trajectory x(t) at time t, and it is understood that
δx(tI) = δx(tF) = 0 Now we have

δΦ(x, t) = δx · ∇xΦ(x, t) = −δx · F(x, t) = −δx ·m ẍ

The velocity and acceleration for the perturbed trajectory x + δx are
ẋ + δẋ and ẍ + δẍ such that

d
dt

(m ẋ · δx) = m ẍ · δx + m ẋ · δẋ = m ẍ · δx + δ
m ẋ2

2

where T = m ẋ2/2 is the kinetic energy. Hence, we can express the
variation of the potential as

δΦ(x, t) = − d
dt

(δx ·m ẋ) + δT(ẋ)

⇒ δ
(
T(ẋ)−Φ(x, t)

)
= − d

dt
(δx ·m ẋ)

The difference between the kinetic and potential energy is a total
time derivative. Integrating the expression over time from tI to tF

therefore provides∫ tF

tI

dt δ
(
T(ẋ)−Φ(x, t)

)
= −

∫ tF

tI

dt
d
dt

(δx ·m ẋ) (6.2.1)

= δx(tI) ·m ẋ(tI)− δx(tF) ·m ẋ(tF) = 0
(6.2.2)

The integral vanishes because x is fixed a the start and the end
point.

Up to mathematical identities that are always true we only used
Newton’s law F(x, t) = mẍ to arrive at this conclusion. This ob-
servation is denoted as the principle of least action. Rather than on

© Jürgen Vollmer — 2021-10-07 04:51:19+02:00



6.2. Lagrange formalism 165

Newton axioms we may therefore base mechanics on the principle
of least action.

Definition 6.3: Lagrangian

We consider a dynamics with kinetic energy T(ẋ(t)) and po-
tential energy Φ(x(t), t) for trajectories x(t). The difference

L(x, ẋ, t) = T(ẋ)−Φ(x, t)

will be called Lagrangian or Lagrange function of the dynam-
ics.

Definition 6.4: Action of a trajectory

For a dynamics with Lagrangian L(x, ẋ, t) the action
S[x(t), ẋ(t)] of a trajectory x(t), tI ≤ t ≤ tF with velocity
ẋ(t) is defined as

S[x(t), ẋ(t)] =
∫ tF

tI

dt L(x(t), ẋ(t), t)

The variation of the action will be defined as

δS[x(t), ẋ(t)] =
∫ tF

tI

dt δL(x(t), ẋ(t), t)

Axiom 6.1: Principle of least action

Let x(t) with tI ≤ t ≤ tF be a trajectory from x(tI) to x(tF)

that satisfies Newton’s law F(x, t) = mẍ with a force that
is derived from a potential Φ(x, t). The the variation of the
action associated the trajectory will vanish

0 = δS[x(t), ẋ(t)]

Remark 6.1. The principle is called least action principle. However,
it only requires that the action has a critical point. There are many
examples in physics where the action takes a saddle point, rather
than a minimum. �

The principle provides an alternative way to determine EOM
that proceeds as follows.

0 = δS[x(t), ẋ(t)] =
∫ tF

tI

dt δL(x(t), ẋ(t), t)

=
∫ tF

tI

dt [δẋ∇ẋL(x, ẋ, t) + δx∇xL(x, ẋ, t)]

=
∫ tF

tI

dt δx
[(
− d

dt
∇ẋL(x, ẋ, t)

)
+∇xL(x, ẋ, t)

]
In the last step we performed a partial integration.1 The integral 1 The boundary term of the partial

integration vanishes,

[δx∇ẋL(x, ẋ, t)]tF
tI

= δx(tF) [∇ẋL(x, ẋ, t)]t=tF

− δx(tI) [∇ẋL(x, ẋ, t)]t=tF

= 0

must vanish for every choice of the variation δx. In particular we
may choose a function δx that takes the same sign as the square
bracket whenever it does not vanish. However, in that case the

© Jürgen Vollmer — 2021-10-07 04:51:19+02:00



166 6. Integrable Dynamics

integral is strictly positive unless the square bracket vanishes. This
provides the EOM of the dynamics in terms of the Euler-Lagrange
equation.

Theorem 6.1: Euler-Lagrange equations

Let xi(t) be a coordinates of a trajectory x(t) of a dynamics
with Lagrangian L(x, ẋ, t). Then xi(t) is a solution of the
Euler-Lagrange equation

d
dt

∂

∂ẋi
L(x, ẋ, t) =

∂

∂xi
L(x, ẋ, t) (6.2.3)

6.2.2 Euler-Lagrange equations for generalized coordinates

The Euler-Lagrange equations derive from a variational principle
that states that the gradient of the Lagrange function with respect
to the phase-space coordinate Γ = (x, ẋ) must vanish for physically
admissible trajectories. This holds for all directions in phase space.
However, generalized coordinates do not qualify as a vector such
that some care is needed to derive their EOM.

Let q be the generalized coordinates of a system and x(q) the
associated configuration vector of the system. Note that x is a vec-
tor with all properties discussed in Chapter 2, while q might only
be a tuple of functions that provide a convenient parameteriza-
tion of valid configurations. We address the situation where the
forces in the system are conservative, arising from a potential en-
ergy Φ

(
x(q), t

)
. Moreover, we assume the the potential energy can

be split into a part Φc
(
x(q), t

)
that accounts for the forces that con-

straint the motion of the system, and a part U
(
x(q), t

)
that accounts

for all other forces.
Example 6.3: Rollercoaster trail

The position x(t) on the trail of a rollercoaster can uniquely
be described by the (dimensionless) distance ` along the trail
that it has gone. Hence, generalized coordinate `(t) uniquely
describes the configuration x(`(t)) of the rollercoaster at
time t.

Example 6.4: Driven pendulum

A driven pendulum is a mathematical pendulum where the
position of the fulcrum X f and the length of the pendulum
arm L(t) are subjected to a prescribed temporal evolution.
The position of the pendulum weight, x, may then be de-
scribed by the angle θ ∈ [0, 2π] = D,

x(θ, t) = X f (t) + R(t)

(
cos θ

sin θ

)
Here, the time dependence of X f (t) and R(t) reflect the

© Jürgen Vollmer — 2021-10-07 04:51:19+02:00



6.2. Lagrange formalism 167

temporal evolution of the time-dependent setup of the pen-
dulum. The temporal evolution of the pendulum will be
described in terms of the generalized coordinate θ(t).

We will now explore the implications of the principle of least
actions for variations of the path that refer only to accessible coordi-
nates. For the kthe coordinate of the variation we write

δxk = xk(q + δq, t)− xk(q, t) =
d

∑
ν=1

∂xk
∂qν

δqν

and for the associated time derivative we have

δẋk =
d
dt

δxk =
d

∑
ν=1

∂ẋk
∂qν

δqν +
d

∑
ν=1

∂xk
∂qν

δq̇ν

As a consequence the variation of the Lagrangian takes the form

δL = δx · ∇xL+ δẋ · ∇ẋL = δx · (Fc + Fe) + δẋ ·mẋ

where Fc represent the constraint forces. We consider variations
δx that relate trajectories complying with the constraints such that
δx · Fc = 0. Therefore, in the setting of generalized coordinates
one need not account for constraint forces. We will now express
the variation of the Lagrangian in terms of the variations of the
generalized coordinates,

δL =
D

∑
k=1

[
δxk

∂L
∂xk

+ δẋk
∂L
∂ẋk

]

=
D

∑
k=1

[(
d

∑
ν=1

∂xk
∂qν

δqν

)
∂L
∂xk

+
d

∑
ν=1

(
∂ẋk
∂qν

δqν +
∂xk
∂qν

δq̇ν

)
∂L
∂ẋk

]

=
d

∑
ν=1

δqν

D

∑
k=1

(
∂xk
∂qν

∂L
∂xk

+
∂ẋk
∂qν

∂L
∂ẋk

)
+

d

∑
ν=1

δq̇ν

D

∑
k=1

∂xk
∂qν

∂L
∂ẋk

On the other hand

∂L
(

x(q, t), ẋ(q, q̇, t), t
)

∂qν
=

D

∑
k=1

(
∂xk
∂qν

∂L
∂xk

+
∂ẋk
∂qν

∂L
∂ẋk

)
∂L
(

x(q, t), ẋ(q, q̇, t), t
)

∂q̇ν
=

D

∑
k=1

∂L
(

x(q, t), ẋ(q, q̇, t), t
)

∂ẋk

∂ẋk
∂q̇ν

=
D

∑
k=1

∂L
∂ẋk

∂

∂q̇ν

(
∂xk
∂t

+
d

∑
µ=1

∂xk
∂qµ

q̇µ

)

=
D

∑
k=1

∂L
∂ẋk

∂xk
∂qν

Therefore,

δS =
∫

dtδL =
∫

dt
d

∑
ν=1

(
δqν

∂L
∂qν

+ δq̇ν
∂L
∂q̇ν

)

=
∫

dt
d

∑
ν=1

δqν

(
∂L
∂qν
− d

dt
∂L
∂q̇ν

)

© Jürgen Vollmer — 2021-10-07 04:51:19+02:00



168 6. Integrable Dynamics

The equations of motion are derived from the Lagrangian, Defini-
tion 6.5, by Algorithm 6.1.

Definition 6.5: Lagrangian in generalized coordinates

The Lagrange function L amounts to the difference of the
kinetic energy T and the potential energy U of the system,

L = T −U = ∑
α

mα

2
ẋ2

α(q)−U
(
x(q)

)
(6.2.4)

Constraint forces are not considered.

Algorithm 6.1: Euler Lagrange EOMs

a) Identify generalized coordinates q that describe the ad-
missible configurations of the system.

b) Determine x(q), and the resulting expression of the po-
tential energy in terms of q,

U(q) = U
(

x(q)
)

c) Evaluate the kinetic energy based on the chain rule

T(q, q̇) = ∑
α

mα

2
ẋ2

α(q) = ∑
α

mα

2

(
∑

i

∂xα

∂qi
q̇i

)2

where xα is the α-component of the configuration vector x
and mα the mass of the associated particle.

Hence, we establish the Lagrange function

L(q, q̇) = T(q, q̇)−U(q)

expressed in terms of the generalized coordinates q and
their time derivatives q̇.

d) Determine the EOM for the component qi of q by evaluat-
ing the Euler-Lagrange equation

d
dt

∂L
∂q̇i

=
∂L
∂qi

(6.2.5)

6.3 Dynamics with one degree of freedom

We will now illustrate the application of the Lagrange formalism
for three examples with a single degree of freedom of the motion:
The mathematical pendulum, Example 6.1, will give a first idea
of how to find EOMs with the Lagrange formalism. This EOM
can also easily be found by other approaches. 2. The motion of a
pearl on a rotating ring constitutes a system with an explicit time
dependence. In that case the Lagrange formalism dramatically sim-
plifies the the derivation of the EOM. We will also discuss for this
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6.3. Dynamics with one degree of freedom 169

model how to account for dissipative forces and we will see how
the solutions of a problem can change qualitatively upon varying
a parameter. 3. The motion of a weight on a carousel we will dis-
cussed as an example of a system that needs a dedicated treatment
for the description of admissible positions.

6.3.1 The EOM for the mathematical pendulum

The parameterization introduced in Example 6.1 provides the ki-
netic energy

T =
M
2

ẋ2 =
M
2

L2 θ̇2 θ̂(θ(t))2 =
M
2

L2 θ̇2

and the potential energy in the gravitational field

U = −Mg · x = −M L R̂
(
θ(t)

)
· g = −M L g cos θ(t)

since g = g R̂
(
0
)
.

Consequently,
L =

M
2

L2 θ̇2 + M g L cos θ(t)

⇒ M L2 θ̈(t) =
d
dt

∂L
∂θ̇

=
∂L
∂θ

= −M g L sin θ(t)

⇒ θ̈(t) = − g
L

sin θ(t) (6.3.1)

The EOM (6.3.1) can be integrated once by multiplication with
2θ̇(t)

θ̇2(t)− θ̇2(t0) =
∫ t

t0

dt 2θ̇θ̈ =
∫ t

t0

dt 2θ̇
(
− g

L
sin θ(t)

)
= 2

∫ θ(t)

θ(t0)
dθ

d
dθ

( g
L

cos θ
)
= 2

g
L
(
cos θ(t)− cos θ(t0)

)
This is a Mattheiu differential equation. For most initial conditions
it can not be solved by simple means. However, the first integral
provides the phase-space trajectories θ̇(θ) for every given set of
initial conditions

(
θ(t0), θ̇(t0)

)
,

Figure 6.4: The potential U(θ) (top)
and the phase-space plot (bottom) for
the EOM (6.3.1) of the mathematical
pendulum. The numbers marked on
the contour lines indicated the energy
of a trajectory in units of MgL.

θ̇ = ±
√

θ̇2(t0) +
2 g
L
(
cos θ(t)− cos θ(t0)

)
The phase-space portrait is shown in Figure 6.4. There are trivial
solutions where the pendulum is resting without motion at its sta-
ble and unstable rest positions θ = 0 and θ = π, These positions are
denoted as fixed points of the dynamics. There are closed circular
trajectories close to the minimum, θ = 0, of the potential where
it is harmonic to a good approximation. These are solutions with
energies 0 < 1 + E/MgL . 1.

For larger amplitudes the amplitude of the swinging grows, and
the circular trajectories get deformed. When E approaches MgL the
phase-space trajectories arrive close to the tipping points θ = ±π

where they form very sharp edges. For θ close to θ = ±π the
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170 6. Integrable Dynamics

trajectories look like the hyperbolic scattering trajectories for the
potential −a x2/2 that was discussed in Problem 4.25. When the
non-dimensional energy is exactly one, the pendulum starts on top,
goes through the minimum and returns to the top again. Apart
from the fixed points, this is the only case where the evolution
can be obtained in terms of elementary functions. For the initial
condition θ̇(ti) = 0 and cos θi = −1 we find

ω−1 θ̇H(t) = ±
√

2 + 2 cos θH(t) = ±2 cos
θH(t)

2

The same equation is also obtained for the initial condition θ0 = 0
and θ̇(t0) =

√
2g/L half-way on the way from the top back to the

top. For this initial condition the ODE for θ̇H can be integrated, and
we find

±2 ω (t− t0) =
∫ θ(t)

0

dθ

cos θ
2

= ln
1 + sin θH(t)

2

1− sin θH(t)
2

− ln
1
1

⇒ θH(t) = 2 arcsin tanh
(
±ω t

)
(6.3.2)

The ± signs account for the possibility that the pendulum can move
clockwise and counterclockwise. The counterclockwise trajectory is
shown in Figure 6.5. In the limit t → −∞ it starts in the unstable
fixed point θ = −π. It falls down till it reaches the minimum θ = 0
at time t0, and then it rises again, reaching the maximum θ = π for
time t→ ∞. Such a trajectory is called a homocline.

−10 −5 0 5 10

ω (t− t0)

−π

0

π

θ(
t)

Figure 6.5: Anticlockwise moving
heterocline for the mathematical
pendulum.

Definition 6.6: Homoclines and Heteroclines

Homoclines and heteroclines are trajectories that approach a
fixed points of a dynamics in their infinite past and future.
A homocline returns to the same fixed point from where it
started. A heterocline connects two different fixed points.

The take-home message of this example is that the minima and
maxima of a potential organize the phase space flow. Close to each
minimum a conservative system will have closed trajectories that
represent oscillations in a potential well. The well is confined by
maxima to the left and right of the minimum of the potential.
When these maxima have different height there is a homoclinic
orbit coming down from and returning to the shallower maximum.
When they have the same height, they are connected by heteroclinic
orbits. Thus, the homoclines and heteroclines divide the phase
space into different domains. Initial conditions within the same
domain show qualitatively similar dynamics. Initial conditions in
different domains feature different dynamics. For the mathematical
pendulum the heteroclines divide are three domains, up to the 2π

translation symmetry of θ:

a) There are trajectories oscillating around θ = 0, with energies
smaller than MgL. The region of these oscillations is bounded by
the heteroclines provided in Equation (6.3.2).
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b) Trajectories with initial conditions lying above the anticlockwise
moving heterocline will persistently rotate anticlockwise and
never reverse their motion.

c) Trajectories with initial conditions lying below the clockwise
moving heterocline will persistently rotate clockwise and never
reverse their motion.

The general strategy for sketching phase-space plots is summa-
rized in the following algorithm.

Algorithm 6.2: Phase space plots

a) Identify the minima and maxima of the potential. Mark
the minima as (marginally) stable fixed points with veloc-
ity zero. Mark the maxima as unstable fixed points with
velocity zero.

b) Identify the fate of trajectories departing from the unsta-
ble fixed points. Identify to this end the closest positions
on the potential that have the same height as the maxi-
mum. When it is another extremum the orbit will form an
heterocline. Otherwise, it will be reflected and return to
the initial maximum, forming a homocline. If there is no
further point of the same height, the trajectory will escape
to infinity.

c) Add characteristic trajectories close to the minima and in
between homo- and heteroclines.

d) Observe the symmetries of the system. To the very least
the plot is symmetric with respect to reflection at the
horizontal axis, i. e. swapping the sign of the velocity.

e) Observe energy conservation (if it applies): The modulus
of the velocity takes a local minimum for a maximum of
the potential, and a local maximum for a minimum of the
potential.

6.3.2 The EOM for a pearl on a rotating ring

Figure 6.6: Motion of a pearl mov-
ing on a ring rotating with a fixed
frequency Ω.

We consider a pearl of mass M that can freely move on a ring. The
ring is mounted vertically in the gravitational field and it spins with
angular velocity Ω around its vertical symmetry axis. Again the
setup constraints the position of the pearl to lie on a spherical shell,
and we hence describe its position as

x(t) = ` R̂
(
θ(t), φ(t)

)
However, in this case the position of the pearl is fully described
by the angle θ(t) of the deflection of the pearl from the direction
of gravity (see Figure 6.6. The angle φ(t) = Ωt is entering the
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Figure 6.7: The left panel shows the
effective potential for the pearl on a
ring for parameter values (Ω/ω) ∈
{0, 2−1/2, 1, 1.2, 1.5, 2, 5} from bottom
to top. The subsequent panels show
phase-space portraits of the motion for
Ω/ω = 2−1/2, 1, and 2, respectively.

problem as a parameter, dictated by the setup of the problem, and
the motion of the pearl on the ring will be described based on a
single EOMs for its coordinate θ(t).

The potential energy takes the same form as for the pendulum,

U = −M g · x = −M g ` cos θ(t) .

The kinetic energy is obtained based on its velocity

ẋ = ` θ̇ θ̂
(
θ(t), Ωt

)
+ `Ω sin θ(t) φ̂

(
θ(t), Ωt

)
which provides the Lagrange function

L(θ, θ̇) =
M
2

`2 θ̇2 +
M
2

`2 Ω2 sin2 θ(t) + M g ` cos θ(t)

It only differs from the expression for the spherical pendulum
by the fact that φ(t) is not a coordinate whose evolution must be
determined from an EOM. Rather it is a parameter φ(t) = Ω t
provided by the setting of the problem.

The motion only has a single DOF, θ(t), with EOM

θ̈(t) = − g
`

sin θ(t)
(

1− `Ω2

g
cos θ(t)

)
(6.3.3)

This EOM can once be integrated by the same strategy adopted for
the swing and the spherical pendulum. Thus, one finds the effective
potential

Ueff(θ) = −ω2 cos θ

[
1− 1

2

(
Ω
ω

)2
cos θ

]

Figure 6.7 shows the effective potential and phase space por-
traits for different values of angular momentum, i. e. of the dimen-
sionless control parameter κ = Ω/ω. For κ < 1 the phase space
has the same structure as that of a planar mathematical pendu-
lum, with a stable fixed point at θ = 0. When κ passes through
one, this minimum of Ueff turns into a maximum, and two new
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minima emerge at the positions θc = ± arccos κ−2 that are indi-
cated by a dotted gray line in the left panel of Figure 6.7. The new
maximum at zero is always shallower than the maxima at ±π.
Hence, it gives rise to two homoclinic orbit that wind around the
new stable fixed points. The maxima at ±π will further we con-
nected by heteroclinic orbits. Hence, phase space is divided into
five distinct regions. For energies smaller than Ueff(θ = 0) the tra-
jectories wiggle around one of the stable fixed points. They stay
on one side of the ring and oscillate around the angle θc. There are
two regions of this type because the pear can stay on both sides
of the ring. For Ueff(θ = 0) < E < Ueff(θ = π) the trajectories
show oscillations back and forth between the two sides of the ring,
For E > Ueff(θ = π) they rotate around the ring in clockwise or
counter-clockwise direction for θ̇ < 0 or θ̇ > 0, respectively.

There are two take-home message from this example:
1. There are no conservation laws in the dynamics when there

are explicitly time-dependent constraints. Hence, the strategies
of Chapter 4 to establish and discuss the EOM can no longer be
applied. However, the Lagrange formalism still provides the EOM
in a straightforward manner.

1.0 2.0 3.0 4.0

−π
−3

4
π

−1
2
π

−1
4
π

1
4
π

1
2
π

3
4
π

π

θc

Figure 6.8: Parameter dependence of
the positions of the fixed points of the
rotation governor. Solid lines mark
stable fixed points, and unstable fixed
points are marked by dashed lines.

2. In general, the structure of the phase-space flow changes upon
varying the dimensionless control parameters of the dynamics.
These changes are called bifurcations, and they are a very active
field of contemporary research in theoretical mechanics. The pearl
on the ring features a pitchfork bifurcation since the positions of the
fixed points resemble the shape of a pitch fork (see Figure 6.8). We
will come back to this topic in due time.

6.3.3 Centrifugal Governor

In the absence of rotation the motion of the pearl on the ring
amounts to a mathematical pendulum with frequency ω. This
relation is used in centrifugal governors that are used to control the
rotation of mills and steam engines. The sharp increase of θc when
the rotation frequency rises beyond Ω is used in a feedback mech-
anism of the governor to control for instance the rotation speed of
the steam engine.

Figure 6.9: Rotational governor and
throttle valve. When the rotation
speed exceeds a critical value the
weights move outward and the arm
opens a valve that reduces pressure
in the steam engine. (Image from
“Discoveries & Inventions of the
Nineteenth Century” by R. Rout-
ledge, 13th edition, published
1900, Public domain, via Wikime-
dia Commons)

Oscillations around the stable fixed points is an undesirable
feature in the governor such that some dissipation is a welcome
feature of the governor. We revisit Equation (6.2.1) to extend the
Lagrange formalism for forces that do not derive from a potential

0 = −
∫ tF

tI

dt
d
dt

(δx ·m ẋ) = −
∫ tF

tI

dt (δẋ ·m ẋ + δx ·m ẍ)

= −
∫ tF

tI

dt
(
δẋ · ∇ẋL+ δx ·m

(
Fd −∇xΦ

))
=
∫ tF

tI

dt δx
(
−Fd +∇xL−

d
dt
∇ẋL

)
Thus, and additional dissipative force Fd = −γ θ̇ θ̂ will give rise
to an additional additive term in Equation (6.3.3) such that the
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rotational governor has an EOM

θ̈(t) = − g
`

sin θ(t)
(

1− `Ω2

g
cos θ(t)

)
− γ

M
θ̇(t)

and the energy evolves as

d
dt

(
θ̇2

2
+ Ueff(θ)

)
= − γ

M
θ̇2(t)

Small friction deflects the trajectories towards smaller values of the
effective potential, until the system comes to rest in a stable fixed
point. The impact of dissipation for Ω/ω = 2 and dissipation of
γ/M = 0.2 and 2.0, respectively are shown in Figure 6.10.

Figure 6.10: Phase-space plot for a
rotational governor with rotation fre-
quency Ω = 2ω. The colors of gray in
the background show contour levels of
the energy. The streamlines indicated
the evolution of the dynamics for (left)
weak dissipation, γ = 0.2, and (right)
strong dissipation, γ = 2, dissipation.
Due to dissipation the trajectories
acquire a component downwards in
energy.

−π −1
2
π 0 1

2
π π

θ

−3.0

−1.5

0.0

1.5

3.0

θ̇/
ω

−π −1
2
π 0 1

2
π π

θ

−3.0

−1.5

0.0

1.5

3.0

θ̇/
ω

6.3.4 Carousel

The positions in the systems that we treated so far could be de-
scribed in terms of polar and spherical coordinates. Commonly the
parameterization of particle configurations needs a dedicated treat-
ment. As an example for such a problem we treat the motion of the
beats of a toy carousel that is shown in Figure 6.11. The carousel
is composed of four cantilever beams of length R that extend out-
wards from a vertical axis that is rotating with angular velocity
Ω. At the far end of each beam there is a pendulum attached that
freely swings in outward direction. Their inclination towards grav-
ity will be denoted as θ. (Oscillations parallel to the motion will
not be considered for the time being.) The pendulum arm has a
length L and it carries a weight m. Due to a magnetic contact the
pendulum experiences minimal friction in its motion. Henceforth
the focus on the motion of one of the beats.

We pick the origin of the coordinate system on the ration axes
right on the height of the cantilever. Looking from the top (right
panel of Figure 6.11) the pendulum arm sticks out in direction φ =

Ωt. Adopting polar coordinates in the horizontal plane, we thus
denote the position of the fulcrum of the pendulum as R = R r̂(φ),
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6.3. Dynamics with one degree of freedom 175

Figure 6.11: Experimental setup and
description of configurations for a toy
carousel.and the vector from the fulcrum to the weight is L sin θ r̂(φ) −
L cos θẑ. Thus, the position x and the velocity ẋ of the weight are

x = (R + L sin θ) r̂(Ωt)− L cos θẑ

ẋ = (R + L sin θ) Ω φ̂(Ωt) + L cos θ θ̇ r̂(Ωt) + L sin θ θ̇ẑ

Kinetic energy and potential energy are

T =
m
2

ẋ2 =
m
2

[
L2 θ̇2 + (R + L sin θ)2 Ω2

]
V = −mgL cos θ

and the Euler-Lagrange equation for θ(t) take the form

m L2 θ̈(t) =
d
dt

∂L
∂θ̇

=
∂L
∂θ

= m Ω2 (R + L sin θ) cos θ −mgL sin θ

We introduce

• the eigenfrequency of the hanging arm, ω =
√

g/L

• the ratio of frequencies, τ = Ω/ω

• the ratio of the length of the arms, λ = R/L

and absorb ω into the dimensionless time scale. Thus, we find

θ̈ = τ2 (λ + sin θ) cos θ − sin θ

which admits a conserved energy-like quantity

E =
θ̇2

2
+ Ueff(θ)

with an effective potential

Ueff(θ) = −
τ2

2
(λ + sin θ)2 − cos θ

The left panel of Figure 6.12 shows the effective potential for a fixed
ratio L/R = 4 and different values of Ω/ω. For small frequen-
cies, Ω/ω = 0.2, the masses are pushed outwards such that the
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Figure 6.12: The effective potential
(left) and phase space plots for the
parameter values L = 4R and Ω/ω =
0.5, 1.5 and 2.0 (from left to right).

equilibrium position is no longer at θ = 0. Otherwise, the phase
space plot looks like the one of a mathematical pendulum. For in-
creasing τ = Ω/ω a shoulder emerges in the potential, and for
τ > τc ' 1.5 this leads to the emergence of a new minimum with
−π/2 < θ− < 0. It is separated from the previous minimum by
a maximum at θ+ with −θ− � −θ+ > 0. For τ > τc there are
two stable fixed points that lie in regions surrounded by homoclinic
trajectories that start and end at θ+. Further outside there are oscil-
lating trajectories that move around both fixed points, and beyond
the heteroclinic trajectories that connect the maxima of the potential
one finds trajectories that keep rotating in the same direction.

When increasing the rotation frequency beyond τc a second
stable solution emerges in the system by a saddle-node bifurcation.
To find the parameters where it emerges we observe that fixed
points emerge at positions θ where the effective force vanishes

sin θ = τ2 (λ + sin θ) cos θ

⇒ λτ(θ) =
tan θ

τ2 − sin θ

for τ < 1 the function λτ(θ) is monotonous. Hence, there is a
single fixed point.

for τ < 1 the function λτ(θ) has a maximum and a minimum. For
values of λ between these extrema there are three solution.

1 minimum

2 minima

0 1 1.46 2.11 3 3.7
Ω/ω

0

0.5

1

1.5

R
/L

Figure 6.13: Phase diagram with posi-
tions of the bifurcations as function of
τ and λ.

The extrema of λτ(θ) lie at

0 =
dλ

dθ
=

1
τ2

1
cos2 θ

− cos θ ⇒ cos θ = τ−2/3

The maximum of λ therefore takes the value

λc = sin θ

(
1

τ2 cos θ
− 1
)
= −

√
1− cos2 θ

(
1

τ2 cos θ
− 1
)
=
(

1− τ−4/3
)3/2

eigenvalues of linearized EOM, normal forms of bifurcations

6.3.5 Self Test

Problem 6.1. Phase-space analysis for a pearl on a rotating ring
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a) Verify then by explicit calculation that R̂, θ̂, and φ̂ obey the rela-
tions

θ̂ =
∂R̂
∂θ

and φ̂ = R̂× θ̂ ,

and that they form an orthonormal basis.
How is φ̂ related to ∂R̂/∂φ?

b) Evaluate ẋ(t) = ` ˙̂R(θ(t), Ωt) based on the relations established
in a).

c) Determine the kinetic energy T and the potential energy V of the
pearl.

d) Fill in the steps in the derivation of the EOM for θ, as provided
in Equation (6.3.3).

Problem 6.2. Kitchen pendulum

We consider a pendulum that is built from two straws (length
L1 and L2), two corks (masses m1 and m2), a paper clip, and some
Scotch tape (see picture to the right). It is suspended from a shash-
lik skewer, and its motion is stabilized by means of the spring taken
from a discharged ball-pen. Hence, the arms move vertically to the
skewer. We denote the angle between the arms as α, and the angle
of the right arm with respect to the horizontal as θ(t).

Figure 6.14: Setup of the kitchen
pendulum.

a) Determine the kinetic energy, T, and the potential energy, V, of
the pendulum. Argue that T and V can only depend on θ and θ̇,
and determine the resulting Lagrangian L(θ, θ̇).

b) Determine the EOM of the pendulum.

c) Find the rest positions of the pendulum, and discuss the motion
for small deviations from the rest positions. Sketch the according
motion in phase space.

d) The EOM becomes considerably more transparent when one
selects the center of mass of the corks as reference point. Show
that the center of mass lies directly below the fulcrum when the
pendulum it at rest.

e) Let ` be the distance of the center of mass from the fulcrum, and
ϕ(t) be the deflection of their connecting line from the vertical.
Determine the Lagrangian L(ϕ, ϕ̇) and the resulting EOM for
ϕ(t).

� f) Do you see how the equations for θ̈(t) and ϕ̈(t) are related?

6.4 Dynamics with two degrees of freedom

6.4.1 The EOM for the spherical pendulum

The spherical pendulum describes the motion of a mass M that
is mounted on a bar of fixed length ` whose other end is fixed to
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a pivot. Thus, the position of the mass is constraint to a spherical
shell. We adopt spherical coordinates to describe the position

x(t) = `

sin θ(t) cos φ(t)
sin θ(t) sin φ(t)
− cos θ(t)

 = ` R̂
(
θ(t), φ(t)

)
The angle θ takes values 0 < θ < π, and it denotes the angle
between the position the mass and the gravitational field. Conse-
quently, the potential energy in the gravitational field is obtained

U = −M g · x = −M g ` cos θ(t) .

The angle φ takes values 0 ≤ φ < 2π, and it describes in which
direction the mass is deflected from the vertical line, in a plane
orthogonal to the action of gravity (see Figure 6.15).

Figure 6.15: Spherical coordinates
adopted to describe the motion of a
spherical pendulum.

For the velocity we find

ẋ = ` θ̇ ∂θ R̂
(
θ(t), φ(t)

)
+ ` φ̇ ∂φR̂

(
θ(t), φ(t)

)
= ` θ̇ θ̂

(
θ(t), φ(t)

)
+ ` φ̇ sin θ(t) φ̂

(
θ(t), φ(t)

)
where we introduced θ̂, and φ̂ with

θ̂(θ, φ) =

cos θ cos φ

cos θ sin φ

sin θ

 and φ̂(θ, φ) =

− sin θ sin φ

sin θ cos φ

0


The unit vectors R̂, θ̂, and φ̂ form a position-dependent orthonor-
mal basis that describes positions in R3 in terms of polar coordi-
nates. The expression for ẋ and θ̂ · φ̂ = 0 immediately provide the
kinetic energy

T =
M
2

ẋ2 =
M
2

`2 θ̇2(t) +
M
2

`2 sin2 θ(t) φ̇2(t)

Consequently, the Lagrange function for the spherical pendulum
takes the form

L(θ, φ, θ̇, φ̇) =
M
2

`2 θ̇2 +
M
2

`2 sin2 θ(t) φ̇2(t) + M g ` cos θ(t)

We observe that L does not depend on φ. In that case it is advis-
able to first discuss the EOM for φ. It takes the form

M `2 d
dt

(
φ̇ sin2 θ(t)

)
=

d
dt

∂L
∂φ̇

=
∂L
∂φ

= 0

The derivative of the Lagrange function with respect to φ vanishes
because L does not depend on φ. Such a coordinate is called a
cyclic, and it always implies a conservation law, C. For the spher-
ical pendulum it signifies conservation of the z-component of the
angular momentum, and it provides an expression of φ̇ in terms of
θ

C = φ̇ sin2 θ(t) = const ⇒ φ̇(t) =
C

sin2 θ(t)
(6.4.1)

where C is proportional to the z-component of the angular momen-
tum.

The general case is summarized in the following definition:
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Definition 6.7: Cyclic coordinates

A coordinate qi is called cyclic when the Lagrange function
depends only on its time derivative q̇i, and not on qi. In that
case the associated Euler-Lagrange equation establishes a
conservation law,

C =
∂L
∂q̇i

After all d C
dt

=
d
dt

∂L
∂q̇i

=
∂L
∂qi

= 0

Remark 6.2. The constant value of C is determined by the initial
conditions on q̇i and on the other coordinates. �

Let us now consider to the other coordinate of the spherical
pendulum. The EOM for θ(t) takes the form

M `2 θ̈(t) =
d
dt

∂L
∂θ̇

=
∂L
∂θ

= M `2 φ̇2(t) sin θ(t) cos θ(t)−M g ` sin θ(t)

In this equation the unknown function φ̇(t) can be eliminated by
means of the conservation law, Equation (6.4.1), yielding

θ̈(t) =
C2 cos θ(t)

sin3 θ(t)
− g

`
sin θ(t)

and the resulting EOM can be integrated once by multiplication
with 2θ̇(t)

θ̇2(t)− θ̇2(t0) =
∫ t

t0

dt 2θ̇

(
C2 cos θ(t)

sin3 θ(t)
− g

`
sin θ(t)

)
= −2

∫ θ(t)

θ(t0)
dθ

d
dθ

(
− C2

sin2 θ
+

g
`

cos θ

)
The result can be written in the form

E =
θ̇2

2
+ Φeff(θ) = const

where Φeff(θ) =
C2

sin2 θ
− g

`
cos θ

Again a closed solution for θ(t) is out of reach. However, Φeff(θ)

can serve as an effective potential for the 1DOF motion of θ with
kinetic energy θ̇2/2. This interpretation of the dynamics provides
ready access to a qualitative discussion of of the solutions of the
EOM based on a phase-space plot.

For C = 0 the particle swings in a fixed plane selected by φ =

const. Its motion amounts to that of a mathematical pendulum.
Figure 6.16 shows the effective potential and phase space por-

traits for different positive values of C. Conservation of angular
momentum implies that for C 6= 0 the particle can no longer access
the region close to its rest position at the lowermost point of the
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Figure 6.16: The left panel shows the
effective potential for the spherical
pendulum at parameter values C2 ∈
{0, 0.01, 0.1, 0.5, 1, 2, 3} from bottom
to top. The subsequent panels show
phase-space portraits of the motion for
C2 = 0.01, 0.1, and 1, respectively.

sphere. Rather it always has to go in circles around the bottom of
the well, and the sign of C specifies whether it moves clockwise or
anti-clockwise. The divergence of the effective potential at θ = ±π

is called rotation barrier. It emerges due to a combination of the
conservation of energy and angular momentum.add problem: rotation

barrier The effective potential has a single minimum for 0 < θc(C) <

π/2, and not further extrema. The minimum describes motion
where the particle moves at constant height with a constant speed
in a circle. When this orbit is perturbed oscillations are superim-
posed on the circular motion. In a projection to the plane vertical
to the action of gravity, this will lead to trajectories similar to those
drawn by a Spirograph, Problem 2.42.

The take-home message of this example is that cyclic variables
entail conservation laws of the dynamics. In the very same manner
as for the Kepler problem they can be used to eliminate a variable
from the EOM of the other coordinates. The additional contribu-
tions in the EOMs for the other coordinate(s) are interpreted as part
of an effective potential.

6.4.2 Double pendulum

6.5 Dynamics of 2-particle systems

revisit Kepler

6.6 Conservation laws, symmetries, and the Lagrange formal-
ism

6.7 Worked problems: spinning top and running wheel

spinning top

rolling wheel
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6.8 Problems

horizontal driven double pendulum

stabilizing satellites

Lagrange points

steel can pendulum
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