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5
Impact of Spatial Extension

Figure 5.1: Impact of a laser pulse on
a microdrop of opaque liquid that is
thus blown up; cf. Klein, et al, Phys.
Rev. Appl. 3 (2015) 044018

Punt/Anefo, Amsterdam 1971, CC0

Figure 5.2: Girl playing with clackers.

Charlie Cowins from Belmont, NC, USA, CC
BY 2.0
Figure 5.3: Man running to return a
tennis ball.

In Chapter 4 we discussed the motion of point particles. However,
in our environment the spatial extension of particles in crucial.
Physical objects always keep a minimum distance due to their spa-
tial extension. When they had zero extension, one could neither
blow up water droplets by impact with a laser (Figure 5.1), nor
work clackers (Figure 5.2) or hit a ball with a tennis racket (Fig-
ure 5.3). Even giving spin to a ball only works due to the distance
between the surface of the racket and the center of the ball.

At the end of this chapter we will be able to discuss the evolu-
tion of balls with spin, and their reflections from flat surfaces. Why
is spin of so much importance in table tennis? How can a “Kreis-
läufer” score a goal in Handball, even when the goal keeper is fully
blocking he direct path to the goal?

What is the magic of
Beckham’s banana kicks?

http://link.aps.org/doi/10.1103/PhysRevApplied.3.044018
http://link.aps.org/doi/10.1103/PhysRevApplied.3.044018
https://commons.wikimedia.org/wiki/File:Mensen_met_een_klik_klak_Amsterdam,_Bestanddeelnr_924-8383.jpg
https://commons.wikimedia.org/wiki/File:Gluten_free_speed_-_Flickr_-_chascow.jpg
https://creativecommons.org/licenses/by/2.0
https://creativecommons.org/licenses/by/2.0


136 5. Impact of Spatial Extension

5.1 Motivation and outline: How do particles collide?

In order to get a first impression about this idea we consider the
case of two particles at the positions qi, i ∈ {1, 2} that interact by a
repulsive Coulomb force that derives from a potential ΦC(|R|) with
R = q2 − q1,

ΦC(|R|) =
C
|R| ⇒ Fc(qi) = −∇qi ΦC(|qi − q2−i|) =

C
(
qi − q2−i

)
|qi − q2−i|3

Here, 2− i is the index of the other particle (1 for i = 2 and 2 for
i = 1), and the constant C is the product of the permittivity of the
vacuum and the particle charges. For charges of opposite signs this
force has agrees with the gravitational force when one substitutes
C → −m1 m2 G. This results in the same dimensionless equations
of motion as obtained for the Kepler problem, with the important
difference that the length and time units adopted to defined the
dimensionless units take vastly different values.

When the two particles carry charges of equal signs the force is
repulsive, giving rise to the EOM

0 = w′′(θ) + w(θ) +
µ C
L2 w(θ)

such that

R(θ) =
1

W(θ)
=

R0

−1 + ε cos
(
θ − θ0

) where R0 =
L2

µ C

agrees with Equation (4.9.3) up to a change of the sign of the one in
the denominator and the length unit R0.

Remark 5.1. It is illuminating to adopt a different perspective on the
origin of the minus sign in front of the one. Let us write the force
on particle 1 as F1 = F1 ê(θ) where ê(θ) is the vector pointing from
particle 1 to particle 2. The strength of the scalar force F1 will be
positive for an attractive force and negative for a repulsive force. In
the dimensionless force Ft2

0/µ R0 the change of sign is taken into
account by the sign of C in R0 = L2/µ C and the solution takes the
form of Equation (4.9.3). In order to obtain a positive length scale
|R0| = ±R0 we multiply the numerator and denominator of the
solution by the ±1 and absorb the factor in front of ε in a rotation
of the angle by π such that the polar coordinates are always aligned
with the direction of the force. Hence, one finds

R(θ) =
1

W(θ)
=

|R0|
±1 + ε cos

(
θ − θ0

) where ± 1 = sign(C)

At this point dimensionless units play out their strength. We obtain
the solution of the nontrivial EOM by an analysis of the ODE and
mapping of parameters to a known problem, rather than going
again through the involved analysis. �
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Ṙ 0.30
0.50

0.75

1.00

1.50

2.00

3.
00

5.00

7.
50

-5 5 10 15 20
x̂

-15

-10

-5

5

10

15
ŷ
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Figure 5.4: Phase-space flow and the
shape of trajectories for scattering with
a repulsive Coulomb potential.

The phase-space portrait and the shape of the orbits for repulsive
interactions are plotted in Figure 5.4. We observe that the trajectory
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5.1. Motivation and outline: How do particles collide? 137

shape describes the approach of the other particle from a perspec-
tive of an observer that sits on a particle located in the origin. When
the observer sits on a particle that has a much larger mass than the
approaching particle, then an outside observer will see virtually no
motion of the mass-rich particle and the lines in Figure 5.4 describe
the lines of the trajectories of the light particle in a plane selected by
the initial angular momentum of the scattering problem. In general,
two particles of masses m1 and m2 will be at opposite sides of the
center of mass. In a coordinate system with its origin at the center
of mass the lines in Figure 5.4 describe the particle trajectories up to
factors m1/(m1 + m2) and −m2/(m1 + m2) for the first and second
particle, respectively. A pair of trajectories for m1 = 0.3 (m1 + m2)

and ε = 1.2 is shown in Figure 5.5. The approximation as point
particles is well justified when the sum of the particle radii is much
smaller than their closest approach R0/(ε− 1).

-20-15-10 -5 5 10 15 20
x̂

-15
-10

-5

5
10
15
ŷ

Figure 5.5: The two black lines show
the scattering trajectories of two
particles with ε = 1.2 and relative
mass m1 = 0.3 (m1 + m2). They
approach each other along the solid
gray line and separate along the dotted
line. Particle 1 is initially at the top
right. Corresponding positions are
marked by dots of matching color.

Outline

In Section 5.2 we study the collision of spherical hard-ball particles
that only interact by a force kick vertical to the surfaces at their con-
tact point when they touch. Then we compare the Coulomb case
and the force-kick case in order to explore which features of the
outgoing trajectories are provided by conservation laws, irrespective
of the type of interaction. In Section 5.3 we discuss the forces of
an extended object (Earth) on a point particle moving without fur-
ther interactions in its gravitational field. In Section 5.4 we further
explore the impact spatial extension of solid particles: How does
their shape matter? How are particles set into spinning motion,
and how does the spin evolve? Section 5.5 addresses the motion of
particles with internal degrees of freedom. Finally, in Section 5.6 we
wrap up the findings of this section by discussing the reflections of
balls: How do balls pick up spin in collisions? What happens upon
multiple collisions in a channel with parallel walls? How should
one return a ping-pong ball arriving with severe spin? How much
energy is dissipated into vibrations of the ball? check and update upon

finalizing Chapter

5.1.1 Self Test

0 2 4 6 8

2EL 2

µC 2

0

π/6

π/3

π/2

θ

Figure 5.6: Scattering angle θ for a
collision of two particles that interact
by a repulsive Coulomb potential..

Problem 5.1. Scattering angle for the Coulomb potential

For the choice of coordinates adopted in Figures 5.4 and 5.5
the trajectories have an asymptotic angle θ with the x̂-axis when
they approach each other and they separate with an asymptotic
angle −θ.

a) Show that

tan2 θ =
2 E L2

µ C2 (5.1.1)

b) The parameter dependence of the scattering angle θ is shown
in Figure 5.6. What happens to the line for very large values of
2 E L2/µ C2?

© Jürgen Vollmer — 2021-10-07 04:51:07+02:00



138 5. Impact of Spatial Extension

c) How would the scattering trajectories in Figure 5.5 look like for
θ = π/2? Does this comply with your finding in b)?

5.2 Collisions of hard-ball particles

We consider two spherical particles and denote their radii and
masses as Ri and mi with i ∈ {1, 2}, respectively. At the initial time
t = t0 the particles motion is not (yet) subjected to a force such that

qi(t) = qi(t0) + vi (t− t0) , for i ∈ {1, 2}

5.2.1 Center of mass motion

Analogous to the treatment of the Kepler problem, we decompose
the motion of the particles into a center-of-mass motion Q(t) and
a relative motion r(t). Introducing the notion M = m1 + m2 the
former amounts to

M Q(t) = m1 q1(t) + m2 q2(t) = M Q(t0) + Q̇(t0) (t− t0) (5.2.1)

Since there are not external forces the total momentum M Q̇(t) is
conserved (cf. Theorem 3.5) such that Equation (5.2.1) applies for
all times – even when the particles collide. A collision will therefore
only impact the evolution relative to the center of mass. Equa-
tion (5.2.1) holds for all times.

5.2.2 Condition for collisions

To explore the relative motion we write qi = Q + xi, and we intro-
duce the momentum p = m1 ẋ1 = −m2 ẋ2 and the distance coor-
dinate r = x1 − x2. With these notations the angular momentum of
the relative motion reads L = r × p, and it is conserved when the
collision force is acting along the line connecting the centers of the
particles (cf. Theorem 3.6 and the discussion of Kepler’s problem
in Section 4.7). Moreover, r(t) is the only time-dependent quantity
in this equation because L and p are preserved. Let us first assume
that the particles do not collide, and that the closest approach oc-
curs at some time tc to a distance rc = |r(tc)|. Then the vectors r(tc)

and p will be orthogonal, and |L| = rc |p|. By the properties of the
vector product the distance of the closest encounter will always be

rc =
|L|
|p| =

∣∣m1q1(t0)× q̇1(t0) + m2q2(t0)× q̇2(t0)−MQ(t0)× Q̇(t0)
∣∣

m1
∣∣q̇1(t0)− Q̇

∣∣
and there will be no collision if rc > R1 + R2.

5.2.3 The collision

Conservation of angular momentum implies that the relative mo-
tion of the particles proceeds in a plane. When they collide they

© Jürgen Vollmer — 2021-10-07 04:51:07+02:00



5.2. Collisions of hard-ball particles 139

approach until, at time tc, they reach a position r(tc) where their
distance is |r(tc)| = R1 + R2. We denote the direction of r at this
time as β̂ and augment it by an orthogonal direction α̂ such that
(α̂, β̂, L̂ = L/ |L|) form an orthonormal basis. We select the origin
of the associated coordinate system such that

p = (p · α̂) α̂ + (p · β̂) β̂

At the collision there is a force F = F β̂ acting on the particles, that
acts in the direction of the line r(tc) connecting the particles. Hence,

1. the momentum component in the α̂ direction is preserved
during the collision because there is no force acting in this direction

2. the collision in β̂ direction proceeds like a one-dimensional
collision, Example 3.12, with the exception that one must retrace
the argument using the center-of-mass frame, as discussed in Prob-
lem 4.29.

Consequently, we obtain the following momentum p′ after the
collision

p′ = (p · α̂) α̂− (p · β̂) β̂ = p− 2 (p · β̂) β̂

5.2.4 Self Test
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Figure 5.7: Collision of two hard-ball
particles with radii R1 and R2: (top)
Trajectory shape. The labels denote
the ratios (p · α̂)/(p · β̂). (bottom)
Scattering angle θ.

Problem 5.2. Scattering angle for hard-ball particles

In Figure 5.7 we show shows the trajectory shape and the scatter-
ing angle for hard-ball scattering.

a) What is the dimensionless length scale adopted to plot the trajec-
tory shapes?

b) What is the impact of the angular momentum on the trajectory
shape?
What is the impact of the energy?

c) Verify that

sin2 θ =
L2

2µ E (R1 + R2)2 (5.2.2)

and that this dependence is plotted in the lower panel of Fig-
ure 5.7.

d) What happens when L2 > 2µ E (R1 + R2)
2?

Which angle θ will one observe in that case?

� e) Show that Equations (5.1.1) and (5.2.2) agree when one identifies
the length scale R1 + R2 of the hard-ball system with the dis-
tance Reff of symmetry point of the cone section from the origin,
i. e. with the mean value of the two intersection points with the
x̂-axis

Reff =
1
2

(
R0

1 + ε
+

R0

1− ε

)
=

ε R0

1− ε2

Can you provide a physical argument why that must be true?

© Jürgen Vollmer — 2021-10-07 04:51:07+02:00



140 5. Impact of Spatial Extension

Problem 5.3. Reflection from a wall

Show that a particle reflected at a flat wall follows the same
trajectory as a particle that collides with a particle of the same mass
and at a position obtained as mirror image of the particle.

Problem 5.4. Collisions on a billiard table

The sketch to the right shows a billiard table. The white ball
should be kicked (i.e. set into motion with velocity v), and hit the
black ball such that it ends up in pocket to the top right.

What is tricky about the sketched track?
What might be a better alternative?

5.3 Volume integrals — A professor falling through Earth

The center of mass of a set of particles was defined in Equation (4.6.1)
as a weighted sum of their positions. Now we consider an extended
object that is characterized by a mass distribution ρ(q). We will
always assume that the distribution varies slowly in space in side
the object. Outside it vanishes. The weighted sum over the particle
positions will then be generalized to become a volume integral.

5.3.1 Determine volume and mass by volume integrals

In Section 3.4.2 we introduced line integrals by dividing the integra-
tion path into small steps {si}, and approximating the integral as a
sum over the contributions of the individual pieces. The definition
of a volume integrals proceeds analogously. Now, we integrate over
a region R ⊂ RD, and we start by partitioning this region into small
volume elements ∆Vi.

Definition 5.1: Partition of Space

A set {∆Vi , i ∈ I} is a partition of a region R ⊂ RD iff

a) ∀i ∈ I : ∆Vi ⊂ R,

b) ∀i, j ∈ I : i 6= j⇒ ∆Vi
⋂

∆Vj = ∅,

c) ∀x ∈ R ∃i ∈ I : x ∈ ∆Vi.

Definition 5.1 entails that the union of the elements of the parti-
tion amounts to the region R,

R =
⋃
i∈I

∆Vi

Let now V = ‖R‖ denote the volume of the region R. For every
partition it can be written as

V = ‖R‖ = ∑
i∈I

‖∆Vi‖

In the limit of small volume elements we write this sum as a

© Jürgen Vollmer — 2021-10-07 04:51:07+02:00



5.3. Volume integrals — A professor falling through Earth 141

Definition 5.2: Volume Integral

The volume integral F of a function f (q) over a region
R ⊂ RD is defined as follows as limit of a sum over the
elements of a partition,1 {∆Vi , i ∈ I} of R and points
qi ∈ ∆Vi,

F =
∫

R
dDq f (q) = lim

‖∆Vi‖→0
∑
i∈i

‖∆Vi‖ f (qi)

For Cartesian coordinates (q1, q2, . . . , qD) the integration vol-
ume element is dDq = dq1 · · ·dqD and the integral amounts
to

F =
∫

I1

dq1

∫
I2(q1)

dq2 · · ·
∫

I(q1,··· ,qD−1

dqD f (q1, · · · , qD)

where the boundaries of the integrals must be chosen such
that (q1, · · · , qD) ∈ R.

1 Considerable care is taken in calcu-
lus courses to explore under which
conditions the limit exists and is well-
defined. Here, we assume that the
function f varies smoothly inside the
region. In other words, we assume that
for all partition elements the difference
| f (q)− f (qi)|≪ | f (qi)| for all points
q ∈ ∆Vi .

Remark 5.2. For the function f (q) = 1 the volume integral provides
the D-dimensional volume of the region R. �

The mass m(V) contained in a volume V can be expressed as a
volume integral

m(V) =
∫
V

d3q ρ(q) =
∫
V

dx dy dz ρ(x, y, z)

=
∫ xmax

xmin

dx
[∫ ymax(x)

ymin(x)
dy

(∫ zmax(x,y)

zmin(x,y)
dz ρ(x, y, z)

)]
where the integration runs over all q ∈ V , a volume with smallest
x-value xmin and largest x-value xmax, its y-values between ymin(x)
and ymax(x) for a given x, and z-values between zmin(x, y) and
ymax(x, y) for given x and y.

Remark 5.3. We adopt the convention that the mass density is zero
outside an object. As a consequence its total M mass is obtained as

M =
∫

R3
d3q ρ(q)

The boundaries of the integral that define the shape of the body
have been absorbed into the definition of the density. �

We illustrate the steps taken to evaluate a volume integral by
calculating the area and volume of some simple geometric shapes:

Example 5.1: Surface areas of rectangles and circles

a) The surface area of the rectangle R ⊂ R2 with (x, y) ∈ R
iff 0 ≤ x ≤ a and −b < y < b is

‖R‖ =
∫

R
d2q =

∫ a

0
dx

∫ b

−b
dy = 2ab

b) The surface area of the circle C with center at the origin

© Jürgen Vollmer — 2021-10-07 04:51:07+02:00



142 5. Impact of Spatial Extension

and radius R is

‖C‖ =
∫

C
d2q =

∫ R

−R
dx

∫ √R2−x2

−
√

R2−x2
dy = 2

∫ R

−R
dx
√

R2 − x2

= 2 R2
∫ π/2

−π/2
dθ cos θ

√
1− sin2 θ = 2 R2

∫ π/2

−π/2
dθ cos2 θ

= R2
∫ π/2

−π/2
dθ
(
cos2 θ + sin2 θ

)
= π R2

The choice of the integration boundaries is illustrated in
Figure 5.8. Upon moving to the second line of this equa-
tion we substituted x = R sin θ, and in the step to the
third line we made use of the π-periodicity of cos2 θ.

Figure 5.8: Notations adopted in
the surface integral performed in
Example 5.1b).

Example 5.2: Volume of a sphere

The volume of a three-dimensional sphere S with center at
the origin and radius R is

‖S‖ =
∫

S
d2q =

∫ R

−R
dx

∫ √R2−x2

−
√

R2−x2
dy

∫ √R2−x2−y2

−
√

R2−x2−y2
dz

=
∫ R

−R
dx π

(√
R2 − x2

)2
= π

∫ R

−R
dx
(

R2 − x2
)

= π

(
2 R3 − 2

3
R3
)
=

4 π

3
R3

Upon moving to the second line we observed that the y and
z integrals agreed with the ones performed to evaluate the
are of a circle, cf. Example 5.1b).

5.3.2 Change of variables

The shape of a circle with center at the origin and radius R can
much easier be described by polar coordinates rather than Cartesian
coordinates:2 {(ρ, θ) ∈ R+ × [0, 2π) : ρ < R}. To take advantage2 In order to avoid confusion with

the radius of the circle the radial
coordinate of the polar coordinates is
here denoted as ρ.

of this simplification we have to introduce a transformation of the
integration coordinates from Cartesian to polar coordinates. A
heuristic guess based on Figure 5.9 suggests that a volume element
dx dy at the position (x, y) = (ρ cos θ, ρ sin θ) should be replaced
by ρ dθ dρ. One readily verifies that this is a reasonable choice by
working out the area of the circle with radius R:

Figure 5.9: Integration volume for
polar coordinates.

‖C‖ =
∫

C
d2q =

∫ R

0
dR

∫ 2π

0
dθ R = π

∫ R

0
dR 2 R = π R2

with a much easier calculation than in Example 5.1b).
Formally the change of the integration volume is determined

by generalizing the substitution rule for integrals, as illustrated in
Figure 3.13 for one dimensional integrals. In this rule the derivative
f ′(x) account for the change of the width of the rectangles that are
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5.3. Volume integrals — A professor falling through Earth 143

summed to approximate the integral. In order to generalize this
idea we recall from the discussion of line integrals that

dq
dR

dR =

(
cos θ

sin θ

)
dR and

dq
dθ

dθ =

(
−R sin θ

R cos θ

)
dR

In general the derivatives involved in the definition of the length
elements do not have unit length and they need not be orthogonal.
Their length reflects the change of the length unit that we also en-
counter in the one-dimensional case. The angle between the vectors
indicates that in two-dimensions one can also partition space by
using parallelograms rather than rectangle. The unit area for the
integration will always be the area spanned by the two vectors.

In D dimensions the integration volume is defined by the volume
spanned by the D derivative vectors of the position vector q with
respect to the new coordinates. It is commonly expressed in terms
of the Jacobi determinant. We first introduce the notion of a

Definition 5.3: Determinant

The determinant of a matrix amounts to the volume spanned
by its column vectors. For a matrix A it is denoted as det A.

Remark 5.4. The determinant of 2× 2 and 3× 3 matrices takes the
form of the (sum of) products along the diagonals from left to right
minus the (sum of) products of the diagonals from right to left,

det

(
a11 a12

a21 a22

)
= a11 a22 − a12 a21

det

a11 a12 a13

a21 a22 a23

a31 a32 a33

 = a11 a22 a33 + a12 a23 a31 + a13 a21 a32

− a11 a23 a32 + a22 a31 a13 + a33 a12 a21

These expressions are entailed by the geometric interpretation of
the cross product in Section 2.9.2. �

Without proof we provide the following general rule for calculat- provide a reference

ing determinants

Theorem 5.1: Recursive calculation of determinants

Let A be a D × D matrix with D ∈ N and entries aij where
i, j ∈ {1, · · · , D}. For D = 1 we define det A = a11. For D > 1
we introduce the (D − 1) × (D − 1) submatrices Aij that are
obtained from A by dropping its ith row and jth column.
The determinant of A can then be calculated by a recursion
that either works along a row j or a column k of A,

det A =
D

∑
j=1

(−1)j+k det Ajk =
D

∑
k=1

(−1)j+k det Ajk
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144 5. Impact of Spatial Extension

Altogether this allows us to identify the factor involved in a
change of the integration variables as the Jacobi determinant.

Theorem 5.2: Jacobi matrix and determinant

We consider a change of integration variables from the co-
ordinates x = (x1, x2, · · · , xD) to (y1, y2, · · · , yD) that is
defined by the functions x1(y), x2(y), · · · , xD(y). Then the
integration volume changes as

dx1 · · ·dxD = det


∂x1
∂y1

∂x1
∂y2

. . . ∂x1
∂yD

∂x2
∂y1

∂x2
∂y2

. . . ∂x2
∂yD

...
...

. . .
...

∂xD
∂y1

∂xD
∂y2

. . . ∂xD
∂yD

dy1 · · ·dyD

The matrix involved in this transition is called the Jacobi ma-
trix of the transition, and the determinant is called the Jacobi
determinant.

Example 5.3: Integration volumes

a) polar coordinates (x, y) = ρ (cos θ, sin θ)

transform as

dx dy = det

(
cos θ −ρ sin θ

sin θ ρ cos θ

)
dρ dθ = ρ dρ dθ

b) cylindrical coordinates (x, y, z) = (ρ cos θ, ρ sin θ, z)

transform as

dx dy dz = det

cos θ −ρ sin θ 0
sin θ ρ cos θ 0

0 0 1

 dρ dθ dz = ρ dρ dθ dz

c) spherical coordinates (x, y, z) = ρ (sin θ cos φ, sin θ sin φ, cos θ)

transform as

dx dy dz = ρ2 sin θ dρ dθ dφ = ρ2 dρ dcos θ dφ

5.3.3 The force of an extended object (Earth)
on a point particle (professor)

As a first step towards discussing extended objects we consider
the force exerted by an extended object on a point particle. The
force is obtained by integrating the forces originating from the mass
elements of the body,

Ftot =
∫

R3
d3q F(q)

where q is the vector from the position of the point particle to the
mass element that is exerting the force. This expression involves
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the vector-valued generalization of volume integrals. It should
be interpreted component-wise, stating the that the components
Ftot,i = êi · Ftot of the total force in some orthonormal base êx, êy, êz

amount to

êi · Ftot =
∫

R3
d3q

(
êi · F(q)

)
or explicitly Ftot,x =

∫
R3

dx dy dz Fx(x, y, z)

Ftot,y =
∫

R3
dx dy dz Fy(x, y, z)

Ftot,z =
∫

R3
dx dy dz Fz(x, y, z)

The consequences can nicely be explored when an evil witch
switches off electromagnetic interactions between a physics profes-
sor and its environment. In the absence of interaction with other
matter the professor will freely fall towards the center of Earth,
accelerated by a force that arises as sum of the mass elements con-
stituting Earth (see Figure 5.10). For the professor of mass m at
position qP and the mass element at position qe this force amounts
to F(qP, qe) = −∇(m ρ(qe) G)/ |qP − qe|. For simplicity we assume
that Earth is spherical and that its mass density takes a uniform
value ρ = 3 ME/4π R3. Then, the force on the professor takes the
form

Figure 5.10: Initially positioned at
the upper right (yellow), the professor
will fall down (red), and eventually
pop out at the other side and return
(green).

Ftot = −
∫

R3
d3q∇m ρ(qe) G

|qP − qe|
(5.3.1)

= −m ρ G ∇
∫

Earth
d3q

1√
q2

P + q2
e − 2 qP qe cos θ

(5.3.2)

where θ is the angle between the two vectors |qP| and |qe|, while qP

and qe denote their respective length.
The integral is best evaluated by adopting a spherical coordi-

nates (r, θ, φ) for the integration where r runs from zero to the
Earth radius R, the angle θ from zero to π, and φ all around from
zero to 2π,

Ftot = −m ρ G ∇
∫ R

0
dr r2

∫
−1

1d cos θ
∫ 2π

0
dφ

1√
q2

P + r2 − 2 qP r cos θ

= −2π m ρ G ∇
∫ R

0
dr r2

[
−1
qP r

√
q2

P + r2 − 2 qP r cos θ

]cos θ=1

cos θ=−1

= −2π m ρ G ∇
∫ R

0
dr

r
qP

(
|qP + r| − |qP − r|

)
= −4π m ρ G ∇

[
1

qP

∫ qP

0
dr r2 +

∫ R

qP

dr r
]

= m ρ G ∇
[

2πR2 − 2π

3
qP · qP

]
= −m g

R
qP

In the last step we used that the acceleration on the Earth surface
is g = MG/R = 4π ρ R2 G/3. The professor moves under the
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influence of a harmonic central force, as studied in Problems 4.19,
4.21 and 4.30! After a while (cf. Problem 5.12) he reappears at the
very same spot where he started, except that Earth moved on while
he was under way.

5.3.4 Self Test

Problem 5.5. Area of a parallelogram

Determine the area of the parallelogram defined by the points
(0, 0), (1, 3), (4, 4), (2, 1) by

a) performing the volume integral,

b) determining the area spanned by the two vectors that define the
sides starting at the corner (0, 0).

Problem 5.6. Volume of a solid of revolution

A solid of revolution is obtained by rotating some function f (x)
around the x axis. For instance, the function

√
R2 − x2 with −R ≤

x ≤ R describes a sphere of radius R. The volume V of a solid of
revolution are given by the integral

V = π
∫

dx ( f (x))2 (5.3.3)

a) Sketch the function f (x) =
√

R2 − x2 and verify that the solid of
revolution is indeed a sphere.

b) Determine the volume of the sphere based on the given equation.
Compare you calculation and the result to the calculation given
in Example 5.2.

c) Show that the volume integral for a solid of revolution provides
Equation (5.3.3) when one adopts cylindrical coordinates.

Problem 5.7. Volume of a cone

Determine the volume of a cone with symmetry axis along the z-
axis, that stands on the (x, y)-plane where it traces a circle of radius
R, while its vertex is at (0, 0, H).

a) Perform the volume integral with Cartesian coordinates.

b) Perform the volume integral with cylindrical coordinates.

Problem 5.8. Coordinate transformation to cylindrical coordinates

Determine the Jacobi matrix and its determinant for the transfor-
mation from Cartesian to spherical coordinates, cf. Example 5.3c).
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5.4 Center of mass and spin of extended objects

We consider a setting where there are only long distance force like
gravity and no collisions between objects. The explicit calculation
for the case of gravity in the previous section entails that in such a
setting the force exerted by a planet on a point particle is identical
to the one exerted by a mass point of identical mass that is located
at the center of the planet (see also Problem 5.12e). In the present
section we therefore explore which effects the force of a point parti-
cle exerts on an extended body.

5.4.1 Evolution of the center of mass

The force on the body is described by an integral that takes exactly
the same form as Equation (5.3.1), where now q is a vector from the
point particle to a volume element of the body.

The integral is best evaluated by introducing a coordinate frame
ê1(t), . . . , ê3(t) with orientation fixed in the rotating body and ori-
gin in the body’s center of mass Q = (Qx, Qy, Qz). In immediate
generalization of Equation (4.6.1) it is located at

Q =
1
M

∫
R3

d3q ρ(q) q ⇔

Qx

Qy

Qz

 =

M−1
∫

R3 d3q ρ(q) qx

M−1
∫

R3 d3q ρ(q) qy

M−1
∫

R3 d3q ρ(q) qz


A given mass element will always have the same coordinates

(r1, r2, r3) with respect to the body-fixed basis, and in a stationary
coordinate frame this position can be specified as

q(t) = Q(t) +
3

∑
i=1

ri êi(t)

Remark 5.5. The vector r describes the position (r1, . . . , r3) in the
body with respect to its center of mass. When the body rotates r
will evolve in time. However, the coordinates (r1, . . . , r3) are con-
stant numbers describing the shape of the body when they are
calculated in a coordinate system with base vectors {ê1, . . . , ê3}
fixed in the body and origin in its center of mass. Hence,

r =
3

∑
i=1

ri êi(t) and ṙ =
3

∑
i=1

ri ˙̂ei(t) (5.4.1)
(5.4.2)

�

We note that this choice of coordinates entails

M Q =
∫

R3
d3q ρ(q) q =

∫
R3

d3q ρ(q)
(
Q(t) +

3

∑
i=1

ri êi(t)
)

= Q(t)
∫

R3
d3q ρ(q) +

3

∑
i=1

êi(t)
∫

R3
d3q ρ(q) ri

⇒ 0 =
∫

R3
d3q ρ(q) ri =

∫
R3

d3r ρ(r) ri (5.4.3)

The latter equality holds because a shift of the origin by Q and
rotation of the coordinate axes do not affect the integration volume
(i. e. the Jacobi determinant of the transformation is one).
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The acceleration q̈(t) takes the form

q̈(t) = Q̈(t) +
3

∑
i=1

ri ¨̂ei(t)

and the force on the spatially extended body results in

Ftot =
∫

R3
d3q ρ(q) q̈(t)

=
∫

R3
d3q ρ(q)

(
Q̈(t) +

3

∑
i=1

ri ¨̂ei(t)

)

= M Q̈ +
3

∑
i=1

¨̂ei(t)
∫

R3
d3r ρ(r) ri = M Q̈ (5.4.4)

The overall force Ftot results in an acceleration of the center of mass
that behaves exactly as for a point particle described in the previous
chapter. Thus, we have justified the assumption of point particles
adopted in Chapter 4.

5.4.2 Angular momentum and particle spin

Let us now explore the angular momentum of a spatially extended
particles. To this end we introduce the decomposition q = Q + r
into the definition

Ltot =
∫

R3
d3q ρ(q) (q× q̇) =

∫
R3

d3q ρ(q)
(
(Q + R)× (Q̇ + ṙ)

)
=
∫

R3
d3q ρ(q)

(
Q× Q̇

)
+
∫

R3
d3q ρ(q)

(
Q× ṙ

)
+
∫

R3
d3q ρ(q)

(
r× Q̇

)
+
∫

R3
d3q ρ(q)

(
r× ṙ

)
= M Q× Q̇ + Q× d

dt

∫
R3

d3q ρ(q)r(t)− Q̇×
∫

R3
d3q ρ(q)r(t)

+
∫

R3
d3q ρ(q)

(
r× ṙ

)
The first summand amounts to the angular momentum of the cen-
ter of mass, LCM = M Q × Q̇. The second and the third term
vanish due to Equation (5.4.3). The forth term can be simplified by
performing the integration in the comoving coordinate frame. The
coordinate transformation involves a translation by Q and rotation.
Hence, the Jacobi determinant is one, and the term only depends on
the local coordinates r. It is denoted as particle spin.

Definition 5.4: Particle Spin

The total angular momentum Ltot of a particle can be decom-
posed into the angular momentum LCM of its center-of-mass
motion, and its spin S around the center of mass, Q,

Ltot = LCM + S (5.4.5a)

with LCM = M Q× Q̇ (5.4.5b)

S =
∫

R3
d3r ρ(r1.r2.r3) r× ṙ (5.4.5c)
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Remark 5.6. The decomposition of the total angular momentum
has important consequences in collisions. For spatially extended
objects the conservation of angular momentum only implies that
the sum of the spin and the angular momentum of the center-of-
mass motion are conserved. As a consequence, the incoming and
outgoing angle can differ for a reflection at a wall, and the center
of mass of the particle can even move in different planes before
and after the collision. This will be demonstrated in the worked
example in Section 5.6. �

The discussion of particle spin can further be simplified by ex-
pressing the rotation of the body by the vector Ω that indicates the
rotation axis and angular speed |Ω|, and exploring that the relative
positions of the mass elements in the body do not change upon
rotation. Due to Equation (5.4.1) we have

S =
∫

R3
d3r ρ(r) r× ṙ

=
3

∑
ij=1

r̂i × ˙̂rj

∫
d3r ri rj ρ(r) =

3

∑
ij=1

r̂i × ˙̂rj tij

with tij =
∫

R3
dr1 dr2 dr3 ri rj ρ(r1, r2, r3)

Note that the coefficients tij are properties of the body. They charac-
terize the mass distribution of the body, and do not depend on the
motion. The situation simplifies further when one observes that the
velocities ˙̂rk are unit vectors that must be orthogonal to r̂k and to
Ω.3 Hence, the velocities can be expressed as 3 Recall that r̂k · r̂k = 1 such that

2 r̂k · ˙̂rk = 0, and by construction the
motion of mass elements is orthogonal
to the axis of rotation.˙̂rk = r̂k ×Ω

With this notations the kth component of S can be expressed as check signs!

Sk = r̂k · S =
3

∑
ij=1

r̂k ·
(
r̂i × (r̂j ×Ω)

)
tij

=
3

∑
ij=1

r̂k ·
(
r̂j (Ω · r̂i)−Ω (r̂i · r̂j)

)
tij

=
3

∑
ij=1

(
δjk Ωi −Ωk δij

)
tij

=
3

∑
i=1

Ωi

3

∑
j=1

δjk tij −Ωk

3

∑
ij=1

δijtij

=
3

∑
i=1

Ωi

(
tik − δik ∑

j
tjj

)

This amounts to a multiplication of the vector Ω written in terms of
its components Ωi. We summarize this observation in the following
definition
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Definition 5.5: Tensor of Inertia

The rotation of a solid body with a fixed mass distribution
ρ(r) can be described by a vector Ω that defines the rotation
axis and speed. It is related to the spin S of the body by
multiplication with the tensor or inertia

S = Θ Ω ,

i. e. a symmetric matrix with components

Θij =
∫

R3
dr1 dr2 dr3

(
ri rj −

3

∑
k=1

rk rk

)
ρ(r1, r2, r3)

Example 5.4: Intertial tensor for a solid ball

For a ball of radius R with uniform mass density ρ the
tensor of inertia has the following entries for its diagonal
elements

Θii =
∫

R3
dr1 dr2 dr3

(
ri ri −

3

∑
k=1

rk rk

)
ρ(r1, r2, r3)

We evaluate the integral in spherical coordinates with r = |r|
and θ denoting the angle with respect to the i-axis, which we
denote as z-axis in the following. Hence,

(rx, ry, rz) = r (sin θ cos φ, sin θ sin φ, cos θ) ,

and

Θii = ρ
∫ R

0
dr r2

∫ 1

−1
d cos θ

∫ 2π

0
dφ (r2

x + r2
y)

= 2 π ρ
∫ R

0
dρ r2

∫ 1

−1
d cos θ r2 sin2 θ

= 2 π ρ

(∫ R

0
dρ r4

) (∫ 1

−1
d cos θ

(
1− cos2 θ

))
= 2 π ρ

R5

5

(
2− 2

3

)
=

2
5

M R2

Moreover, for the off-diagonal element θik we align the k-axis
with φ = 0 and find

Θik = ρ
∫ R

0
dr r2

∫ 1

−1
d cos θ

∫ 2π

0
dφ rx rz

= ρ
∫ R

0
dr r2

∫ π

0
dθ sin θ

∫ 2π

0
dφ r2 sin θ cos θ

= 2π ρ
R5

5

∫ π

0
dθ sin2 θ cos θ = 0

since sin2 θ cos θ is antisymmetric with respect to π/2.

The finding that the off-diagonal elements of the tensor of inertia
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vanish is no coincidence. In ?? we will show that this happens
whenever the mass distribution features a symmetry in the ik plane.
Moreover, the ...theorem of linear algebra states that one can always fill in name and refer-

encechoose coordinates where all off-diagonal elements of the tensor of
inertia vanish.4 The particular axes where this happens are called 4 For a general matrix this is not true.

It is a consequence of the fact that Θ
is symmetric, i. e. Θij = Θji for all its
entries.

the axis of inertia of a body.

check wording

Definition 5.6: Axis of inertia

For each solid body there is a choice of internal coordinate
axes r̂i, i = 1, · · · , 3 where the tensor of inertia takes a di-
agonal form. The directions selected by the axis are called
axes of inertia, and the related diagonal entry of the matrix of
inertial is denoted as moment of inertia.

Remark 5.7. If the mass distribution of the body obeys reflection
or rotation symmetry, the axes of inertia are invariant under the
symmetry transformation. �

5.4.3 Time evolution of angular momentum and particle spin

The angular momentum LCM of its center-of-mass motion behaves
in exactly the same way as for point particles.

The spin changes in time according to the differential equation

Ṡ =
∫

R3
d3r ρ(r1, r2, r3) r× r̈

=
∫

R3
d3r ρ(r1, r2, r3) r× q̈ =

∫
R3

d3r r× F(Q + r)

In order to arrive at the second line, we noted that r̈ = q̈ − Q̈,
and that the integral for the Q̈ contribution vanishes because∫

R3 d3r ρ(r1, r2, r3) r = 0. Moreover, it is understood that the force F
is zero for coordinates r outside the body.

Definition 5.7: Particle Torque

When the part r of a body is subjected to force F then its
spin S is changing due to a torque M

Ṡ = M =
∫

body
d3r r× F(Q + r) (5.4.6)

Remark 5.8. Note that the torque is denoted by the letter capital M
that is also frequently used for the mass. Nevertheless, there is no
immediate risk that they are mixed up: The torque, M, is a vector,
while the mass, M, is a scalar. To further reduce the risk we will
denote masses by a small letter m, when mass and torque appear in
a problem. �

In general the force F(Q + r) can only be evaluated after the CM
motion has been determined. From the point of view of the rotat-
ing body it is a time-dependent force. This renders the motion of a
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particle in an inhomogeneous force field to be a very complex prob-
lem. However, the gravitational force on small spatial distances,
where the gravitational acceleration g takes a constant value, forms
a noticeable exception.

Theorem 5.3: Spinning motion and gravity

When an extended body moves subject to a spatially uni-
form acceleration g, then its center of mass follows a free-
flight parabola and its spin is preserved.

Proof. The statement about the center-of-mass motion follows from
Equation (5.4.4).

Conservation of the spin is due to∫
d3r r×

(
ρ(r1, r2, r3) g

)
=

(∫
d3r ρ(r1, r2, r3) r

)
× g

= 0× g = 0

Rather than in the free flight of a body, one also often encounters
a spinning body that is fixed at some point. Besides gravity there
is one additional force acting on the body that is constraining its
motion. When this force acts only on the center of mass, then it
has no effect on the spin and only changes the evolution of the
center of mass. When it acts on another point on the body, then the
total angular momentum is no longer conserved. This happens for
instance for a spinning top where one fixes a point on its axis.

add:
discussion of motion with additional reference point
Euler angles

5.4.4 Self Test

add problems:
moments of inertia
ruler pendulum
suspension bridge
torque on triangle/tetraeder

5.5 Bodies with internal degrees of freedom: Revisiting mobiles

In Section 2.10 we worked out the positions of masses for a mobile
where all masses are the same and where all sticks are straight.
It is worth while to revisit this problem from a more advanced
mathematical perspective.

5.5.1 Mobile at rest

The mobile is at rest when its center of mass does not move, Q̇ =

0, and when it has not spin. It remains at rest, when it does not
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experience a total force that will induce a motion of the center of
mass, and no torque that induces spin.

According to Equation (5.4.4) the center of mass can remain at
rest when the total force Ftot vanishes. This implies that the force Fs

at the suspension point of the mobile must balance the total weight
of the mobile M g,

0 = Ftot = Fs + M g ⇒ Fs = −M g

According to Equation (5.4.6) the mobile will not topple (i. e. pick
up or change its spin) when M = 0, and in Section 5.4.3 we
pointed out that the gravitational force does can not change the
spin. Hence, we are left with the force Fs at the suspension point
qs = Q + rs,

M = rs × Fs

It vanishes iff the force Fs acts parallel to the direction rs from the
position of the center of mass to the suspension point. Since Fs acts
antiparallel to gravity this entails that the center of mass of the mo-
bile must either be located directly below or above the suspension
point, irrespective of the shape of the arms or distribution of the
masses.

The mobile is not a stiff body. Rather its arms can move with
respect to each other. We assume again that the mass of the arms
may be neglected. The mass of the mobile is concentrated in its N
weights that reside at the positions qν, ν = 1, · · · , N. The position
of the suspension will be denoted as q0. Let us attach the mobile
to a spring so that we can explicitly measure the suspension force.
Clearly the forces on the mobile are conservative, such that there is
a potential Φ(q0, q1, q2, · · · , qN). The force F(ν) acting on particle ν

(or on the suspension) can then be calculated by taking the deriva-
tives with respect to the coordinates qν = (qν,x, qν,y, qν,z), of the
particle

F(ν) = −∇qν Φ =

−∂qν,xΦ
−∂qν,yΦ
−∂qν,zΦ


When the coordinates are collected into a single vector q = (q0, q1, q2, · · · , qN)

then the mobile is in equilibrium when the q-gradient of Φ(q) van-
ishes, 0 = ∇qΦ(q). However, when taking the partial derivatives
one has to keep in mind that one must not fix the values of the
other coordinates but rather keep in mind the constraints of motion
of the mobile (recall Example 3.7). Alternatively, one can account
for the elasiticity of the cords and bars in the mobile, and the re-
sulting restoring forces to pulling and bending. When also all these
forces are accounted for the stationary point can be found by a
variation principle.

move theory of variations from Chap 6.2 to this point

An more elegant way to deal with this problem will be presented
in Chapter 6. Here we already note that the condition on Φ can be
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interpreted as a multi-dimensional requirement for a stationary
point. The force will be zero, even when Φ(q) takes a maximum.
However, in that case small fluctuations will induce forces that
drive the system away from the stationary point. The mobile will
stay put when Φ(q) takes a minimum. Small perturbations will
then only lead to some wiggling close to the minimum. The mo-
bile can slowly move because there are perturbations to its shape
where all masses stay exactly at the same height. In terms of the
potential this amounts to neutral directions where the potential
is flat. In order to formally underpin this intuition we introduce
multidimensional Taylor expansions.

5.5.2 Multidimensional Taylor expansions

We consider a scalar function Φ : RD → R that assigns a real value
to its arguments x ∈ RD. For instance this may be the potential
energy assigned to a configuration of masses characterized by a
state vector x. We select a reference point x0 and explore how Φ(x)
deviates from Φ(x) for a small changes of the configuration, x =

x0 + ε, i. e. for a small change ε ∈ RD of the configuration. The
multidimensional Taylor expansions states that

Φ(x) = Φ(x0) + (εi ∂i)Φ(x0) +
1
2
(εi ∂i) (εj ∂j)Φ(x0) +

1
3!

(εi ∂i) (εj ∂j) (εk ∂k)Φ(x0) + . . .

Here, εi denotes the i-component of the vector ε with respect to an
orthonormal basis êi, and ∂i is the partial derivative with respect to
the according coordinate xi of x. Moreover, we use the Einstein con-
vention that requires summation over repeated indices, i. e. εi ∂i is
an abbreviation for εi ∂i = ∑i εi ∂i where i runs of the set of indices
labeling the base vectors, and analogous statement hold for (εj ∂j)

and (εk ∂k).

Remark 5.9. ∂jΦ(x0) should be interpreted as

∂jΦ(x0) =
∂

∂xj
Φ(x1, . . . , xj, . . . )

∣∣∣∣∣
x=x0

.

�

For scalar arguments x ∈ R the expression for the multi-
dimensional Taylor expansion reduces to the one for real functions
that we have discussed before.

Proof. For a one-dimensional function f (x) the Taylor expansion
around x0 with x = x0 + ε the expression (εj ∂j) reduces to ε d

dx .
Consequently,

f (x) = f (x0) +

(
ε

d
dx

)
f (x0) +

1
2

(
ε

d
dx

) (
ε

d
dx

)
f (x0)

+
1
3!

(
ε

d
dx

) (
ε

d
dx

) (
ε

d
dx

)
f (x0) + . . .

= f (x0) + ε f ′(x0) +
1
2

ε2 f ′′(x0) +
1
3!

ε3 f ′′′(x0) + . . .

These are the first terms of the 1D Taylor expansion.
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The first terms of the Taylor expansion can also be written in the
form

Φ(x) = Φ(x0) + (ε · ∇)Φ(x0) +
1
2

εT C(x0) ε + . . .

where the matrix C(x0) has the components cij(x0) = ∂i∂jΦ(x0).

Proof. For the first-order term we have

(ε · ∇)Φ(x0) =

(
∑

j
εj ∂j

)
Φ(x0) =

(
εj ∂j

)
Φ(x0)

where the second equality amounts to the simplification of notation
achieved by the Einstein convention.

For the second-order term we have

εT C(x0) ε =
(

ε1 , ε2 , ε3 , . . . ,
)


∂2
1Φ(x0) ∂1 ∂2Φ(x0) ∂1 ∂3Φ(x0) . . .

∂2 ∂1Φ(x0) ∂2
2Φ(x0) ∂2 ∂3Φ(x0) . . .

∂3 ∂1Φ(x0) ∂3 ∂2Φ(x0) ∂2
3Φ(x0) . . .

...
. . .




ε1

ε2

ε3
...


= ∑

jk
εj ∂j ∂kΦ(x0) εk = ∑

jk
(εj ∂j) (εk ∂k) Φ(x0)

=

(
∑

j
εj ∂j

) (
∑
k

εk ∂k

)
Φ(x0) =

(
εj ∂j

)
(εk ∂k) Φ(x0)

where the last equality amounts to the simplification of notation
achieved by the Einstein convention.

For scalar arguments the condition that ∇Φ(x0) = 0 amount to
the requirement that the slope vanishes at an extremum.

When Φ(x) is a potential then the requirement ∇Φ(x0) = 0
amounts to the requirement that the force F(x) vanishes at the
position x0,

F(x0) = −∇Φ(x0) = 0

Hence, we say that the function Φ(x) has a stationary point at x0

when ∇Φ(x0) = 0. This underpins the heuristic discussion of the
potential energy of the mobile that we gave above.

In particular Φ(x) has a minimum at x0 iff

• ∇Φ(x0) = 0, and

• all eigenvalues of C(x0) are positive.

Proof. We explore how Φ(x0) changes when one considers a point
x = x0 + ε in the vicinity of x0, where we express the deviation in
the orthonormal basis spanned by the eigenvectors êi of C. Adopt-
ing Einstein notation we have

ε = εi êi

⇒ εT C ε = εi êi ·
(
Cεk êk

)
= εi êi ·

(
λkεk êk

)
= λkεk εi êi · êk = λkεk εi δik = λkεk εk

such that

Φ(x0 + ε) = Φ(x0) + εk · ∂kΦ(x0) +
1
2

λkεk εk
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1. Assume that ∂kΦ(x0) 6= 0 for some coordinate k. We will
then choose the orientation of the associated unit vector such that
∂kΦ(x0) = m > 0 and consider a displacement ε = ε êk. The change
of the value of Φ(x0) amounts then to

Φ(x0 + ε êk)−Φ(x0) = m ε +
λk
2

ε2 + · · · = ε

(
m +

λk
2

ε + . . .
)

For |ε| < 2m/|λk| the expression in the bracket takes a positive
value, such that Φ(x0 + ε êk) < Φ(x0) for small negative values of ε.
Consequently, Φ(x0) can only be a minimum when ∇Φ(x0) = 0.

2. Assume that ∇Φ(x0) = 0 and that all eigenvalue λk > 0. For
small ε the change of the value of Φ(x0) amounts then to

Φ(x0 + ε êk)−Φ(x0) '
1
2

λk ε2
k > 0

such that that the function takes values larger than Φ(x0) for all
positions x in the vicinity of x0.

Analogously, to the discussion of the minimum one shows that
Φ(x0) takes a maximum when the gradient vanishes, ∇Φ(x0) = 0
and when all eigenvalue λk take negative values.

The function Φ takes a saddle at x0 when there are positive and
negative eigenvalues and when ∇Φ(x0) = 0.

When some eigenvalues vanish and all others are positive (nega-
tive), then higher-order contributions of the Taylor expansion must
be considered to determine if Φ takes a minimum (maximum).

5.5.3 Self Test

Problem 5.9. Symmetry properties of the second-order contribu-
tions

Verify that the left and the right eigenvectors of C are identical,
up to transposition.

Why does this imply that the normalized eigenvectors span an
orthonormal basis?

Problem 5.10. Equipotential lines for a 2D potential

Consider a potential Φ(x) with x ∈ R2. Sketch the contour lines
of the potential for the following situations

• ∇Φ(x) = (1, 1) and C(x) = 0 for all positions x.

• ∇Φ(1, 2) = 0 and C(1, 2) =

(
1 b
b 1

)
with

1. b > 1,
2. 1 > b > −1,
3. b < −1,
4. b = 1.
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5.6 Worked example: Reflection of balls
turn from question to
worked example We consider the reflection of a ball from the ground, the lower

side of a table, and back. The ball is considered to be a sphere with
radius R, mass m, and moments of inertia mαR2 (by symmetry they
all agree). Its velocity at time t0 will be denoted as ż0. It has no spin
initially. ω0 = 0. The velocity and the spin after the nth collision
will be denoted as żn and ωn. We will disregard gravity such that
the ball travels on a straight path in between collisions.

a) Sketch the setup, and the parameters adopted for the first col-
lision: The positive x axis will be parallel to the floor and the
origin will be put into the location of the collision. Its direction
will be chosen such that the ball moves in the x-z plane. Take
note of all quantities needed to discuss the angular momentum
with respect to the origin.

b) Upon collision there is a force normal to the floor, F⊥, and a
force tangential to the floor, F‖. The spin of the ball will only
change due to the tangential force. The normal force F⊥ acts
in the same way as for point particles. The velocity in vertical
direction reverses direction and preserved its modulus. Denote
the velocity component in horizontal direction as vn = x̂ · ż, and
demonstrate that conservation of energy and angular momentum
imply that

v2
n + αR2ω2

n = v2
n+1 + αR2ω2

n+1

vn − αR ωn = vn+1 − αR ωn+1 .

Show that the tangential velocity component will therefore also
reverse its direction and preserves the modulus,

vn + R ωn = −(vn+1 + R ωn+1) .

� c) Determine v1(v0, ω0) and ω1(v0, ω0) for the initial conditions
specified above. Now, we determine v2(v1, ω1) and ω2(v1, ω1) by
shifting the origin of the coordinate systems to the point where
the next collision will arise, and we rotate by π to account for the
fact that we collide at the lower side of the table. What does this
imply for v1 and ω1? Continue the iteration, and plot v1, v2 and
v3 as function of α. Discuss the result for a sphere with uniform
mass distribution (what does this imply for ω?), and a sphere
with ω = 1/3.
Hint: For the plot one conveniently implements the recursion,
rather than explicitly calculating v3.

d) What changes in this discussion when the ball has a spin ini-
tially?

add:
tennis racket theorem?
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5.7 Problems

5.7.1 Practicing Concepts

Problem 5.11. Determining the volume, the mass, and the center
of mass

Determine the mass M, the area or volume V, and the center of
mass Q of bodies with the following mass density and shape.

a) A triangle in two dimensions with constant mass density ρ =

1 kg/m2 and side length 6 cm, 8 cm, and 10 cm.
Hint: Determine first the angles at the corners of the triangle.
Decide then about a convenient choice of the coordinate system
(position of the origin and direction of the coordinate axes).

b) A circle in two dimensions with center at position (a, b), radius
R = 5 cm, and constant mass density ρ = 1 kg/m2.
Hint: How do M, V and Q depend on the choice of the origin of
the coordinate system?

c) A rectangle in two dimensions, parameterized by coordinates
0 ≤ x ≤W and 0 ≤ y ≤ B, and a mass density ρ(x, y) = α x.
What is the dimension of α in this case?

d) A three-dimensional wedge with constant mass density ρ =

1 kg/m3 that is parameterized by 0 ≤ x ≤ W, 0 ≤ y ≤ B, and
0 ≤ z ≤ H − Hx/W.
Discuss the relation to the result of part b).

e) A cube with edge length L. When its axes are aligned parallel to
the axes x̂, ŷ, ẑ, it density takes the form ρ(x, y, z) = β z.
What is the dimension of β in this case?

Problem 5.12. Return time and position of the professor

a) How long will the professor take to arrive in down-under, and
when will he reappear for the first time close to home?

b) How far will Earth have moved in that time? When this happens
to him in Leipzig, where will he reappear, and when will he see
land again for the next time?

c) Adopt an orthonormal coordinate system (x, y, z) that is co-
rotating with Earth, with origin in the Earth center, z-axis ori-
ented towards the North pole, and x-direction towards the lat-
itude of Leipzig. Sketch the trajectory of the professor in the
(x, y)-plane when he was at rest initially.

d) Observe that the professor is initially standing on the surface of
Earth. What does this imply for his initial velocity? How does
the trajectory change?

e) Let him how start with zero velocity from the Moon surface.
What does this imply for the force law? How does the trajectory
change?

© Jürgen Vollmer — 2021-10-07 04:51:07+02:00



5.7. Problems 159

5.7.2 Proofs

5.7.3 Transfer and Bonus Problems, Riddles
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