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3
Newton’s Laws

In Chapter 2 we explored how several forces that act on a body can
be subsumed into a net total force and torque. The body stays in
rest, say at position q0, when the net force and torque vanish. Now
we explore how the forces induce motion and how the position of
the body evolves in time, q(t), when it is prepared with an initial
condition q(t0) = q0 at the initial time t0.

Photographs of a Tumbling Cat. Nature 51, 80–81 (1894)

At the end of this chapter we will be able to discuss the likelihood
for injuries in different types of accidents, be it men or cat or mice.
Why do the cats go away unharmed in most cases when they fall
from a balcony, while an old professor should definitely avoid such
a fall. As a worked example we will discuss water rockets.

https://doi.org/10.1038/051080a0
https://www.grc.nasa.gov/WWW/K-12/rocket/rktbot.html


60 3. Newton’s Laws

3.1 Motivation and outline: What is causing motion?

Every now and then I make the experience that I sit in a train, read-
ing a book. Then I look out of the window, realize that we are pass-
ing a train, feeling happy that we are further approaching my final
destination; and then I realize that the train is moving and my train
is still in the station. Indeed, the motion of objects in my compart-
ment is exactly identical, no matter whether it is at rest or moves
with a constant velocity; be it zero in the station, at 15 m/s in a
local commuter train, or 75 m/s in a Japanese high-speed train.
However, changes of velocity matter. I forcefully experience the
change of speed of the train during an emergency break, and coffee
is spilled when it takes too sharp a turn.

Modern physics was born when Galileo and Newton formalized
this experience by saying that bodies (e.g. the set of bodies in the
compartment of a train) move in a straight line with a constant
velocity as long as there is no net force acting on the bodies, and
that the change of its velocity is proportional to the applied force.

Outline

In the first part of this chapter we will relate temporal changes of
positions and velocities to time derivatives. Subsequently, we can
formulate equations of motion that relate these changes to forces.
The last part of the chapter deals with strategies to find solutions by
making use of conservation laws.

mass m
position q(t)
velocity q̇(t), v(t)
acceleration q̈(t)
forces Fα(q, t)

Table 3.1: Notations adopted to
describe the motion of a particle. A
single dot denotes the time derivative,
and double dot the second derivative
with respect to time.

3.2 Time derivatives of vectors

In this section we consider the motion of a particle with mass m
that is at position q(t) at time t. Its average velocity vav(t, ∆t) dur-
ing the time interval [t, t + ∆t] is

vav(t, ∆t) =
q(t + ∆t)− q(t)

∆t

When the limit lim∆t→0 vav(t, ∆t) exists1 we can define the velocity1 The discussion of this limit for
general functions is a core topic
of vector calculus. For our present
purpose the intuitive understanding
based on the idea that q(t + ∆t) '
q(t) + ∆t v(t) provides the right idea.
To provide a hint for the origin of the
mathematical subtleties we point out
that the approximation works unless
there is an instantaneous collision
with a wall at some point in the time
interval ]t, t + ∆t[. In physics we try
our luck, and fix the problem when
we face it. Indeed, upon a close look
there are no instantaneous collisions in
physics, see Problem 3.17.

of the particle at time t,

v(t) = lim
∆t→0

q(t + ∆t)− q(t)
∆t

(3.2.1)

The velocity is then the time derivative of the position, and in an
immediate generalization of the time derivative of scalar functions
we also write

q̇(t) = v(t) =
dq(t)

dt

Finally, we point out that the components of the time derivative of a
vector amount to the derivatives of the components.

© Jürgen Vollmer — 2021-10-07 04:50:35+02:00



3.2. Time derivatives of vectors 61

Theorem 3.1: Time derivatives of vectors

Let a(t) be a vector with time-dependent components ai(t)
with respect to orthonormal basis {êi, i = 1 · · ·D} that is
fixed in time.
Then ȧ(t) = ∑i ȧi(t) êi. The components of ȧ(t) amount to
the time derivatives of the components of a(t).

Proof. For each time we have a(t) = ∑i ai(t) êi where it is under-
stood that the sum runs over i = 1 · · ·D. We insert this into the
definition, Equation (3.2.1), of the the time derivative and use the
linearity of scalar products with vectors to obtain

ȧ(t) = lim
∆t→0

a(t + ∆t)− a(t)
∆t

= lim
∆t→0

∑i ai(t + ∆t) êi −∑i ai(t) êi
∆t

= lim
∆t→0

∑
i

êi
ai(t + ∆t)− ai(t)

∆t
= ∑

i
êi lim

∆t→0

ai(t + ∆t)− ai(t)
∆t

= ∑
i

êi ȧi(t)

The subtle step here, from a mathematical point of view, is the
swapping of the limit and the sum in the second line of the argu-
ment. Courses on vector calculus will spell out the assumptions
needed to justify this step (or, more interestingly from a physics
perspective, under which conditions it fails).

The change of the velocity will be denoted as acceleration. Based
on an analogous argument as for the velocity, it will be written as a
time derivative

Definition 3.1: Acceleration

The time derivative of the velocity v(t) = q̇(t)
is denoted as acceleration, and written as

dv(t)
dt

= v̇(t) = q̈(t)

In the next section it will be related to the action of forces F(q, t)
acting on a particle that resides at the position q at time t.

3.2.1 Self Test

Problem 3.1. Derivatives of elementary functions

Recall that

d
dx

sin x = cos x
d

dx
ex = ex d

dx
ln x = x−1

© Jürgen Vollmer — 2021-10-07 04:50:35+02:00



62 3. Newton’s Laws

Use only the three rules for derivatives

d
dx
(

f (x) + g(x)
)
= f ′(x) + g′(x)

d
dx
(

f (x)g(x)
)
= f ′(x) g(x) + f (x) g′(x)

d
dx

f
(

g(x)
)
= g′(x) f ′

(
g(x)

)
to work out the following derivatives

a) sinh x =
1
2
(
ex − e−x) and cosh x =

1
2
(
ex + e−x)

b) cos x = sin(π/2 + x)

c) xa = ea ln x for a ∈ R

What does this imply for the derivative of f (x) = x−1?

d) Use the result from (c) to proof the quotient rule:

d
dx

f (x)
g(x)

=
f ′(x) g(x)− f (x) g′(x)(

g(x)
)2

e) tan x =
sin x
cos x

and tanh x =
sinh x
cosh x

� f) Find the derivative of ln x solely based on
d

dx
ex = ex.

Hint: Use that x = eln x and take the derivative of both sides.

Problem 3.2. Integrals of elementary functions

In a moment we will also perform integrals to determine the
work performed on a body when it is moving subject to a force.
Practice you skills by evaluating the following integrals.

a)
∫ 1

−1
dx (a + x)2

b)
∫ 5

−5
dq (a + b q3)

�

∫ B

0
dk tanh2(kx)

c)
∫ ∞

0
dx e−x/L

d)
∫ L

−L
dy e−y/ξ

e)
∫ L

0
dz

z
a + b z2

f)
∫ ∞

0
dx x e−x2/(2Dt)

g) ∫ √Dt

−
√

Dt
d` ` e−`

2/(2Dt)

�

∫ √Dt

−
√

Dt
dz x e−z x2

Except for the integration variable all quantities are considered to
be constant.

Hint: Sometimes symmetries can substantially reduce the work
needed to evaluate an integral.

3.3 Newton’s axioms and equations of motion (EOM)

In Section 3.1 we referred to a train compartment to point out that
physical observations will be the same — irrespective of the ve-
locity of its motion, as long as it is constant. A setting where we
perform an experiment is denoted as reference frame, and reference
frames that move with constant velocity are called inertial systems.

© Jürgen Vollmer — 2021-10-07 04:50:35+02:00



3.3. Newton’s axioms and equations of motion (EOM) 63

Definition 3.2: Reference Frames and Inertial Systems

A reference frame (Q, {êi(t), i = 1 · · ·D}) is an agreement
about the, in general time dependent, position of the origin
Q(t) of the coordinate system and a set of orthonormal basis
vectors {êi(t), i = 1 · · ·D}, that are adopted to indicate the
positions of particles in a physical model.
The reference frame refers to an inertial system when it does
not rotate and when it moves with a constant velocity, i. e. if
and only if Q̈ = 0 and ˙̂ei = 0 for all i ∈ {1 · · ·D}.

Remark 3.1. The requirement ˙̂ei = 0 implies that the orientation of
the basis vectors êi does not change, i.e. the reference frame does
not rotate. �

Remark 3.2. The rest frame for a particle is a reference frame where
the particle velocity takes the constant velocity 0. �

Remark 3.3. Let q = (q1, . . . qD) be the coordinates of a particles, as
specified in in the inertial frame (Q, {êi}), and x = (x1, . . . xD) its
position given in the inertial frame (X, {n̂i}). Then

q = Q +
D

∑
i=1

qi êi = X +
D

∑
i=1

xi n̂i .

� 3e1e1

e2 3e2

4n
1

n
1

n
2

-n
2

X

Q

q

Figure 3.1: Graphical illustration of
the description of a position from the
perspective of two different reference
frames, q = Q + 3 ê1 + 3 ê2 =
X + 4 n̂1 − n̂2 with the notations of
Remark 3.3.

3.3.1 1st Law

As long as a reference frame moves with a constant velocity, it feels
like at rest. Physical measurements can only detect acceleration.
This is expressed by

Axiom 3.1: Newton’s 1st law

breakable]Newton!1st law|textbf The velocity of a particle
moving in an inertial system is constant, unless a (net) force
is acting on the particle,

∀t ≥ t0 : F(t) = 0 ⇔ q̇(t) = v = const

⇔ q(t) = q0 + v (t− t0)

as sketched in the margin.

v · (
t− t0)

q(t)

q0 = q(t0)

The particle moves then in a straight line with a constant speed.
Indeed, when a particle moves with the constant velocity v = q̇(t)
in the reference frame (Q1, {êi(t), i = 1 · · ·D} then it is at rest
in the alternative reference frame (Q2, {êi(t), i = 1 · · ·D} where
Q2 = Q1 + v t. Therefore, in the latter coordinate system the
particle is at rest, and it will remain at rest when it is not perturbed
by a net external force. After all,

q = Q1 + v t = Q2 + 0 .

© Jürgen Vollmer — 2021-10-07 04:50:35+02:00



64 3. Newton’s Laws

3.3.2 2nd Law

Newton’s second law spells out how the velocity of the particle
changes when there is a force.

Axiom 3.2: Newton’s 2nd law

The change, q̈(t), of the velocity of a particle, q̇(t), at posi-
tion, q(t), is proportional to the sum of the forces Fα acting
on the particle, and the proportionality factor is the particle
mass m,

m q̈(t) = ∑
α

Fα(t) .

Remark 3.4. In general the time dependence of the forces can be
decomposed into three contributions

a) An implicit time dependence, F(q(t)), when the force depends
on the position, q(t) of the particle. For instance, for a Hookian
spring with spring constant k one has, F(q) = −k q.22 The spring constant k is a positive

constant of dimension Newton per
meter that characterizes the strength of
the spring, and the minus sign makes
it explicit that the Hoookian force is
a restoring force pushing the particle
back towards q = 0.

b) An implicit time dependence, F(q̇(t)), when the force depends
on the velocity, q̇(t) of the particle.
For instance, the sliding friction for a particle with mass m and
friction coefficient γ is, F(q̇) = −m γ q̇.

c) An explicit time dependence when the force is changing in time.
For instance, when pushing a child sitting on a swing one will
only push when the swing is moving in forward direction.

Typically, one explicitly sorts out these dependencies and writes

m q̈(t) = ∑
α

Fα(q(t), q̇(t), t)
�

The resulting relation between the acceleration and the force is
called equation of motion of the particle.

Definition 3.3: Equation of Motion (EOM)

Newton’s second law establishes a relation between the
position q(t) of a particle of mass m, its velocity q̇(t), and
acceleration q̈(t),

m q̈(t) = F(q̇(t), q(t), t)

that is referred to as the equation of motion (EOM) of the
particle.
The motion of N particles residing at the positions
q1(t), . . . , qN(t) ∈ RD and interacting with each other
amounts to N D coupled equations

m q̈1(t) = F1
(
q̇1(t), . . . , q̇N(t), q1(t), . . . , qN(t), t

)
...

...

m q̈N(t) = FN
(
q̇1(t), . . . , q̇N(t), q1(t), . . . , qN(t), t

)

© Jürgen Vollmer — 2021-10-07 04:50:35+02:00



3.3. Newton’s axioms and equations of motion (EOM) 65

The primary aim of Theoretical Mechanics is to determine the solu-
tion of the EOM for given initial conditions (cf. Definition 1.6),

Γ0 =
(

q1(t0), . . . , qN(t0), q̇1(t0), . . . , q̇N(t0)
)

for the positions and velocities of the particles at time t0. Bundles of
phase-space trajectories characterize the motion of sets of trajecto-
ries, and they can be analyzed to determine how the behavior of a
system changes upon varying the parameters of the setup.

Example 3.1: Particle moving in the gravitational field

The gravitational field induces a constant force m g on a par-
ticle with mass m. Let it have velocity v0 at time t0 when it
is taking off from the position q0. Then Newton’s 2nd law
states that q̈(t) = g, and this equation must be solved subject
to the initial conditions q(t0) = q0 and q̇(t0) = v. By work-
ing out the derivatives one readily checks that this is given
for

q(t) = q0 + v (t− t0) +
1
2

g (t− t0)
2

Example 3.2: Particle moving in a circle

Let a particle of mass m move with constant speed in a circle
of radius R such that its position can be written as

q(t) =

(
R cos(ωt)
R sin(ωt)

)

with a constant angular velocity ω. Then its velocity and
acceleration take the form

q̇(t) =

(
−ω R sin(ωt)
ω R cos(ωt)

)

and q̈(t) =

(
−ω2 R cos(ωt)
−ω2 R sin(ωt)

)
= −ω2 q(t)

The speed is constant, taking the value
√

q̇ · q̇ = ω R.
The force is antiparallel to q with magnitude m ω2 R.
Moreover, q̇ · F = 0 at all times. Hence, the force only
changes the direction of motion, and not the speed.

3.3.3 3rd Law

Newton’s third law states that the reference frame does not matter
for the description of the evolution of two particles, even when
they interact with each other — i.e. when they exert forces on each
other. Consider for instance the motion of two particles of the same
mass m that reside at the positions q1(t) and q2(t). We decide to
observe them from a position right in the middle between the two
particles Q =

(
q1(t) + q2(t)

)
/2. In the absence of external forces

© Jürgen Vollmer — 2021-10-07 04:50:35+02:00



66 3. Newton’s Laws

this is an inertial frame, such that Q̈ = 0 according to Newton’s
first law. However, Newton’s second law implies that also

0 = 2mQ̈ = m q̈1 + m q̈2 = F1 + F2

where F1 = m q̈1 and F2 = m q̈2 are the forces acting on particle 1
and 2, respectively. Up to a change of sign the forces are the same,
F1 = −F2. This action-reaction principle is stipulated by

Axiom 3.3: Newton’s 3rd law

Forces act in pairs:

actio when a body A is pushing a body B with force FA→B

reactio then B is pushing A with force FB→A = −FA→B ,

and these forces are always balanced, FA→B + FB→A = 0.

Example 3.3: Fixing a hammock at a tree

When you lie in a hammock that is fixed at a tree, your ham-
mock exerts a force FH on the tree (actio). The hammock
stays where it is because the tree pulls back with exactly
the same force −FT , up to a change of sign (reactio), and, in
turn, this force can be written as the sum of two components
accounting for the normal force FN of the tree on the rope
and a friction force Ff that prevents the rope from sliding
down the tree.

Figure 3.2: Graphical illustrations of
forces involved in hanging a hammock
on a tree, Example 3.3. Example 3.4: Ice skaters

• When two ice skaters of the same mass push each other
starting from a position at rest, then they will move in
opposite directions with the same speed (unless they
brake).

• When they have masses m1 and m2 their velocities will be
related by m1 v1 + m2 v2 = 0 because v1 = v2 = 0 initially,
and m1 v̇1 + m2 v̇2 = F1 + F2 = 0 at any instant of time. As
long as they push, the velocities are non-zero and speed
increases. When they slide there is no force any longer,
and they go at constant speed—except for the impact of
friction of the skates on the ice.

slide:

push:

Figure 3.3: Graphical illustrations
of motion of the two ice-skaters of
Example 3.4. Example 3.5: Water Rocket

A water rocket receives its thrust by the repulsive force
in response of accelerating and releasing a water jet. Let
M the mass of a rocket at a given time, and VR its speed.
To determine the acceleration of the rocket we consider a
short time interval ∆t where water of mass ∆M is ejected
with speed v f . In the absence of gravitation the momentum

© Jürgen Vollmer — 2021-10-07 04:50:35+02:00



3.3. Newton’s axioms and equations of motion (EOM) 67

balance implies that at any given time the momentum of
the rocket M(t)VR(t) must amount to the sum of the wa-
ter ∆M (vR(t) − v f emitted during a short time ∆t and the
momentum of the rocket M(t + ∆t)VR(t + ∆t) after that
time,

M VR = (M− ∆M) (VR + ∆VR) + ∆M (VR − v f )

⇔ 0 = M ∆VR − ∆M v f − ∆M ∆VR

Now we observe that ∆M = a ρ, v f ∆t where a is the cross
section of the ejected jet, and ρ the mass density of the
ejected water:

M
∆VR
∆t

= a ρ, v2
f + a ρ, v f

∆VR
∆t

∆t

and in the limit of small time increments ∆t→ 0 we obtain
the force FR that is accelerating the rocket

FR = M V̇R = a ρ v2
f

The rocket trajectory results from interplay of gravity
and FR. One case will be discussed as worked example at
the end of this chapter, in Section 3.5. Solving the general
case has been suggested as an instructive computer-based
example for teaching mechanics (Gale, 1970; Finney, 2000).
Instructions about how to build and discuss the rocket in
school is available from the NASA and the instructables
community.

Michal Richard Trowbridge / wikimedia CC
BY-SA 3.0
Figure 3.4: Launching a water rocket,
as introduced in Example 3.5.

3.3.4 Punchline

Newton’s equations are stated nowadays in terms of derivatives,
a concept in calculus that has been pioneered by Leibniz.3 In this 3 Even though these principles of cal-

culus were independently understood
by Newton which lead to a very long
fight for authorship and fame.

language they take the following form for a particle of mass m that
is at position q(t) at time t,

q̇(t) = v(t)

v̇(t) =
1
m

Ftot(q(t), v(t), t)

Prior to Newton, physical theories adopted the Aristotelian point
of view that v is proportional to the force. Indeed in those days
many scientists were regularly inspecting mines, and from the per-
spective of pushing mine carts is is quite natural to assert that their
velocity is proportional to the pushing force. Galileo’s achievement
is to add the ‘tot’ of the force side of the equation, pointing out
that there also is a friction force acting on the mine cart. Newton’s
achievement is to add the ‘dot’ on the left side of the equation, stat-
ing that the velocity stays constant when the pushing force and the
friction force balance.

© Jürgen Vollmer — 2021-10-07 04:50:35+02:00
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68 3. Newton’s Laws

Example 3.6: Pushing a mine cart

The motion of the mine cart is one-dimensional along its
track such that the position, q, velocity, x, and forces are
one-dimensional, i. e. scalar functions. Once the mine cart is
moving it experiences a friction force Ff = −γ v, that (to a
first approximation) is proportional to its velocity, v. Now,
let the mine worker push with a constant force FM such that

m q̈ = m v̇ = Ftot = FM − γ v .

The mine cart travels with constant velocity v̇ = 0, when the
attacking forces balance, i. e. for vc = FM/m γ.
For a different initial velocity, v(t0) = v0, one finds an expo-
nential approach to the asymptotic velocity,

v(t) = vc +
(
v0 − vc

)
e−γ (t−t0)

After all, v(t0) = vc +
(
v0 − vc

)
= v0 and

v̇(t) =
(
v0 − vc

)
(−γ) e−γ (t−t0)

=
(
−γ

(
v(t)− vc

)
= −γ v(t) + FM

)
/m

clarify: Aristotelian me-
chanics + criticism

Figure 3.5: The pre-Newtonian under-
standing of the relation between force
and velocity of a body.

The advantage of the Newtonian approach above earlier mod-
eling attempts is that it makes a quantitative prediction about the
asymptotic velocity, and that it also addresses the regime where the
velocity is changing, e. g. when the mine cart is taking up speed.

3.3.5 Self Test

Problem 3.3. Terminal velocity for turbulent drag

Rather than a friction of the type of the mine cart, a golf ball
experiences a drag force

Fd = −ρ|u|2
2

cd A û

where A is the cross section of the ball, ρ the density of air, u the
velocity of the golf ball, and cd ' 0.5 the drag coefficient.

a) The drag coefficient is a dimensionless number that depends on
the shape of the object that experiences drag. For the rest the
expression for the drag force follows from dimensional analysis.
Verify this claim.

b) A slightly more informed derivation of Fd introduces also the
diameter D of the golf ball and states that drag arises because
the ball has to push air out of its way. When moving it has to
push air out of the way at a rate A u. The air was at rest initially
and must move roughly with a velocity u to get out of the way.
Subsequently, its kinetic energy is lost. Check out, how this leads
to the expression provided for Fd.
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3.3. Newton’s axioms and equations of motion (EOM) 69

c) What is the terminal velocity of a golf ball that is falling out of
the pocket of a careless hang glider?

d) Use dimensional analysis to estimate the distance after which the
ball acquires its terminal velocity, and how long it takes to reach
the velocity.

Problem 3.4. Orbit of the Moon around Earth

The Moon is circling around Earth due to the gravitational force
of modulus

FME =
GME MM

R2
ME

where G = 2
3 × 10−12m3/kg s is the gravitational constant, ME '

6× 1024 kg and MM ' 3
4 × 10−23kg are the masses of Moon and

Earth, respectively, and RME = 7
4 × 106m is the distance from Earth

to Moon.

a) Calculate the force that Moon is experiencing due to the Earth.
Compare it to the gravitational acceleration g ' 10 m/s2 scaled
by (RME/RE)

2 where RE = 2π × 106m is the Earth radius. Why
would one scale by this factor?

b) Assume that the Moon trajectory is circular and identify FME

with the centripetal force that keeps the moon on its orbit. What
does this tell about the dependence of the period T of the motion
on G, RME and the masses.

c) Evaluate T and compare it to the duration of a month.

Problem 3.5. Escape velocities

The escape velocity is the minimum speed of a projectile that
would allow it to escape into outer space when friction due to the
atmosphere is neglected.

a) Estimate the escape velocity of Earth based on the gravitational
force law FME given in Problem 3.4, the gravitational acceleration
g = 10 m/s2 on Earth, and the fact that the Earth circumference
was set to 2πRE = 4× 104 km.

b) Recall the relation between gravity on Earth and Moon given in
Problem 1.8, and estimate also the escape velocity from Moon.

c) After you performed the calculations:
Compare your estimates to the values provided by Wikipedia.

Problem 3.6. Pulling a cow

A child is pulling a toy cow with a force of F = 5 N. The cow has
a mass of m = 100 g and the chord has an angle θ = π/5 with the
horizontal. 3 For this angle one has tan θ ≈ 3/4.

© Jürgen Vollmer — 2021-10-07 04:50:35+02:00

https://en.wikipedia.org/wiki/Escape_velocity#List_of_escape_velocities


70 3. Newton’s Laws

a) Describe the motion of the cow when there is no friction.
In the beginning the cow is at rest.

b) What changes when there is friction with a friction coefficient of
γ = 0.2, i.e. a horizontal friction force of magnitude −γmg acting
on the cow.

c) Is the assumption realistic that the force remains constant and
will always act in the same direction? What might go wrong?

Children’s Museum of Indianapolis, CC BY-SA 3.0

3.4 Constants of motion (CM)

In the previous section we saw that Newton’s laws can be ex-
pressed as equations relating the second derivative of the position
of a particle to the forces acting on the particle. The forces are de-
termined as part of setting up the physical model. Subsequently,
determining the time dependence of the position is a mathemat-
ical problem. Often it can be solved by finding constraints on the
solution that must hold for all times. Such a constraint is called a

Definition 3.4: Constant of motion

A function C(q, q̇, t) is a constant of motion (CM) iff its time
derivative vanishes,

d
dt
C(q, q̇, t) = 0

It provides us with an opportunity to take a closer look at the
expressions that emerge when taking derivatives of functions with
arguments that are vectors. In order to evaluate the time derivative
of C we write q = (q1, ....., qD), and apply the chain rule

d
dt
C(q(t), q̇(t), t) =

d
dt
C(q1(t), · · · , qD(t), q̇1(t), · · · , q̇D(t), t)

=
D

∑
i=1

dqi
dt

∂C
∂qi

+
D

∑
i=1

dq̇i
dt

∂C
∂q̇i

+
∂C
∂t

(3.4.1)

In this expression the operation ∂ is called ‘partial’, and the deriva-
tive ∂C/∂qi is denoted as partial derivative of C with respect to qi.
For the purpose of calculating the partial derivative, we consider C
to be a function of only the single argument qi. For sake of a more
compact notation we also write ∂qiC rather than ∂C/∂qi. Moreover,
when it is not clear from the context which conditions are adopted,
they can explicitly be stated as subscript of a vertical bar to the
right of the derivative (or even square brackets).
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Example 3.7: Partial derivatives

For f (x, y) = x/
√

x2 + y2 and R =
√

x2 + y2 we have

∂x f (x, y)|y =
1√

x2 + y2
− x2(

x2 + y2
)3/2 =

y2

R3

∂x f (x, y)|R = ∂x

[ x
R

]
R
=

1
R

A compact notation that allows us to state the expression of
Equation (3.4.1) in a more transparent way is achieved as follows:
We observe that the expressions in the sums amount to writing
out in components a scalar product of q and q̇ with vectors that
are obtained by the partial derivatives. These vectors are denoted
gradients with respect to q and q̇, and they will be written as In the literature one also finds the

alternative notations

∇q C =
∂C
∂q

= ∂qC
∇q C =


∂q1C

...
∂qDC

 and ∇q̇ C =


∂q̇1C

...
∂q̇DC

 (3.4.2)

such that

d
dt
C(q(t), q̇(t), t) = q̇ · ∇q C + q̈ · ∇q̇ C +

∂C
∂t

In terms of the phase-space coordinates Γ = (q, q̇) one can also
adopt the even more compact notation

d
dt
C(q(t), q̇(t), t) = Γ̇ · ∇Γ C +

∂C
∂t

or even

d
dt
C(Γ(t), t) = Γ̇ · ∇ C(Γ(t), t) +

∂C
∂t

(Γ(t), t)

where the index of the nabla operator has been dropped with the
understanding that it is clear from the context what the operator
refers to.

We make use of these derivatives while introducing some impor-
tant physical quantities that are constants of the motion in specific
settings.

3.4.1 The kinetic energy

When no forces are acting on a particle, Ftot = 0, it moves with
constant velocity. All functions that depend only on the velocity
will then be constant. In particular this holds for the kinetic energy,
T, that will play a very important role in the following.

Theorem 3.2: Conservation of kinetic energy

The kinetic energy T =
m
2

q̇2 of a particle is conserved
iff no net force acts on the particle, i. e. iff Ftot = 0.
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Proof. d
dt

T =
m
2

d
dt ∑

i
q̇i · q̇i = m ∑

i
q̇i · q̈i

= mq̇ · q̈ = q̇ · (m q̈) = q̇ · Ftot = 0

In the last two steps we used Newton’s 2nd law, and the assump-
tion that Ftot = 0.

3.4.2 Work and total energy

From a physics perspective, work is performed when a body is
moved in the presence of an external force.

Figure 3.6: Breaking a particle track
q(t) into a sequence of discrete points
qi with segments si+1 = qi+1 − qi .

• When the force F is constant along a straight path of displace-
ment s = qE − qI , from a position qI to the position qE, then the
work W amounts to the scalar product W = F · s.

• When the force depends on the position along the path, we
parameterize the motion along the path by time, q(t), with
q(tI) = qI and q(tE) = qE and break it into sufficiently small
pieces si = q(ti)− q(ti − ∆t) where the force Fi = F(ti) and the
velocity of the particle q̇(ti) may be assumed to be constant, such
that q̇(ti) =

(
q(ti)− q(ti−1)

)
/∆t. Then

W = ∑
i

Fi · si = lim
∆t→0

Fi · q̇ ∆t =
∫ t1

t0

F(t) · q̇(t) dt =
∫

q(t)
F · dq

The last equality should be understood here as a definition of
the final expression that is interpreted here in the spirit of the
substitution rule of integration.

Definition 3.5: Work and Line Integrals

The work, W, of a particle that performs a path q under the
influence of a force F(t) amounts to the result of the line
integral

W =
∫

q
F · dq

When the path is parameterized by time, then W amounts to
the time integral of dissipated power P(t) = F(t) · q̇(t),

W =
∫

F(t) · q̇(t) dt =
∫

P(t) dt

Remark 3.5. The scalar product F · dq or P(t) = F(t) · q̇(t) singles
out only the action of the force parallel to the trajectory. The per-
pendicular components do not perform work. Hence, a force that
is always acting perpendicular to the velocity, i. e. perpendicular to
the path of the particle, does not perform any work,

W =
∫

F(t) · q̇(t) dt =
∫

0 dt = 0

It only changes the direction of motion. �
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Remark 3.6. The result of the integral does not rely on the parame-
terization of the path by time. For instance mathematicians prefer
to use the length ` of the path. The speed of the particle is then
˙̀(t) = |q̇(t)| and one finds

W =
∫

F(t) · s =
∫

F(t(`)) · q̇(t(`)) d`
˙̀ =

∫
F(`) · q

d`
(`) d`

where dq̂/d` is a unit vector pointing in the direction of the trajec-
tory. �

The calculation of work simplifies dramatically when the force
can be written as gradient of another function, Φ.

Definition 3.6: Potentials and Conservative Forces

A force F(q) that can be expressed as the negative gradient
of a function Φ(q),

F(q) = −∇Φ(q) = −


∂q1 Φ(q1, . . . , qD)

...
∂qD Φ(q1, . . . , qD)


is called a conservative force and the function Φ is the potential
associated to the force.

Remark 3.7. Conservative forces only depend on position, F = F(q).
They neither explicitly depend on time nor on the velocity q. �

Remark 3.8. Conservative forces only depend on position, F = F(q).
They neither explicitly depend on time nor on the velocity q. �

Example 3.8: Conservative forces: (counter-)examples

• Gravitational acceleration g is is constant in space. Hence,
gravity is a conservative force.

• Friction of a cube sliding over a table is proportional to
the particle speed v. Therefore, friction is not a conserva-
tive force.

• Setting the rope into motion for rope skipping requires an
oscillatory force. Due to its time time dependence such a
force is not conservative.

Rope skipping on the poster of the movie
“Doubletime”, wikimedia, CC BY 2.0

Theorem 3.3: Work for conservative forces

For conservative forces, F = −∇Φ(q), the work for a path
q(t) from q0 to q1 amounts to the difference of the potential
evaluated at the initial and at the final point of the path

W =
∫

q(t)
F · dq = Φ(q0)−Φ(q1)

Proof.
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W =
∫ t1

t0

F · q̇ dt = −
∫ t1

t0

∇Φ · q̇ dt

= −
∫ t1

t0
∑

i

∂Φ
∂qi

∂qi
∂t

dt = −
∫ t1

t0

d Φ
dt

dt

= −
(
Φ(q(t1))−Φ(q(t0))

)
= Φ(q0)−Φ(q1)

Remark 3.9. The work performed along a closed path vanishes
for conservative forces. After all, in that case q1 = q0 such that
W = Φ(q0)−Φ(q1) = 0. �

Remark 3.10. The potential in itself is not an observable.4 One can4 An observable is a quantity that can be
measured by direct observation. only observe the work, which is the potential difference between

two positions, and the force, which is the negative gradient of the
potential. Therefore, the potential is only defined up to adding a
constant. �

Example 3.9: Gravitational Potential

For a particle of mass m gravity on the Earth surface gives
rise to a force of magnitude F(x, y, z) = −m g ẑ that can be
derived from the potential Φ(x, y, z) = m g z,

−∇Φ1(x, y, z) =

−∂xΦ(x, y, z)
−∂yΦ(x, y, z)
−∂zΦ(x, y, z)

 =

 0
0
−m g

 = F(x, y, z)

Far away, at a position q = (q1, q2, q3) from the center of
Earth, gravity induces a force F(q) = −G ME m q/|q|3 on a
body of mass m. This force can be obtained as

−∇φ2(q) = ∇
G ME m√

q2
1 + q2

2 + q2
3

= G ME m


∂q1

1√
q2

1+q2
2+q2

3

∂q2
1√

q2
1+q2

2+q2
3

∂q3
1√

q2
1+q2

2+q2
3



= G ME m


−q1

[q2
1+q2

2+q2
3]

3/2

−q2

[q2
1+q2

2+q2
3]

3/2

−q3

[q2
1+q2

2+q2
3]

3/2

 =
−G ME m[

q2
1 + q2

2 + q2
3
]3/2 q = F(q)

Remark 3.11. According to Theorem 3.3 differences of the value of
the potential between two positions amount to the work performed
in the potential. Different approaches to calculate the value of this
scalar observable must yield identical results. Therefore, the func-
tional dependence of the potential must not depend on the choice
of the coordinate system. This invariance requires that the poten-
tial can always be expressed in terms of scalar products. For the
potentials in Example 3.9 this is achieved by writing

Φ1(q) = m g · q with g = (0, 0,−g)

Φ2(q) = −G ME m/
√

q · q
�
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Remark 3.12. One can make use of the properties of scalar products
to reduce the computational work to determine the force for a given
potential by working out the component i of the gradient where
i is can be any index of the vector. For conciseness we also write
then ∂i for the partial derivative with respect to component qi of the
argument q of Φ(q).

For the potentials in Example 3.9 this works as follows

−∂iΦ1(q) = −m ∂i ∑
j

gjqj = −m ∑
j

gjδij = −mgi

−∂iΦ2(q) = G ME m ∂i

[
∑

j
q2

j

]−1/2
=
−G ME m qi[

∑j q2
j

]3/2

In particular in the second case the advantage is evident. �

Example 3.10: Falling men and cat

When a cat, that has a mass of m = 3 kg, falls from a balcony
in the fourth floor, i. e. from a height H ' 4 × 3 m = 12 m,
the initial potential energy

Vcat = mgH = 3 kg× 10 m/s2 × 12 m = 360 kg m2/s2

will be transformed into kinetic energy and then dissipated
when the cat hits the ground.
To get an idea about this energy we compare it to the energy
dissipated when a man of mass M = 80 kg, falls out of his
bed that has a height of h = 50 cm,

Vman = Mgh = 80 kg× 10 m/s2 × 0.5 m = 400 kg m2/s2

From the point of view of the dissipated energy the fall of
the cat is not as bad as it looks at first sight.

Conservative forces are called conservative forces because mo-
tion in such a potential conserves the sum of the potential energy
and the kinetic energy.

Theorem 3.4: Conservation of the total energy

The total energy E = T + Φ of a particle is conserved
if it moves in a conservative force field F = −∇Φ.

Proof.
dE
dt

=
dT
dt

+
dΦ
dt

= m q̇ · q̈ +∇Φ · q̇ = q̇ ·
(
mq̈− F

)︸ ︷︷ ︸
= 0

= 0

In the third equality we used that the force is conservative, and
in the final step, we used Newton’s second law which states that
mq̈ = F.
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Example 3.11: Accidents at work and on the street

A paramedic emergency ambulance receives two calls from
an accident site:
i. a craftsmen fell from a roof of height H
ii. a teenager hit a tree with his motorcycle with a speed v
For which height does the energy of the craftsman approxi-
mately match the one of the motor cyclist when he drove

in the city, vC = 50 km/h,
outside the city, vL = 100 km/h,
on a German autobahn with vA = 150 km/h
or was really speeding with vS = 200 km/h.

We assume that they both have comparable mass.
Energy conservation entails that we have to compare the
potential energy Vworker of the craftsman on the roof and the
kinetic energy of the teenager on the motorcycle Tteenager,

mgH = Vworker = Tteenager =
m
2

v2 ⇔ H =
v2

2g

Hence we find

v 50 km/h 100 km/h 150 km/h 200 km/h
H 12 m 50 m 110 m 200 m
floor 4 16 36 64

Most likely, the teenager will encounter more severe injuries,
unless the craftsman is working on a really high building.

3.4.3 Momentum

Theorem 3.5: Conservation of momentum

The momentum P = ∑N
i=1 miq̇i(t) of a set of N particles with

masses mi that reside at the positions qi(t) is conserved if no
net force Ftot acts on the system.

Proof. The time derivative of the total momentum is
d
dt

P =
N

∑
i=1

miq̈i(t)

where miq̈i(t) amounts to the force on particle i. This force amounts
to the sum of an external force Fi on particle i and the forces f ji ex-
erted by other particles j on i. The net force amounts to the sum of
the external forces, 0 = Ftot = ∑i Fi. Newton’s third law requires
that f ji = − fij, and we will set fii = 0 to simplify notations of
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indices in the sums. Consequently,

d
dt

P =
N

∑
i=1

(
Fi +

N

∑
j=1

f ji

)
=

N

∑
i=1

Fi +
N

∑
i=1

N

∑
j=1

fij

= Ftot +
1
2

N

∑
i=1

N

∑
j=1

(
fij + f ji

)
= 0

Ôàáðèöèî, CC BY-SA 4.0
Figure 3.7: Newton’s cradle. When
the excited ball to the right is released
it will come down, hit the rightmost
ball that is hanging down at rest.
The momentum is transferred to the
leftmost ball, and that is moving up
(almost) as far to the left as the initial
ball was excited to the right. Its motion
reverses, and by the same sequence of
events the motion proceeds from left to
right.

Example 3.12: One-dimensional collisions

We consider two steel balls that can freely move along a line.
They have masses m1 and m2 and reside at positions x1 and
x2, respectively. Initially ball two is at rest in the origin, and
ball one is approaching from the right with a constant speed
v1. What is the speed of the balls after the collision? Before
and after the collision the particles feel no forces such that
their velocity is constant. We assume that the collision is
elastic such that energy is preserved. Hence,

before collision = after collision

momentum: m1 v1 = m1 v′1 + m2 v′2

energy:
m1

2
v2

1 =
m1

2
(v′1)

2 +
m2

2
(v′2)

2

where the prime indicates the post-collision velocities.
These velocities can best be determined by writing the mo-
mentum and energy balance in the form

m1 (v1 − v′1) = m2 v′2 and m1 (v2
1 − v′21 ) = m2 v′22

and dividing the second by the first equation. This provides

v1 + v′1 = v′2

Together with the momentum balance it provides

v′1 =
m1 −m2

m1 + m2
v1 and v′2 =

2 m1

m1 + m2
v1

In particular, when the two particles have the same mass one
obtains that v′1 = 0 and v′2 = v1 which is beautifully exem-
plified by the dynamics of Newton’s cradle.

3.4.4 Angular Momentum

In the immediate vicinity of the collisions the balls in Newton’s
cradle perform a motion along a horizontal line, as discussed in
Example 3.12. However, during the excursions to the left and right
they follow a circular track where the chains act as arms and their
suspension as fulcrum of the circular motion. In such settings it is
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often desirable to also consider the evolution of the angular mo-
mentum.

Theorem 3.6: Conservation of angular momentum

The angular momentum L = ∑N
i=1 miqi(t) × q̇i(t) of a set of N

particles with masses mi that reside at the positions qi(t) is
conserved if no external forces act on the system and if the
interaction forces between pairs of particles act parallel to
the line connecting the particles.

Proof. d
dt

L =
N

∑
i=1

mi

(
q̇i(t)× q̇i(t) + qi(t)× q̈i(t)

)
= ∑

i<j

(
qi(t)× fij + qj(t)× f ji

)
= ∑

i<j

(
qi(t)− qj(t)

)
× fij = 0

where we used that fij = − f ji due to Newton’s third law, and
that (qi(t) − qj(t)) is parallel to fij by assumption on the particle
interactions.

Figure 3.8: Notations adopted in the
measurement of the speed v of a bullet
of mass m that is hitting a rotor of
mass M attached to an arm of length
L; see ?? 3.13.

Example 3.13: Determine the speed of a bullet.

In a CSI lab one tests the speed of a bullet by shooting it into
a rotor where a mass M = 1 kg can move horizontally with
minimal fraction on an arm with length L = 1 m. For a bullet
of a mass m = 8 g we find a rotation frequency f = 0.16 Hz.
What is the muzzle velocity v of the gun? During the colli-
sion the bullet gets stuck in the rotor mass. Before and after
the collision the angular momentum thus is

m L v = (m + M) L2 ω = (m + M) L2 2π f

⇔ v =
m + M

m
2π f L =

1008
8
× 2π × 0.16 m/s ' 125 m/s

3.4.5 Self Test

Problem 3.7. Derivatives of common composite expressions

Evaluate the following derivatives.

a) d
dx (a + x)b

b) ∂
∂x (x + b y)2

c) d
dx (x + y(x))2

d) d
dt sin θ(t)

e)
d
dt
(
sin θ(t) cos θ(t)

)
f) d

dt sin
(
2θ(t)

)
g) d

dz

√
a + b z2

h) ∂
∂x3

[
∑6

j=1 x2
j

]−1/2

i) ∂
∂y1

ln(x · y)

In these expressions a and b are real constants, and x and y are
6-dimensional vectors.
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Problem 3.8. Running mothers

Demonstrate that

I = ẋ1(t) ẋ2(t) + ω2 x1(t) x2(t)

is a constant of motion of a two-dimensional harmonic oscillator
with equation of motion

ẍ(t) = −ω2 x(t) with ω ∈ R and x(t) =
(
x1(t), x2(t)

)
∈ R2

Problem 3.9. Anvil shooting

Rex Hammock from USA/
wikimedia CC BY-SA 2.0

Anvil shooting is a tradition in some US communities to cele-
brate St. Clement’s Day, honoring Pope Clement I, the patron saint
of blacksmiths and metalworkers. Typical anvils have a mass of
about 150 kg and they are shot up to a height of 60 m. Which en-
ergy must the gun powder release to the anvil for such a feat?

Problem 3.10. Running mothers

In the Clara Zetkin Park one regularly encounters blessings5 5 Look up “terms of venery” if you
ever run out of collective nouns.of dozens of mothers jogging in the park while pushing baby car-

riages. Troops of kangaroo mothers rather carry their youngs in
pouches.

a) Estimate the energy consumption spend in pushing the carriages
as opposed to carrying the newborn.
The carriages suffer from friction. Let the friction coefficient be
γ = 0.3.
When carrying the baby the kangaroo must lift it up in every
jump and the associated potential energy is dissipated.

b) How does the running speed matter in this discussion?

c) How does the mass of the babies/youngs make a difference?

Problem 3.11. The sledgehammer experiment

In his magnificent book “Thinking Physics” Lewis Carroll Ep-
stein (2009) sets out a class room experiment that he used to per-
form in his physics class: He placed an anvil on his chest and asked
a student from the audience to hit the anvil with a sledge hammer
as hard as he could manage. What will happen?

Epstein changed the way of presenta-
tion of this experiment when a very
nervous student missed the anvil and
hit his hand. Have a look into the book
for the full story.

Problem 3.12. The rotating chair experiment

The spin increases when an ice dancer pulls inwards arms and
legs. This is illustrated in the picture of Yuko Kawaguti in the mar-
gin, and the physical principle has beautifully been demonstrated
in a wikimedia movie by Oliver Zajkov from the Physics Institute at
the University of Skopje.

deerstop, wikimedia, CC0
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a) Assume that a less careful experimenter starts his motion with a
spin of 1 Hz, holding 5 kg barbells with stretched-out arms 1 m
away from the rotation axis. Estimate his spin rate when he pulls
in his arms till the barbells reach a distance of 20 cm from the
rotation axis.

b) Which trajectory will they take when the careless experimenter
gets dizzy and looses hold on the barbells?

3.5 Worked example: Flight of an Earth-bound rocket

In order to illustrate the applications of Newton’s laws we discuss
now the flight of a rocket. We will deal with the case a) where the
rocket is moving in vertical direction, b) where the fuel is ejected
with a constant speed v f (or zero when it is exhausted), and c)
where the rocket does not reach heights with a noticeable change of
the gravitational acceleration. At the end of this section we discuss
the impact of relaxing these assumptions, and point to the literature
for a further discussion.

Let VR be the speed of the rocket. It is positive when the rocket
goes up, and negative when it falls down. On the way down, its
mass will be m. Initially, it has a mass m + M0, where M0 is mass
of the fuel (cf. Figure 3.9). As long as the rocket is firing, Newton’s
third law implies that

Figure 3.9: Notations adopted for the
discussion of the flight of a rocket in
Section 3.5.

FR =
(
m + M(t)

)
V̇R = a ρ v2

f −
(
m + M(t)

)
g

The first force on the right-hand side of this equation accounts for
the recoil from ejection of the fuel (cf. Example 3.5) and the latter
to gravitational acceleration. We also observed in Example 3.5 that
the mass M(t) of the remaining fuel at time t obeys the differential
equation Ṁ = −a ρ v f such that6

6 One easily checks that this expres-
sion is correct for the initial mass,
M(0) = M0 and its derivative agrees
with Ṁ(t). The same applies also
for the expressions for the speed and
height of the rocket discussed below.
Problem 4.2 gives clues how the solu-
tions are determined systematically.
In Chapter 4 we discuss systematic
approaches to find the solution.

M(t) = M0 − a ρ v f t .

At some time T all fuel is consumed, and we have

0 = M0 − a ρ v f T ⇒ T =
M0

a ρ v f
.

Moreover, for the rocket acceleration we find

V̇R(t) =
FR

m + M(t)
= −g +

v f /T
µ− t/T

with µ =
m + M0

M0

The rocket speed is obtained by integrating the acceleration
from the initial time, where the rocket is at rest, till time t. The
integral takes a simpler form when one adopts the dimensionless
integration variable, τ = t/µT,

VR(t) = µT
∫ t/µT

0
dτ VR(t) = −g t− v f

∫ t/µT

0
dτ

1
1− τ

= −g t− v f ln
(

1− t
µT

)
(3.5.1a)
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Thus, at time T the rocket has acquired the speed

VR(T) = −g T + v f ln
µ− 1

µ
. (3.5.1b)

The rocket height z(t) is obtained by observing that ż(t) = VR(t),
which in turn is given by Equation (3.5.1a). The solution where the
rocket starts at height zero is the given by

z(t) = µT
∫ t/µT

0
dτ VR(t) = −

g t2

2
− µT v f

∫ t/µT

0
dτ ln(1− τ)

= − g t2

2
− µT v f

[
(τ − 1)

(
−1 + ln(1− τ)

)]t/µT
0

= − g t2

2
+ v f t + v f T

(
µ− t

T

)
ln
(

1− t
µT

)
. (3.5.2a)

At time T this simplifies to

z(T) = − g T2

2
+ v f T

[
1 + (µ− 1) ln

µ− 1
µ

]
(3.5.2b)

Starting from that position the rocket will perform a ballistic
flight with initial velocity VR(T) that will add to its height another
height increment of V2

R(T)/2g. The additional height increment ∆H
before the rocket reaches the crest of its height is found by energy
conservation and Equation (3.5.1b)

m g ∆H =
m
2

V2
R(T)

⇒ ∆H =
V2

R(T)
2 g

=

[
g T2

2
− T v f ln

µ− 1
µ

+
v2

f

2 g

(
ln

µ− 1
µ

)2
]

(3.5.3)

Combining Equations (3.5.2b) and (3.5.3) yields the total height, H,
reached by the rocket,

H = z(T) + ∆H =

[
− g T2

2
+ v f T + (µ− 1) v f T ln

µ− 1
µ

]
+

[
g T2

2
+ v f T ln

µ− 1
µ

+
v2

f

2 g

(
ln

µ

1 + µ

)2
]

= v f T
[

1 + µ ln
µ− 1

µ

]
+

v2
f

2 g

(
ln

µ− 1
µ

)2
(3.5.4)

-1 1 2 3 4
x

-2

-1

1

2

lnx

x− 1

Figure 3.10: The function x − 1 (red)
is always larger (or equal) than ln x
(blue).

For m > 0 we have µ > 1, and the expression in the square
bracket is always negative, as one can see based on the inequality
ln x ≤ x− 1 shown Figure 3.10,

1 + µ ln(1 + µ−1) ≤ 1 + µ
(

1 + µ−1 − 1
)
= 0

The best strategy to achieve a large height is to go for a small T in
order to suppress the first term in Equation (3.5.4) and large v f to
achieve large values of the second term.

When energy efficiency is a concern, e. g. when the rocket is
used for a measurement of the atmosphere at height H, one might
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82 3. Newton’s Laws

Figure 3.11: (left) Contour line for the
efficiency, Equation (3.5.5), as function
of the mass ratio m/M0 = µ − 1
and the dimensionless inverse rocket
acceleration α = gT/v f . The maximum
is taken for α = 0. (right) Plot of the
µ dependence of the efficiency for
α = 0. The maximum efficiency of
ηopt ' 0.648 is obtained for µc ' 1.255.
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be interested to reach the height H with minimum energy cost.
This means one is interested to minimize the ratio of the potential
energy of the rocket at height H and the the energy M0v2

f /2 burned
to deliver the freight,

η =
m g H

M0v2
f /2

=
2 m g T
M0 v f

[
1 + µ ln

µ− 1
µ

]
+

m
M0

(
ln

µ

1 + µ

)2

=
2 g T

v f
(µ− 1)

[
1 + µ ln

µ− 1
µ

]
+ (µ− 1)

(
ln

µ− 1
µ

)2

(3.5.5)

The efficiency is a function of µ and of the dimensionless number
α = g T/v f . The contour lines of η(µ, α) are plotted in the left panel
of Figure 3.11.

Definition 3.7: Contour lines and isosurfaces

The contour lines of a two variable function f (x, y) are those
lines in the (x, y)-plane, where f (x, y) takes some constant
value. More generally these lines are also called isolines, the
two-dimensional surfaces where a three-variable function
g(x, y, z) in the (x, y, z)-space takes constant values are called
isosurfaces, and the N − 1-dimensional hypersurfaces of RN

where the function h(q) with q ∈ RN takes a constant values
will also be denoted as isosurfaces.

Example 3.14: Isosurfaces of the 3D Gaussian distribution

The 3D Gaussian distribution

P(x, y, z) =
1

(2πD t)3/2 exp
(
− x2 + y2 + z2

2Dt

)
describes the distribution of dye molecules at time t when
a tiny droplet of dye is added without motion in a large
container of water (Brownian motion). At any given instant
of time the surfaces where the concentration take constant
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values C amount to

C = (2πD t)−3/2 exp
(
−(x2 + y2 + z2)/(2Dt)

)
⇔ x2 + y2 + z2 = −2Dt ln

(
C (2πD t)3/2) = R2

where R2 is an abbreviation of the (positive) constant on the
right-hand side of the equation. Hence, the isosurface IR for
a given R amounts to a sphere of radius R,

IR = {(x, y, y) ∈ R : x2 + y2 + z2 = R2} .

The contour lines of the efficiency reveal that the maximum
efficiency is obtained for α = 0, which can expected since the
expression in square brackets in Equation (3.5.5) is negative. From
a physics perspective it means that high efficiencies require a large
fuel expulsion speed v f . The maximum efficiency amounts to the
maximum of η(µ, α = 0) = µ ln2[µ/(1 + µ)], which amounts to the
root µc of the equation 2/(1 + µ) + ln[µ/(1 + µ)]. Numerically it is
found to be µc ' 0.255. Hence, the maximum efficiency is obtained
when the mass of the fuel M0 is roughly four times larger than the
mass of the empty rocket. The maximum efficiency amounts then to

ηmax =
4 µc

(1 + µc)2 ' 0.648 .

Irrespective of the rocket design one can not transform more than
2/3 of the energy of the fuel into potential energy of the rocket. The
remaining energy is dissipated in the kinetic energy of the exhaust.

Further discussion of the trajectories of rockets can be found in
Finney (2000); Gale (1970); Seifert et al. (1947). A discussion of water
rockets that addresses the change of speed v f of the ejected water
was given in Kagan et al. (1995); Gommes (2010).

3.6 Problems

3.6.1 Practicing Concepts

Problem 3.13. Car on an air-cushion

We consider a car of mass m = 20 g moving – to a very good
approximation without friction – on an air-cushion track. There is a
string attached to the car that moves over a roll and hangs vertically
down on the side opposite to the car.

a) Sketch the setup and the relevant parameters.

b) Which acceleration is acting on the car when the string is ver-
tically pulled down with a force of F = 2 N. Determine the
velocity v(t) and its position x(t).

c) Determine the force acting on a 200 g chocolate bar, in order to
get a feeling for the size of the force that was considered in (b).
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84 3. Newton’s Laws

d) Now we fix the chocolate bar at the other side of the string.
The velocity of the car can then be obtained based on energy
conservation

E = Ekin + Epot =
m + M

2
v2 + Mgh = konst,

where M is the mass of the chocolate bar. Is the acceleration the
same of different as in the cases (b) and (c)? Provide an argu-
ment for your conclusion.

Problem 3.14. ’Oumuamua

Tomruen/wikimedia CC BY-SA 4.0
Figure 3.12: ’Oumuamua trajectory as
seen by an observer on Earth.

On 19 October 2017 astronomers at the Haleakala Observatory in
Hawaii discovered ’Oumuamua, the first interstellar object observed
in our solar system. It approached the solar system with a speed
of about vI = 26 km/s and reached a maximum speed of vP =

87.71 km/s at its perihelion, i. e. upon closest approach to the sun
on 9 September 2017.

a) Show that at the perihelion the speed and ’Oumuamua’s smallest
distance to the sun, D, obey the relation

v2
P − v2

I
2

=
MS G

D

while for the Earth we always have

4π2R
T2 ' MS G

R2

Here, MS is the mass of Sun, R is the Earth-Sun distance, and
T = 1 year is the period of Earth around Sun.

b) Show that this entails that
D
R

=
2 v2

E
v2

P − v2
I

, where vE = 2πR/T is

the speed of Earth around sun.

c) Use the relation obtained in (b) to determine D in astronomical
units, and compare your estimate with the observed value D =

0.25534(7)AU.

Problem 3.15. Galilean cannon

In the margin we show a sketch of a Galilean cannon. Assume
that the mass mass ratio of neighboring balls with always two, and
that they perform elastic collisions.

SteveBaker/wikimedia, CC BY-SA 3.0

a) Initially they are stacked exactly vertically such that their dis-
tance is negligible. Let the distance between the ground the
lowermost ball be 1 m. How will the distance of the balls evolve
prior to the collision of the lowermost ball with the ground?

b) After the collision with the ground the balls will move up again.
Determine the maximum height that is reached by each of the
balls.
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Problem 3.16. Motion in a harmonic central force field

A particle of mass m and at position r(t) is moving under the
influence of a central force field

F(r) = −k r .

a) We want to use the force to build a particle trap,7 i. e. to make 7 Particle traps with much more
elaborate force fields, e.g. the Penning-
and the Paul-trap, are used to fix
particles in space for storage and use
in high precision spectroscopy.

sure that the particle trajectories r(t) are bounded: For all initial
conditions there is a bound B such that |r(t)| < B for all times t.
What is the requirement on the sign of the constant k to achieve
this aim?

b) Determine the energy of the particle and show that its energy is
conserved.

c) Demonstrate that the angular momentum L = r × m ṙ of the
particle is conserved, too. Is this also true when considering a
different origin of the coordinate system?
Hint: The center of the force field is no longer coincide with the
origin of the coordinate system in that case.

Problem 3.17. Collision with an elastic bumper

Consider two balls of radius R with masses m1 and m2 that are
moving along a line. Their positions will be denoted as x1 and x2 in
such a way that they touch when x1 = x2 and they do not feel each
other when x1 < x2. When they run into each other, the balls can
slightly be deformed such that the distance between their centers
takes the value 2R − d, and they experience a harmonic repulsive
forces ±k d. We will say then that d = x2 − x1 < 0.

a) Newton’s equations for the collision of the two balls take the
form

m1 ẍ1(t) = −k d(t) m2 ẍ2(t) = k d(t)

Show that this implies

d̈ = −ω2 d

for some positive constant ω. How does ω depend on the spring
constant k and on the masses m1 and m2?

b) Let d(t) = −dM sin
(
ω (t− t0)

)
describe the deformation of the

balls for a collision at t = t0, and contact in the time interval
t0 ≤ t ≤ tR. Verify that it is a solution of the equation of motion.
At which time tR will the particles release (i.e. there is no overlap
any longer)? What is the maximum potential energy stored in
the harmonic potential?

c) We consider initial conditions where particle 1 arrives with a
constant velocity v0 from the left, and particle 2 is at rest. What
is the total kinetic energy in this situation? Assume that at most
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a fraction α of the kinetic energy is transferred to potential en-
ergy. What is the relation between v0 and the maximum defor-
mation dM?

d) The velocity of the two particles at times t0 ≤ t ≤ tR can now be
obtained by solving the integrals

mi ẋi(t) = mi xi(t0) + (−1)i
∫ t

t0

dt′ k d(t′) , with i ∈ {1, 2}

Why does this hold? Which values does xi(t0) take? Solve the
integral and show that

ẋ1 = v0

[
1 +

√
αβ
(

cos(ω (t− t0)
)
− 1
)]

ẋ2 = v0
m1

m2

√
αβ
(

cos(ω (t− t0)
)
− 1
)

How does β depend on the masses?

e) Verify that at release we have

ẋ1 = v0
(
1− 2

√
αβ
)

ẋ2 = v0
2 m1

m2

√
αβ
)

Verify that these expressions comply to momentum conservation.
Verify that the expressions obey energy conservation iff α = β =

m2/(m1 + m2).

f) What does this imply for particles of identical masses, m1 = m2?
How does your result fit to the motion observed in Newton’s
cradle? What does it tell about the assumption of instanta-
neous collisions of balls that is frequently adopted in theoretical
physics?

Problem 3.18. Inelastic collisions, ballistics, and cinema heroes

Let us take a look at how cinema heroes shoot.

“Free Metal Jacket” movie poster
(wikimedia fair use)

a) The title of Stanley Kubrick’s movie Full Metal Jacket refers to
full metal jacket bullets, i. e. projectiles as they were used in the
M16 assault rifle used in the Vietnam war. Its bullets have a mass
of 10 g and they set a 1 kg wooden block revolving at a 1 m arm
into a 8 Hz motion. What is the velocity of the bullets?

The bullets of a 9 mm Luger pistol have a mass of 8 g and they
are fired with a muzzle velocity of 350 m s−1. What is the result-
ing angular speed θ̇ of the wooden block?

b) Alternatively one can preform this measurement by shooting the
bullet into a swing where a wooden block of mass M is attached
to ropes of length `. Initially it is at rest. Consider angular mo-
mentum conservation to determine its velocity immediately after
impact. What does this tell about the kinetic energy immediately

© Jürgen Vollmer — 2021-10-07 04:50:35+02:00

https://en.wikipedia.org/wiki/File:Full_Metal_Jacket_poster.jpg
https://en.wikipedia.org/w/index.php?curid=22004513
https://www.imdb.com/title/tt0093058/?ref_=fn_al_tt_1


3.6. Problems 87

after the impact, and what about the maximum height of reached
by the swing in its subsequent motion?

Let L be 2 m. Which mass is required to let the swing go up to
the height of its spindle?

Dutch Movie poster of Planet Terror.
(wikimedia fair use license)

What does this tell about the recoil of the pistol and the rifle?
What do you think now about the shooting scenes that you
might recall from Rambo movies or grindhouse movies like
Planet Terror.

3.6.2 Mathematical Foundation
add: problems for line
integrals, in particular
parameterization with
length

add: calculation of the
length of a path

add: problems for con-
tour lines

Problem 3.19. Solving integrals by partial integration

Evaluate the following integrals by partial integration∫
dx f (x) g′(x) = f (x) g(x)−

∫
dx f ′(x) g(x)

a)
∫ b

a
dx x ekx

b)
∫ b

a
dx x2 ekx

c)
∫ ∞

0
dx x3 e−x2

�d)
∫ b

a
dx xn ekx, n ∈N

The integral d) can only be given as a sum over j = 0, . . . , n.

Problem 3.20. Substitution with trigonometric and hyperbolic
functions

Figure 3.13: Illustration of the sub-
stitute rule for integrals that may be
represented in terms of a Riemann
sum ():∫ f (xF)

f (xI )
d f g( f ) '∑

i
∆ fi g( fi)

'∑
i

∆xi
∆ fi

∆xi
g( f (xi))

'
∫ xF

xI
dx

d f (x)
dx

g( f (x))

provide reference

Evaluate the following integrals by employing the suggested
substitution, based on the substitution rule∫ f (xF)

f (xI)
d f g( f ) =

∫ xF

xI

dx
d f (x)

dx
g( f (x))

with a function f (x) that is bijective on the integration interval
[xI , xF]. A graphical illustration of the rule is given in Figure 3.13.

a)
∫ b

a
dx

1√
1− x2

by substituting x = sin θ

b)
∫ b

a
dx

1√
1 + x2

by substituting x = sinh z

c)
∫ b

a
dx

1
1 + x2 by substituting x = tan θ

d)
∫ b

a
dx

1
1− x2 by substituting x = tanh z

Problem 3.21. Gradients and contour lines

a) Contour lines in the (x, y)-plane are lines y(x) or x(y) where
a functions f (x, y) takes a constant value (cf. Definition 3.7).
Sketch the contour lines of the functions

f1(x, y) = (x2 + y2)−1 and f2(x, y) = −x2 y2
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b) Determine the gradients ∇ f1(x, y) and ∇ f2(x, y).
Hint: The gradient ∇ f (x, y) of a function f (x, y) is the vector
(∂x f (x, y), ∂y f (x, y)) that contains the two partial derivatives of
the (scalar) function f (x, y) (cf. Equation (3.4.2)).

c) Indicate the direction and magnitude of the gradient by appro-
priate arrows in the sketch showing the contour lines. In which
direction is the gradient pointing?

3.6.3 Transfer and Bonus Problems, Riddles

Problem 3.22. Moeschenbroeks double-cone experiment

User:FA2010, Public domain

In the margin we show Moeschenbroeks double-cone experi-
ment. The setup involves three angles:

1. The opening angle α between the two rails.
2. The angle φ of the rail surface with the horizontal.
3. The opening angle θ of the cone.
When it is released from the depicted position the cone might

move to the right, to the left, and it could stay where it is. How
does the selected direction of motion depend on the choice of the
three angles?

Problem 3.23. Coulomb potential and external electric forces

We consider the Hydrogen atom to be a classical system as sug-
gested by the Bohr-Sommerfeld model. Let the proton be at the
center of the coordinate system and the electron at the position r.
The interaction between the proton and the electron is described by
the Coulomb potential α/|r|. In addition to this interaction there
is a constant electric force acting, that is described by the potential
F · r. Altogether the motion of the electron is therefore described by
the potential

U = − α

|r| − F · r

a) Sketch the system and the relevant parameters.

b) Which force is acting on the particle? How do its equation of
motion look like?

c) Verify that the energy is conserved.

d) Show that also the following quantity is a constant of motion,

I = F · (ṙ× L)− α
F · r
|r| +

1
2
(F × r)2

Here L is the angular momentum of the particle with respect to
the origin of the coordinate system.

3.7 Further reading

Sommerfeld’s (1994) classical discussion of Newton’s axioms dates
back to the 1940s, but still is a one of the most superb expositions of
the topic.
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A comprehensive discussion of the flight of water bottle rockets
has been given in Finney (2000), and it has been augmented by
a discussion of subtle corrections involving the thermodynamic
expansion of air in Gommes (2010).
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acceleration, 61
angular momentum, 78

conservation, 78

collision
inelastic, with rotor, 78

one dimensional, 77

conservative force, 73

energy conservation, 75
work, 73

constant of motion, 70
angular momentum, 78

kinetic energy, 71

momentum, 76

total energy, 75

contour line, 82, 87

energy
of impact in accidents, 76

EOM, see equation of motion
initial condition, 65

equation of motion, 64

force
conservative, 73

Hookian spring, 64

free flight
cat and men, 75

inertial system, 63
initial condition, 65

integral
line, 72

isosurface, 82, 87

kinetic energy, 71
conservation, 71

line integral, 72

momentum, 76
conservation, 76

Newton
2nd law, 64
3rd law, 66
vs. Aristotle, 67

potential, 73

reference frame, 63
rest frame, 63

rest frame, 63

total energy, 75
conservation, 75

vector
gradient, 71

time derivative, 61

work, 72
conservative force, 73
energy of impact, 76
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