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2
Balancing Forces and Torques

In Chapter 1 we observed that positions and velocities of parti-
cles are specified by indicating their unit, magnitude and direc-
tions. Hence, they are vectors. In the present chapter we learn how
vectors are defined in mathematics, and how they are used and
handled in physics. In order to provide a formal definition we in-
troduce a number of mathematical concepts, like groups, that will
be revisited in forthcoming chapters. As first important application
we deal with balancing forces and torques.

Mobile (sculpture) in the style of Alexander Calder
Andrew Dunn / wikimedia CC BY-SA 2.0

At the end of this chapter we will be able to determine how a mo-
bile hangs from the ceiling.

https://en.wikipedia.org/wiki/Alexander_Calder
https://commons.wikimedia.org/wiki/File:Mobile_(sculpture)_in_the_style_of_Alexander_Calder.jpg
https://creativecommons.org/licenses/by-sa/2.0


14 2. Balancing Forces and Torques

2.1 Motivation and outline: forces are vectors

In mechanics we use vectors to describe forces, displacements and
velocities. A displacement describes the relative position of two
points in space, and the velocity can be thought of as a distance
divided by the time needed to go from the initial to the final point.
(A mathematically more thorough definition will be given in Chap-
ter 3.) For forces it is of paramount importance to indicate in which
direction they are acting. Similarly, in contrast to speed, a velocity
can not be specified in terms of a number with a unit, e.g. 5 m/s.
By its very definition one also has to specify the direction of mo-
tion. Finally, also a displacement involves a length specification and
a direction.

x
y

cartesian

θR

polar

Figure 2.1: The displacement of the
red point from the bottom left corner
to the the middle of the page can
either be specified by the direction θ
and the distance R (polar coordinates,
top), or by the distances x and y along
the sides of the paper (Cartesian
coordinates, bottom).

Example 2.1: Displacement of a red dot from the lower left
corner to the middle of a paper

This displacement is illustrated in Figure 2.1. It can either
be specified in terms of the distance R of the point from the
corner and the angle θ of the line connecting the points and
the lower edge of the paper (i.e. the direction of the point).
Alternatively, it can be given in terms of two distances (x, y)
that refer to the length x of a displacement along the edge
of the paper and a displacement y in the direction vertical to
the edge towards the paper. This can be viewed as result of
two subsequent displacements indicated by gray arrows.

add more explanation

In three dimensions, one has to adopt a third direction out of
the plane used for the paper, and hence three numbers, to specify a
displacements—or indeed any other vector.

displacement velocity force
x = (x1, x2, x3) v = (v1, v2, v3) F = ( f1, f2, f3)

unit [x] = m [v] = m s−1 [F] = kg m/s2

magnitude |x| =
√

x2
1 + x2

2 + x2
3 |v| =

√
v2

1 + v2
2 + v2

3 |F| =
√

f 2
1 + f 2

2 + f 2
3

direction x̂ = x/|x| v̂ = v/|v| F̂ = F/|F|

A basic introduction of mechanics can be given based on this
heuristic account of vectors. However, for the thorough exposition
that serve as a foundation of theoretical physics a more profound
mathematical understanding of vectors is crucial. Hence, a large
part of this chapter will be devoted to mathematical concepts.

Outline

In the first part of this chapter we introduce the mathematical no-
tions of sets and groups that are needed to provide a mathemati-
cally sound definition of a vector space. Sets are the most funda-
mental structure of mathematics. It denotes a collection of elements,
e.g., numbers like the digits of our number system {1, 2, . . . , 9} or

© Jürgen Vollmer — 2021-11-01 01:29:45+01:00



2.2. Sets 15

the set of students in my class. Mathematical structures refer to
sets where the elements obey certain additional properties, like in
groups and vector spaces. They are expressed in terms of operations
that take one or several elements of the set, and return a result that
may or may not be part of the given set. When an operation f takes
an element of a set A and returns another element of A we write
f : A → A. When an operation ◦ takes two elements of a set A and
returns a single element of A we write1 ◦ : A× A → A. Equipped 1 Here A× A is the set, (a1, a2), of all

pairs of elements a1, a2 ∈ A. Further
details will be given in Definition 2.3
below.

with the mathematical tool of vectors we will explore the physi-
cal concepts of forces and torques, and how they are balanced in
systems at rest.

2.2 Sets

In mathematics and physics we often wish to make statements
about a collection of objects, numbers, or other distinct entities.

Definition 2.1: Set

A set is a gathering of well-defined, distinct objects of our
perception or thoughts.
An object a that is part of a set A is an element of A;
we write a ∈ A.
If a set M has a finite number n of elements we say that its
cardinality is n. We write |M| = n.

Remark 2.1. Notations and additional properties:

a) When a set M has a finite number of elements, e.g., +1 and −1,
one can specify the elements by explicitly stating the elements,
M = {+1,−1}. In which order they are states does not play a
role, and it also does not make a difference when elements are
provided several times. In other words the set M of cardinality
two can be specified by any of the following statements

M = {−1,+1} = {+1,−1} = {−1, 1, 1, 1, } = {−1, 1,+1,−1}

b) If e is not an element of a set M, we write e 6∈ M. For instance
−1 ∈ M and 2 6∈ M.

c) There is exactly one set with no elements, i. e. with cardinality
zero. It is denoted as empty set, ∅.

�

Example 2.2: Sets

• Set of capitals of German states:

AC = {Berlin, Bremen, Hamburg, Stuttgart, Mainz, Wies-
baden, München, Magdeburg, Saarbrücken, Potsdam,
Kiel, Hannover, Dresden, Schwerin, Düsseldorf, Erfurt}

© Jürgen Vollmer — 2021-11-01 01:29:45+01:00



16 2. Balancing Forces and Torques

• Set of small letters in German:

AL = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v,
w, x, y, z, ä, ö, ü, ß}

• Set of month with 28 days:2

AM = {January, February, March, April, May, June, July,
August, September, October, November, December}

The cardinalities of these sets are
|AC| = 16, |AL| = 30, and |AM| = 12.

2 Most of them have even more days.

Example 2.3: Sets of sets

A set can be an element of a set. For instance the set

M = {1, 3, {1, 2}}

has three elements 1, 3 and {1, 2} such that |M| = 3, and

1 ∈ M , {1, 2} ∈ M , 2 6∈ M {1} /∈ M .

Often it is bulky to list all elements of a set. In obvious cases
we use ellipses such as AL = {a, b, c, . . . , z, ä, ö, ü, ß} for the set
given in Example 2.2. Alternatively, one can provide a set M by
specifying the properties A(x) of its elements x in the following
form

M︸︷︷︸
The set M

=︸︷︷︸
contains

{︸︷︷︸
all elements

x︸︷︷︸
x,

:︸︷︷︸
with :

A(x)︸ ︷︷ ︸
properties . . .

}.

where the properties specify one of several properties of the ele-
ments. The properties are separated by commas, and must all be
true for all elements of the set.

Example 2.4: Set definition by property

The set of digits D = {1, 2, 3, 4, 5, 6, 7, 8, 9} can also be
defined as follows D = {1, . . . , 9} = {x : 0 < x ≤ 9, x ∈ Z}.
In the latter definition Z denotes the set of all integer num-
bers.

In order to specify the properties in a compact form we use logi-
cal junctors as short hand notation. In the present course we adopt
the notations not ¬, and ∧, or ∨, implies⇒, and is equivalent⇔
for the relations indicated in 2.1.

The definition of the digits in Example 2.4 entails that all ele-
ments of D are also numbers in Z: we say that D is a subset of Z.

3 Some authors use ⊂ instead of ⊆,
and ( to denote proper subsets.

Definition 2.2: Subset and Superset

The set M1 is a subset of M2, if all elements of M1 are also
contained in M2. We write3M1 ⊆ M2. We denote M2 then as
superset of M1, writing M2 ⊇ M1.

© Jürgen Vollmer — 2021-11-01 01:29:45+01:00



2.2. Sets 17

Table 2.1: List of the results of different
junctors acting on two statements A
and B. Here 0 and 1 indicate that a
statement is wrong or right, respec-
tively. In the rightmost column we
state the contents of the expression
in the left column in words. The final
three lines provide examples of more
complicated expressions.

A 0 0 1 1

B 0 1 0 1

¬A 1 1 0 0 not A
¬B 1 0 1 0 not B

A ∨ B 0 1 1 1 A or B
A ∧ B 0 0 0 1 A and B

A⇒ B 1 1 0 1 A implies B
A⇔ B 1 0 0 1 A is equivalent to B

A ∨ ¬B 1 0 1 1 A or not B
¬A ∧ B 0 1 0 0 not A and B
A ∧ ¬B 0 0 1 0 A and not B

The set M1 is a proper subset of M2 when at least one of
the elements of M2 is not contained in M1. In this case
|M1| < |M2|, and we write M1 ⊂ M2 or M2 ⊃ M1.

Example 2.5: Subsets

• The set of month with names that end with “ber” is a
subset of the set AM of Example 2.2

{September, October, November, December} ⊆ AM

• For the set M of Example 2.3 one has

{1} ⊆ M , {1, 3} ⊆ M , {1, 2} 6⊆ M , {2, {1, 2}} 6⊆ M .

Note that {1, 2} is an element of M. However, it is not a
subset. The last two sets are no subsets because 2 6∈ M.

Two sets are the same when they are subsets of each other.

Theorem 2.1: Equivalence of Sets

Two sets A and B are equal or equivalent, iff

(A ⊆ B) ∧ (B ⊆ A) .

Remark 2.2 (iff). In mathematics “iff” indicates that something holds
“if and only if”. Observe its use in the following two statements: A
number is an even number if it is the product of two even numbers.
A number is an even number iff it is the product of an even number
and another number. �

Remark 2.3 (precedence of operations in logical expressions.). In
logical expressions we first evaluate ∈, 6∈ and other set operations
that are used to build logical expressions. Then we evaluate the
junctor ¬ that is acting on a a single logical expression. Finally the
other junctors ∧, ∨,⇒, and⇔ are evaluated. Hence, the brackets
are not required in Theorem 2.1. �

© Jürgen Vollmer — 2021-11-01 01:29:45+01:00



18 2. Balancing Forces and Torques

Proof of Theorem 2.1.
A ⊆ B implies that a ∈ A⇒ a ∈ B.
B ⊆ A implies b ∈ B⇒ b ∈ A.
If A ⊆ B and B ⊆ A, then we also have a ∈ A⇔ a ∈ B.

The description of sets by properties of its members, Exam-
ple 2.4, suggests that one will often be interested in operations on
sets. For instance the odd and even numbers are subsets of the nat-
ural numbers. Together they form this set, and one is left with the
even numbers when removing the odd numbers from the natural
numbers. Hence, we define the following operations on sets.

Figure 2.2: Intersection of two sets.

Figure 2.3: Union of two sets.

Figure 2.4: Difference of two sets.

Figure 2.5: Complement of a set.

Definition 2.3: Set Operations

For two sets M1 and M2 we define the following operations:

• Intersection: M1
⋂

M2 = {m : m ∈ M1 ∧m ∈ M2},

• Union: M1
⋃

M2 = {m : m ∈ M1 ∨m ∈ M2},

• Difference: M1\M2 = {m : m ∈ M1 ∧m /∈ M2},

• The complement of a set M in a universe U is defined for
subsets M ⊆ U as MC = {m ∈ U : m /∈ M} = U\M.

• The Cartesian product of two sets M1 and M2 is defined as
the set of ordered pairs (a, b) of elements a ∈ M1 and

b ∈ M2: M1 ×M2 = {(a, b) : a ∈ M1, b ∈ M2}.

A graphical illustration of the operations is provided in
Figures 2.2 to 2.5.

Example 2.6: Set operations: participants in my class

Consider the set of participants P in my class. The sets of
female F and male M participants of the class are proper
subsets of P with an empty intersection F

⋂
M. The set of

non-female participants is P\F. The set of heterosexual cou-
ples in the class is a subset of the Cartesian product F × M.
Furthermore, the union F

⋃
M is a proper subset of P, when

there is a participant who is neither female nor male.

Definition 2.4: Logical quantors

A logical statement S about elements a of a set A may hold

• for all elements of a set — we write: ∀a ∈ A : S

• for some elements of a set — we write: ∃a ∈ A : S

• for exactly one elements of a set — we write: ∃!a ∈ A : S

© Jürgen Vollmer — 2021-11-01 01:29:45+01:00



2.2. Sets 19

name symbol description

natural numbers N {1, 2, 3, . . .}
natural numbers with 0 N0 N

⋃
{0}

negative numbers −N {−n : n ∈N}
even numbers 2N {2 n : n ∈N}
odd numbers 2 N− 1 {2 n− 1 : n ∈N}
integer numbers Z (−N)

⋃
N0

rational numbers Q
{

p
q : p ∈ Z, q ∈N

}
real numbers R see below
complex numbers C R + iR, where i =

√
−1

Table 2.2: Summary of important sets
of numbers.

Example 2.7: Logical quantors and properties of set ele-
ments

Let |m| denote the number of days in a month a ∈ AM

(cf. Example 2.2). Then the following statements are true:
There is exactly one month that has exactly 28 days:

∃!a ∈ AM : |a| = 28

Some months have exactly 30 days:

∃a ∈ AM : |a| = 30

All month have at least 28 days:

∀a ∈ AM : |a| ≥ 28

2.2.1 Sets of Numbers

Many sets of numbers that are of interest in physics have infinitely
many elements. We construct them in Table 2.2 based on the natu-
ral numbers N: check ISO norm

N: remark on Neumann
construction?

N = {1, 2, 3, . . .}

or the natural numbers with zero

N0 = N
⋃
{0} .

Remark 2.4. Some authors adopt the convention that zero is in-
cluded in the natural numbers N. When this matters you have to
check which convention is adopted. �

There are many more sets of numbers. For instance, in math-
ematics the set of constructable numbers is relevant for certain
proofs in geometry, and in physics and computer graphics quater-
nions are handy when it comes to problems involving three-
dimensional rotations. In any case one needs intervals of numbers.

© Jürgen Vollmer — 2021-11-01 01:29:45+01:00
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20 2. Balancing Forces and Torques

Definition 2.5: Interval of Real Numbers R

An interval is a continuous subset of a set of numbers. We
distinguish open, closed, and half-open subsets.

• closed interval: [a, b] = {x : x ≥ a, x ≤ b} ,

• open interval: (a, b) = ]a, b[ = {x : x > a, x < b} ,

• right open interval: [a, b) = [a, b[ = {x : x ≥ a, x < b} ,

• left open interval: (a, b] = ]a, b] = {x : x > a, x ≤ b} .

Subsets of R will be denoted as real intervals.
add limits, closure, and
R as closure of Q.

2.2.2 Self Test

Problem 2.1. Relations between sets

Let A, B, C, and D be pairwise distinct elements. Select one of
the symbols

∈, 6∈, 3, 63, ⊂, 6⊂, ⊃, 6⊃, =

and avoid 6∈, 63, 6⊂, 6⊃ wherever possible.

a) {A, B} � {A, B, C},

c) {∅} � ∅,

e) A � {A, B, C},

g) {A, C, D} \ {A, B} � {A, B, C},b) {A} � B,

d) {{A}} � {{A}, {B}},

f) {A, C, D} ∩ {A, B} � {A, B, C, D},

h) {A, C, D} ∪ {A, B} � A.

Problem 2.2. Intervals

a) Provide [1; 17]∩]0; 5[ as a single interval.

b) Provide [−1, 4]\[1, 2[ as union of two intervals.

Problem 2.3. Sets of numbers

Which of the following statements are true?

a) {6 · z|z ∈ Z} ⊂ {2 · z|z ∈ Z}.

b) {2 · z|z ∈ Z} ∩ {3 · z|z ∈ Z} = {6 · z|z ∈ Z}.

c) Let T(a) be the set of numbers that divide a. Then

∀a, b ∈N : T(a) ∪ T(b) = T(a · b)

Example: T(2) = {1, 2}, T(3) = {1, 3}, and T(6) = {1, 2, 3, 6}.

© Jürgen Vollmer — 2021-11-01 01:29:45+01:00



2.3. Groups 21

2.3 Groups

A group G refers to a set of operations t ∈ G that are changing
some data or objects. Elementary examples refer to reflections
in space, turning some sides of a Rubik’s cube, or translations in
space, as illustrated in Figure 2.1. The subsequent action of two
group elements t1 and t2 of G is another (typically more compli-
cated) transformation t3 ∈ G. Analogous to the concatenation of
functions, we write t3 = t2 ◦ t1, and we say t3 is t2 after t1. The set
of transformations forms a group iff it obeys the following rules.

Definition 2.6: Group

A set (G, ◦) is called a group with operation ◦ : G × G → G
when the following rules apply

a) The set is closed: ∀g1, g2 ∈ G : g1 ◦ g2 ∈ G.

b) The set has a neutral element: ∃e ∈ G ∀g ∈ G : e ◦ g = g.

c) Each element has an inverse element:
∀g ∈ G ∃i ∈ G : g ◦ i = e.

d) The operation ◦ is associative:
∀g1, g2, g3 ∈ G : (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

Wüstholz rather sug-
gests:
∀e ∈ G : e ◦ f = f
⇒ ∀g ∈ G ∃h ∈ G :
h ◦ g = e

Definition 2.7: Commutative Group

A group (G, ◦) is called a commutative group when

e) the group operation is commutative:
∀g1, g2 ∈ G : g1 ◦ g2 = g2 ◦ g1.

Remark 2.5. Commutative groups are also denoted as Abelian groups.
�

When the group has a finite number of elements the result of
the group operation can explicitly be specified by a group table.
We demonstrate this by the smallest groups. The empty set can
not be a group because it has no neutral element. Therefore the
smallest groups have a single element and two elements. Both of
these groups are commutative.

Example 2.8: Smallest groups

({n},�) comprises only the neutral element.
� n
n n

The smallest non-trivial group has two elements ({0, 1},⊕)
with ⊕ 0 1

0 0 1
1 1 0

© Jürgen Vollmer — 2021-11-01 01:29:45+01:00



22 2. Balancing Forces and Torques

It describes the turning of a piece of paper:
Not turning, 0, does not change anything (neutral element).
Turning, 1, shows the other side, and turning twice is
equivalent to not turning at all (1 is its own inverse).

Remark 2.6. The group properties imply that all elements of the
group must appear exactly once in each row and each column of
the group table. As a consequence the smallest non-commutative
group is the dihedral group of order 6 with six elements that is
discussed in Problem 2.7. �

Example 2.9: Non-commutative groups: rotations

The rotation of an object in space is a group. In particular
this holds for the 90◦-rotations of an object around a ver-
tical and a horizontal axis. Figure 2.6 illustrates that these
rotations do not commute.

Figure 2.6: Rotation of a book by mul-
tiples of π/2 around three orthogonal
axes.

watch out: there is a
problem with inverse
& neutral elts!

Example 2.10: Non-commutative groups: edit text fields

We consider the text fields of a fixed length n in an electronic
form. Then the operations
“Put the letter L into position

⊔
of the field”

with L ∈ {_, a, . . . , z, A, . . . , Z}
and

⊔ ∈ {1, . . . , n} form a group.
Also in this case one can easily check that the order of the
operations is relevant. In the left and right column the same
operations are preformed for a text field of length n = 4:

|_|_|_|_| |_|_|_|_|
→ |M|_|_|_| → |P|_|_|_|
→ |M|a|_|_| → |P|h|_|_|
→ |M|a|t|_| → |P|h|y|_|
→ |M|a|t|h| → |P|h|y|s|
→ |M|a|t|s| → |P|h|y|h|
→ |M|a|y|s| → |P|h|t|h|
→ |M|h|y|s| → |P|a|t|h|
→ |P|h|y|s| → |M|a|t|h|

Remark 2.7. Notations and additional properties:

a) Depending of the context the inverse element is denoted as g−1

or as −g. This depends on whether the operation is considered
a multiplication or rather an addition. In accordance with this
choice the neutral element is denoted as 1 or 0.

b) The second property of groups, b) ∃e ∈ G ∀g ∈ G : e ◦ g = g,
implies that also g ◦ e = g. The proof is provided as Problem 2.8.

© Jürgen Vollmer — 2021-11-01 01:29:45+01:00



2.3. Groups 23

c) When a group is not commutative then one must distinguish the
left and right inverse. The condition g ◦ i = e does not imply
i ◦ g = e. However, there always is another element j ∈ G such
that j ◦ g = e. An example is provided in Problem 2.7.

�

2.3.1 Self Test

Problem 2.4. Checking group axioms

Which of the following sets are groups?

a) (N,+)

b) (Z,+)

c) (Z, ·)

d) ({+1,−1}, ·)

e) ({0},+)

� ({1, . . . , 12},⊕)

where ⊕ in f) refers to adding as we do it on a clock,
e.g. 10⊕ 4 = 2.

Problem 2.5. The group with three elements

Let (G, ◦) be a group with three elements {n, l, r}, where n is the
neutral element.

a) Show that there only is a single choice for the result of the group
operations a ◦ b with a, b ∈ G. Provide the group table.

b) Verify that the group describes the rotations of an equilateral
triangle that interchange the positions of the angles.

c) Show that there is a bijective map m : {n, l, r} → {0, 1, 2} with
the following property:

∀a, b ∈ G : a ◦ b =
(
m(a) + m(b)

)
mod3 .

We say that the group G is isomorphic to the natural numbers
with addition addition modulo 3.4

4 The natural number modulo n
amount to n classes that represent
the remainder of the numbers after
division by n. For instance, for the
natural numbers modulo two the
0 represents even numbers, and
the 1 odd numbers. Similarly, for
the natural numbers modulo three
the 0 represents numbers that are
divisible by three, and for the sum
of 2 and 2 modulo 3 one obtains
(2 + 2)mod3 = 4mod3 = 1.

Problem 2.6. Symmetry group of rectangles

A polygon has a symmetry with an associated symmetry opera-
tion a when a only interchanges the vertices of the polygon. It does
not alter the position. To get a grip on this concept we consider the
symmetry operations of a rectangle.

a) Sketch how reflections with respect to a symmetry axis inter-
change the vertices of a rectangle. What happens when the re-
flections are repeatedly applied?

b) Show that the symmetry operations form a group with four ele-
ments. Provide a geometric interpretation for all group elements.

c) Provide the group table.
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Watchduck (a.k.a. Tilman Piesk), wikimedia
CC BY-SA
Figure 2.7: Reflections of equilateral
triangle with respect to the three
symmetry axes form a group with six
elements; see Problem 2.7.

Problem 2.7. Dihedral group of order 6

Figure 2.7 illustrates the effect of reflections of a triangle with
respect to its three symmetry axis. All group elements can be gen-
erated by repeated action of two reflections, e.g. those denoted as a
and b in the figure.

a) Verify that the group properties, Definition 2.6, together with the
three additional requirements

a ◦ a = b ◦ b = e and a ◦ b ◦ a = b ◦ a ◦ b

imply that the group has exactly six elements,

G = {e, a, b, a ◦ b, b ◦ a, a ◦ b ◦ a} .

b) Work out the group table.

c) Verify by inspection that e is the neutral element for operation
from the right and from the left.

d) Verify that the group is not commutative, and provide an ex-
ample of a group element where the left inverse and the right
inverse differ.

e) The group can also be represented in terms of a reflection and
the rotations described in Problem 2.5. How would the graphical
representation, analogous to Figure 2.7, look like in that case.

Problem 2.8. Uniqueness of the neutral element

Proof that the group axioms, Definition 2.6, imply that e ◦ g = g
implies that also g ◦ e = g.

2.4 Fields

Besides being of importance to characterize the action of symmetry
operations like reflections or rotations, groups are also important
for us because they admit further characterization of sets of num-
bers.

The natural numbers are not a group. For the addition they are
lacking the neutral elements, and for adding and multiplications
they are lacking inverse elements.

In contrast the group (Z, +) is a commutative group with in-
finitely many elements.

Example 2.11: The group (Z, +)

The numbers Z with operation + form a group. This is
demonstrated here by checking the group axioms.

a) Addition of any two numbers provides a number:
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∀x, y ∈ Z : (x + y) ∈ Z.

b) The neutral element of the addition is 0:

∃ 0 ∈ Z ∀z ∈ Z : z + 0 = z = 0 + z.

c) For every element z ∈ Z there is an inverse (−z) ∈ Z:

∀z ∈ Z ∃(−z) ∈ Z : z + (−z) = 0 = (−z) + z.

d) The addition of numbers is associative:

∀z1, z2, z3 ∈ Z : z1 + (z2 + z3) = (z1 + z2) + z3.

However, the numbers Z still lack inverse elements of the mul-
tiplication. The rational numbers Q and the real numbers R are
commutative groups for addition and multiplication (with the spe-
cial rule that multiplication with 0 has no inverse element), and
their elements also obey distributivity. Such sets are called number
fields.

Definition 2.8: Field

A set (F,+, ·) is called a field with neutral elements 0 and 1
for addition + and multiplication ·, respectively, when its
elements comply with the following rules

a) (F,+) is a commutative group,

b) (F\{0}, ·) is a commutative group,

c) Addition and Multiplication are distributive:

∀a, b, c ∈ F : a · (b + c) = a · b + a · c

Remark 2.8. For the multiplication of field elements one commonly
suppresses the · for the multiplication, writing e.g. a b rather than
a · b. �

Example 2.12: The smallest field has two elements

The smallest field ({0, 1},⊕,�) comprises only the neutral
elements 0 of the group ({0, 1},⊕) with two elements, and 1
of the group ({1},�) with one element.

Example 2.13: Complex numbers are a field

a) The sum of two complex numbers z1 = x1 + iy1 and
z2 = x2 + iy2 amounts to

z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)

Hence, the group properties for + follow from the properties
of the real numbers x1, x2 and y1, y2, respectively.
b) They also entail distributivity of complex numbers.
c) The product of the complex numbers z1 = x1 + iy1 and
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z2 = x2 + iy2 amounts to

z1 · z2 = (x1 + iy1) · (x2 + iy2)

= (x1 x2 + iy1 x2 + iy1 x2 + i2 y1 y2)

= (x1 x2 − y1 y2) + i (y1 x2 + x1 y2)

Checking the group axioms based on this representation
of the complex numbers is tedious. One better adopts a
representation in terms of polar coordinates, z1 = R1 eiϕ1

and z2 = R2 eiϕ2 (see Figure 2.8) where (cf Problem 2.10)

z1 · z2 = R1 eiϕ1 · R2 eiϕ2 =
(

R1 R2
)

ei (ϕ1+ϕ2)

Here, the group properties follow from those of multiplying
R1 and R2, and adding ϕ1 and ϕ2.

x

z iy
φ

Figure 2.8: Complex numbers z can
be represented as z = x + iy in a
plane where (x, y) are the Cartesian
coordinates of z. Alternatively, one
can adopt a representation in terms
of polar coordinates z = R eiϕ where
R =

√
x2 + y2 and ϕ is the angle with

respect to the x-axis.

Remark 2.9 (complex conjugation). Each complex numbers z has a
complex conjugate, denoted as z∗ or z̄, that is defined as

∀z = x + iy = R eiϕ ∈ C : z̄ = x− iy = R e−iϕ (2.4.1)

Complex conjugation provides an effective way to calculate the
absolute value |z| = R of complex numbers

z z̄ = (x + iy) (x− iy) = x2 − i2 y2 = x2 + y2 = R2

and z z̄ = R eiϕ R e−iϕ = R2 e0 = R2

⇒ |z| =
√

z z̄ =
√

z̄ z (2.4.2)

�

Remark 2.10. In physics complex numbers are commonly applied to
describe rotations in a plane: Multiplication by eiθ rotates a complex
number z by an angle θ around the origin:

∀z = R eiϕ ∈ C : z · eiθ = R ei(ϕ+θ) (2.4.3)

�

2.4.1 Self Test

Problem 2.9. Checking field axioms

Which of the following sets are fields?

a) (Z,+, ·)

b) ({1, 2, . . . , 12},+mod12, ·mod12)
like on a clock: 11⊕ 2 = 13mod12 = 1 and 4� 5 = 20mod12 = 8.

c) ({0, 1, 2},+mod3, ·mod3)
for instance 2� 2 = 2 + 2 = 4mod3 = 1 and 2⊕ 1 = 3mod3 = 0.
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Problem 2.10. Euler’s equation and trigonometric relations

Euler’s equation eix = cos x + i sin x relates complex values
exponential functions and trigonometric functions.

a) Sketch the position of R eix in the complex plane, and indicate
how Euler’s equation is related to the Theorem of Pythagoras.

b) Complex valued exponential functions obey the same rules as
their real-valued cousins. In particular, for R = 1 one has
ei (x+y) = eix eiy. Compare the real and complex parts of the
expressions on both sides of this relation. What does this imply
about sin(2x) and cos(2x)?

2.5 Vector spaces

With the notions introduced in the preceding sections we can give
now the formal definition of a vector space

Definition 2.9: Vector Space

A vector space (V, F,⊕,�) is a set of vectors v ∈ V over a field
(F,+, ·) with binary operations ⊕ : V× V→ V and
� : F× V→ V complying with the following rules

a) (V,⊕) is a commutative group

b) associativity: ∀a, b ∈ F ∀v ∈ V : a� (b� v) = (a · b)� v

c) distributivity 1:
∀a, b ∈ F ∀v ∈ V : (a + b)� v = (a� v)⊕ (b� v)

d) distributivity 2:
∀a ∈ F ∀v, w ∈ V : a� (v⊕w) = (a� v)⊕ (a�w)

Remark 2.11. It is common to use + and · instead of ⊕ and �, re-
spectively, with the understanding that it is clear from the context
in the equation whether the symbols refer to operations involving
vectors, only numbers, or a number and a vector.

Moreover, as for the multiplication of numbers, one commonly
drops the � for the multiplication, writing e.g. a v rather than a · v.
�

Example 2.14: Vector spaces: displacements in the plane

For displacements we define the operation ⊕ as concate-
nation of displacements, and � as increasing the length of
the displacement by a given factor without touching the
direction.
a) The neutral element amounts to staying, one can always
shift back, move between any two points in a plane, and
commutativity follows form the properties of parallelo-
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grams, see Figure 2.9.
b,c) The vectors select the direction. Scalar multiplication
only changes the length of the vectors, and the length is a
real number.
d) Is implied by the Intercept Theorem.

c
b

a+
b+
c

a
Figure 2.9: The arrows indicate dis-
placements by three vectors a, b and
c, as discussed in Example 2.14. Their
commutativity and associativity follow
from the properties of parallelograms.
This holds in the plane, and also when
the vectors span a three-dimensional
volume.

Example 2.15: Vector spaces: RD

For every D ∈N the D-fold Cartesian product RD of the
real numbers is a vector space over R when defining the
operation + and · as

∀a, b ∈ RD : a + b =


a1

a2
...

aD

+


b1

b2
...

bD

 =


a1 + b1

a2 + b2
...

aD + bD



∀s ∈ R ∀a ∈ RD : s · a = s


a1

a2
...

aD

 =


s a1

s a2
...

s aD


In a more compact manner this is also written as,

∀a = (ai), b = (bi), s ∈ R : a + b = (ai + bi) ∧ s a = (s ai)

Checking the properties of a vector space is given as Prob-
lem 2.11a).

Definition 2.10: N ×M Matrix: MN×M(F)

For N, M ∈ N we define N × M matrices A, B ∈ MN×M(F)

over the field F as arrays, A = (aij), B = (bij), with compo-
nents aij, bij,∈ F.
The indices i ∈ {1, . . . , N} and j ∈ {1, . . . , M} label the rows
and columns of the array, respectively.
The sum of matrices and the product with a scalar are de-
fined component-wise as

∀A, B ∈MN×M, c ∈ F : A + B = (aij + bij) ∧ c · A =
(
c aij

)
Example 2.16: 2 × 3 matrices: summation and multiplica-

tion with a scalar

To be specific we provide here the sum of two 2 × 3 matrices
and the multiplication by a factor of π. Let

A =

2 3
4 5
6 7

 and B =

12 13
14 15
16 17

 .
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Then

A + B =

2 + 12 3 + 13
4 + 14 5 + 15
6 + 16 7 + 17

 =

14 16
18 20
22 24



π A =

2 3
4 5
6 7

 =

2 π 3 π

4 π 5 π

6 π 7 π


Example 2.17: Vector spaces: M× N matrices

The N ×M matrices over a field F, (MN×M, F,+, ·) form a
vector space. The proof is given as Problem 2.11b).

Definition 2.11: Matrix multiplication

For matrices one defines a product as follows

� : MN×L ×ML×M →MN×M

∀A ∈MN×L, B ∈ ×ML×M : A� B = C = (cij) =

(
L

∑
k=1

aikbkj

)

Remark 2.12. Also for matrix multiplication one commonly sup-
presses the � operator, writing A B rather than A� B. �

Remark 2.13. For square matrices MM×M the operation + and
� define a sum and a product that take two elements of MM×M

and return an element of MM×M. Nevertheless, (MM×M,+,�) is
not a field: In general, � is not commutative and matrices do not
necessarily have an inverse. �

Remark 2.14. Square matrices can be used to represent reflections
and rotations. In Problem 2.12 we provide an example of eight
matrices that form a symmetry group. �

Example 2.18: Vector spaces: Polynomials of degree 2

For a field F the polynomials P2 of degree two in the vari-
able x are defined as

P2 = {p = [p0 + p1 x + p2 x2] : p0, p1, p2 ∈ F}

This set is a vector space with respect to the summation

p + q = [p0 + p1 x + p2 x2] + [q0 + q1 x + q2 x2]

=
[
(p0 + q0) + (p1 + q1) x + (p2 + q2) x2

]
and the multiplication with a scalar s ∈ F

s · p = s · (p0 + p1 x + p2 x2) =
[
(s p0) + (s p1) x + (s p2) x2)

]
Proof. Each element p = [p0 + p1 x + p2 x2] of this
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vector space is uniquely described by the three-tuple
(p0, p1, p2) ∈ F3 with rules for addition and scalar multipli-
cation analogous to those discussed for R3 in Example 2.15.
Hence, the proof for R3 also applies here.

clarify

In physics we heavily make use of the correspondence evoked
by the proof in Example 2.18. The relative position of two objects
with respect to each other is commonly described in terms of (the
sum of several) vectors. In order to gain further information about
the positions, we will then recast the geometric problem about the
positions into an algebraic problem stated in terms of linear equa-
tions. The latter can then be solved by straightforward analytical
calculations. Vice versa, abstract findings about the solutions of sets
of equations will be recast in terms of geometry in order to visu-
alize the abstract results. The change of perspective has become a
major avenue to drive theoretical physics throughout the 20

th cen-
tury. For mechanical problems it forms the core of the mathematical
formulation of problems in robotics and computer vision. Quantum
mechanics is entirely build on the principles of vector spaces and
their generalization to Hilbert spaces. General relativity and quan-
tum field theory take Noether’s theorem as their common starting
point, which is build upon concepts from group theory and the re-
quirement that physical predictions must not change when taking
different choices how to mathematically describe the system. An
important concern of these notes is to serve as a training ground to
practice the changing of mathematical perspective for the purpose
of solving physics problem. As a first physical application we dis-
cuss now force balances. Then we resume the discussion of vector
spaces, taking a closer look into the calculation of coordinates and
distances.

2.5.1 Self Test

Problem 2.11. Checking vector-space properties

a) Verify that RD with the operations defined in Example 2.15 is a
vector space.

b) Verify that N ×M matrices, as defined in Definition 2.10, form a
vector space.

Problem 2.12. Geometric interpretation of matrices We explore the
set of the eight matrices

M =

{(
a 0
0 b

)
,

(
0 c
d 0

)
, with a, b, c, d ∈ {±1}

}

a) Let the action ◦ denote matrix multiplication. Verify that (M,�)
is a group with respect to matrix multiplication, as defined in
Definition 2.11. We denote its neutral element as I.
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b) Show that the group has five non-trivial elements s1, . . . s5 that
are self inverse:

si 6= I ∧ si ◦ si = I for i ∈ {1, . . . 6} .

c) Show that the other two elements d and r obey d ◦ r = r ◦ d = I,
that r = d ◦ d ◦ d, and that d = r ◦ r ◦ r.

d) Show that the set of points P = {(1, 1), (−1, 1), (−1,−1), (1,−1)}
is mapped to P by the action of an element of the group:

∀m ∈ M ∧ p ∈ P : p ◦m ∈ P

Hint: The action of the matrix on the vector is defined as fol-
lows

(v1, v2) ◦
(

m11 m12

m21 m22

)
=

(
v1 m11 + v2 m21

v1 m12 + v2 m22

)

e) What is the geometric interpretation of the group M? Illustrate
the action of the group elements in terms of transformations of a
suitably chosen geometric object.

Problem 2.13. Polynomials of degree N

For a field F the polynomials PN of degree N in the variable x
are defined as

PN =

{
p =

[
N

∑
i=0

pi xi

]
: p0, . . . , pN ∈ F

}

a) State the rules of addition and multiplication with a scalar s ∈ F

in analogy to the special case of N = 2 discussed in Exam-
ple 2.18.

b) Verify that the polynomials of degree N are a vector space.
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2.6 Physics application: balancing forces

Tug of War, Nikolay Bogdanov-Belsky, 1939

wikiart / public domain

It is an experience from tug of war that nothing moves as long
as forces are balanced. In this example one can add a ring to the
rope. The pulling forces act in opposing directions on the ring, as
illustrated in the upper left diagram in Figure 2.10. The lower left
diagram shows the case, where three parties are pulling on the ring.
In any case the total force on the ring amounts to the sum of the
acting forces, forces are vectors, and all sums of vectors obey the
same rules. As far as graphical illustrations are concerned the sum
of forces looks therefore the same as the sum of displacements in
Figure 2.1. For the ring the sums of the forces are illustrated in the
right panels of Figure 2.10. The ring does not move when they add
to zero.

de
d
e

ba a
b

c
c

Figure 2.10: The left diagrams show
two and three forces acting on a ring.
To the right it is demonstrated that
they add to zero.

Axiom 2.1: Force balance

Let N forces F1, . . . , FN act on a body. The body does not

move as long as the forces add to zero, i.e. iff 0 =
N

∑
i=1

Fi.

Remark 2.15. Strictly speaking the body might turn, but its center of
mass will not move. We come back to this point in Section 2.9. �

explain center of mass

Example 2.19: Balancing on a slackline

A person balances on a slackline that is fixed to trees at its
opposing sides. At the point where she is standing there are
three forces acting:
her weight Fd = Mg pushing downwards, and
forces along the slackline towards the left Fl and right Fr.
She can stay at rest as long as

0 = Fd + Fl + Fr

The forces Fl and Fr are counterbalanced by the trees. These
forces become huge when the slackline runs almost horizon-
tally. Every now a then a careless slackliner roots out a tree
or fells a pillar.

Fd

FrFl

Figure 2.11: For a person balancing on
a slackline, the gravitational force Fd
(d for down) is balanced by forces Fl
and Fr along the line that pull towards
the left and right, respectively. See
Example 2.19 for further discussion.

Example 2.20: Measuring the static friction coefficient

In a rough approximation static friction between two sur-
faces arises due to interlocking or surface irregularities. One
must lift a block by a little amount to unlock the surfaces. In
line with this argument dimensional analysis suggest that
static friction should be proportional to the normal force
between the surfaces. It is independent of the contact area,
and depends on the material of the surfaces. This is indeed
what is observed experimentally: The static friction force, f
in Figure 2.12, can take values up to a maximum value of γ
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times the normal force, FN , where γ typically takes values
slightly less than one. By splitting the gravitational force, mg
acting on a block on a plane into its components parallel and
normal to the surface (gray arrows in Figure 2.12), one finds
that in the presence of a force balance mg + f + FN = 0 one
has

FN = mg cos θ

f = mg sin θ

f < γFN


⇒ sin θ < γ cos θ

⇒ θ < θc = arctan γ

When θ exceeds θc the block starts to slide. Hence, one can
infer γ from measurements of θc.

-mg sinθ -mg cosθ 
-mg

FN f

θ π/2

Figure 2.12: (top) As long as θ is
smaller than the angle of friction the
blue block does not slide. (bottom)
Placing my cell phone on two rubber
bands on a folder provides a maxi-
mum angle of about 33◦, i. e. µ ' 0.5.
Using PhyPhox and a cell phone one
can easily measure θc and µ for other
combinations of materials.

2.6.1 Self Test

Problem 2.14. Particles at rest

There are three forces acting on the center of mass of a body. In
which cases does it stay at rest?

Problem 2.15. Graphical sum of vectors

Determine the sum of the vectors. In which cases is the resulting
vector vertical to the horizontal direction?

a)                        b)                          c)                             d)

e)                        )                          g)                              h)

Problem 2.16. Towing a stone

Three Scottish muscleman5 try to tow a stone with mass M = 5 In highland games one still uses Im-
perial Units. A hundredweight (cwt)
amounts to eight stones (stone) that
each have a mass of 14 pounds (lb).
A pound-force (lbg) amounts to the
gravitational force acting on a pound.
One can solve this problem without
converting units.

20 cwt from a field. Each of them gets his own rope, and he can act
a maximal force of 300 lbg as long as the ropes run in directions
that differ by at least 30◦.

a) Sketch the forces acting on the stone and their sum. By which
ratio is the force exerted by three men larger than that of a single
man?
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b) The stone counteracts the pulling of the men by a static friction
force µMg, where g is the gravitational acceleration. What is the
maximum value that the friction coefficient µ may take when the
men can move the stone?

2.7 The inner product

The position of a particle, the direction of its motion and the angle
of attack of forces are constantly changing during the motion of a
particle. In Chapter 3 we explore how they are related. The calcu-
lations are feasible because the involved vector spaces also have an
inner product.

Definition 2.12: Inner Product of vector spaces over R or C

The inner product on a vector space (V, R,⊕,�) defines a
binary operation 〈 _ | _ 〉 : V × V → R with the following
properties for all u, v, w ∈ V and c ∈ R

a) commutativity: 〈v | w〉 = 〈w | v〉

b) linearity in the first argument: 〈c v | w〉 = c 〈v | w〉

and 〈u + v | w〉 = 〈u | w〉+ 〈v | w〉

c) positivity: 〈v | v〉 ≥ 0

where equality applies iff v = 0, 〈v | v〉 = 0 ⇔ v = 0

For a vector space over C the requirement a) is replaced by

a) conjugate symmetry: 〈v | w〉 = 〈w | v〉

and the constant c is a complex number.

Remark 2.16. The idea underlying these properties is that
√
〈v | v〉

can be interpreted as the length of the vector v. �

Remark 2.17. Conjugate symmetry and linearity for the first argu-
ment imply the following relations for the second argument

〈v | c w〉 = 〈c w | v〉 = c̄ 〈w | v〉 = c̄ 〈v | w〉

〈u | v + w〉 = 〈v + w | u〉 = 〈v | u〉+ 〈w | u〉 = 〈u | v〉+ 〈u | w〉

�

Remark 2.18. Certain properties that hold for addition and scalar
multiplication do not hold for the inner product.

a) There is no inverse: The information about the direction of vec-
tors is lost upon taking the inner product. For instance, when
〈u | v〉 = 0 and 〈u | w〉 = 0 then one still can not tell the result of
〈v | w〉.

b) Associativity does not hold: 〈u | v〉w 6= u 〈v | w〉.

�
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Example 2.21: Inner product for real-valued vectors

For real-valued vectors the inner product is commutative,
〈v | w〉 = 〈w | v〉. The inner product is then also written as
v ·w, and it obeys bilinearity

u · (av + bw) = a(u · v) + b(u ·w)

Theorem 2.2: Geometric Interpretation of the Inner Product
for Real-Valued Vectors

For vectors of RD the inner product of two vectors a, b takes
the value

a · b = |a| |b| cos θ

where θ = ∠(a, b) is the angle between the two vectors,
see Figure 2.13.

b c

a
θ

Figure 2.13: Notations for the geomet-
ric interpretation of the inner product,
Theorem 2.2

Proof. The cosine theorem for triangles with sides of length a, b and
c and angle θ opposite to c states that

c2 = a2 + b2 − 2 a b cos θ

Let now a, b, and c be the length of the vectors a, b and c = a− b,
as shown in Figure 2.13. Then we have

a2 + b2 − 2 a b cos θ = c2 = c · c = (a− b) · (a− b)

= a · a− 2 a · b + b · b = a2 + b2 − 2 a · b
⇒ a · b = |a| |b| cos θ

Remark 2.19. Theorem 2.2 entails that the inner product u · v van-
ishes when the vectors are orthogonal, θ = π/2. Also in general we
say that

v and w are othogonal iff 〈v | w〉 = 0 .

�

Remark 2.20. The expression for the inner product provided in The-
orem 2.2 does not imply that the inner product is unique. Rather it
is a consequence of the cosine theorem that holds iff the geometric
interpretation of the vectors applies. This is demonstrated by an
example provided in Problem 2.17. �

2.7.1 Self Test

Problem 2.17. The inner product is not unique

Let v1 and v2 be two non-orthogonal vectors in a two-dimensional
vector space with an inner product 〈_ | _〉, and let λ1 and λ2 two
positive real numbers. Then the following relation defines another
inner product (_ | _):

(a | b) = λ1〈a | e1〉 〈e1 | b〉+ λ2〈a | e2〉 〈e2 | b〉 (2.7.1)
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36 2. Balancing Forces and Torques

a) Verify that the properties a) and b) of an inner product 〈_ | _〉 as
given in Definition 2.12 are also be obeyed by (_ | _).

b) Verify that (a | a) ≥ 0 iff λ1 and λ2 two positive real numbers.

c) Verify that (a | a) = 0 implies a = 0 iff the vector space is
two-dimensional.

Problem 2.18. Inner products for polynomials

Let p =
[
∑D

i=0 pi xi
]

and q =
[
∑D

i=0 qi xi
]

be elements of the vec-
tor space of N-dimensional polynomials. Verify that the following
rules define inner products on this space.

a) 〈p | q〉 =
N

∑
i=0

p̄i qi

b) 〈p | q〉[a,b] =
∫ b

a
dx

[
D

∑
i=0

pi xi

] [
D

∑
i=0

qi xi

]
for a, b, x ∈ R and

a < b.

c) Show that p = [1] and q = [x] are orthogonal with respect to the
inner product defined in a). Under which condition are they also
orthogonal for the inner product defined in b)?

2.8 Cartesian coordinates

Theorem 2.2 entails an extremely elegant possibility to deal with
vectors. We first illustrate the idea based on a two-dimensional
example, Figure 2.14, and then we develop the general theory:

e2
c

e1
c1

(e) e1

c 2(e
) e

2

Figure 2.14: Representation of the
vector c in terms of the orthogonal unit
vectors (e1, e2).

Let e1 and e2 be two orthogonal vectors that have unit length,

〈e1|e1〉 = 〈e2 | e2〉 = 1 and 〈e1|e2〉 = 0

For every vector c in the plane described by these two vectors, we
can then find two numbers c(e)1 and c(e)2 such that

c = c(e)1 e1 + c(e)2 e2

Now the choice of the vectors (e1, e2) entails that triangle with edge
c, c(e)1 e1, and c(e)2 e2 is right-angled and that

c(e)i = |c| cos∠(c, ei) = 〈c | ei〉 for i ∈ {1, 2}
⇒ c = 〈c | e1〉 e1 + 〈c | e2〉 e2

This strategy to represent vectors applies in all dimensions.

Definition 2.13: Basis and Coordinates

Let B = {ei}, i ∈ {1, . . . , D} be a set of D pairwise orthogo-

© Jürgen Vollmer — 2021-11-01 01:29:45+01:00



2.8. Cartesian coordinates 37

nal unit vectors

∀i, j ∈ {1, . . . , D} : ei · ej =

{
1 if i = j
0 else

in a vector space (V, F,+, ·) with inner product 〈_|_〉. We say
that B forms a basis for a D-dimensional vector space iff

∀v ∈ V ∃vi, i ∈ {1, . . . , D} : v =
D

∑
i=1

v(e)i ei

In that case we also have v(e)i = 〈v | ei〉, i ∈ {1, . . . , D}
and these numbers are called the coordinates of the vector v.
The number of vectors D in the basis of the vector space is
denoted as dimension of the vector space.

e2
c

e1

c
n
2
n
1

c1
(e) e1

c 2(e
) e

2

c1
(n) n

1

c 2(n
) n
2

Figure 2.15: Representation of the
vector c of Figure 2.14 in terms of the
bases (e1, e2) and (n1, n2).

Remark 2.21. The choice of a basis, and hence also of the coordi-
nates, is not unique. Figure 2.15 shows the representation of a vec-
tor in terms of two different bases (e1, e2) and (n1, n2). We suppress
the superscript that indicates the basis when the choice of the basis
is clear from the context. �

Remark 2.22. For a given basis the representation in terms of coordi-
nates is unique.

Proof. 1. The coordinates ai of a vector a are explicitly given by
ai = 〈a | ei〉. This provides unique numbers for a given basis set.

2. Assume now that two vectors a and b have the same coordi-
nate representation. Then the vector-space properties imply

a = ∑i ci ei

b = ∑i ci ei

}
⇒ a− b =

(
∑

i
ci ei

)
−
(

∑
i

ci ei

)
= ∑

i
(ci − ci) ei = ∑

i
0 ei = 0

⇒ a = b

Hence, they must be identical.

�

Remark 2.23 (Kronecker δij). It is convenient to introduce the abbre-
viation δij for

δij =

{
1 if i = j
0 else

where i, j are elements of some index set. This symbol is denoted as
Kronecker δ. With the Kronecker symbol the condition on orthogo-
nal unit vectors of a basis can more concisely be written as

ei · ej = δij

Moreover, for i, j ∈ {1, . . . , D} the numbers, δij, describe a D × D
matrix which is the neutral element for multiplication with another
D × D matrix, and also with a vector of RD, when it is interpreted
as a D× 1 matrix. �
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Theorem 2.3: Scalar product on RD and CD

The axioms of vector spaces and the inner product imply
that

on RD : 〈a | b〉 =
D

∑
i=1
〈a | i〉 〈i | b〉 =

D

∑
i=1

aibi

on CD : 〈a | b〉 =
D

∑
i=1
〈a | i〉 〈i | b〉 =

D

∑
i=1

ai b̄i

where the bar indicates complex conjugation of complex
numbers. This can be written as follows when representing
the coordinates as a 1D array of numbers

a1

a2
...

aD

 ·


b1

b2
...

bD

 = a1 b̄1 + a2 b̄2 + · · ·+ aD b̄D

where the complex conjugation does not apply for real num-
bers. This latter form of the inner product is denoted as
scalar product.

Proof. We first note that the case of real numbers can be interpreted
as special case of the complex numbers with a vanishing complex
part. Hence, we only provide the proof for the complex case.

We use the representations a = ∑i〈a | ei〉 ei and b = ∑j〈b | ej〉 ej,
and work step by step from the left to the aspired result:

〈a | b〉 =
〈

∑
i
〈a | ei〉 ei

∣∣∣∣∣ ∑
j
〈b | ej〉 ej

〉

= ∑
i
〈a | ei〉

〈
ei

∣∣∣∣∣ ∑
j
〈b | ej〉 ej

〉
= ∑

i
〈a | ei〉 ∑

j
〈b | ej〉 〈ei | ej〉

= ∑
i
〈a | ei〉 ∑

j
〈ej | b〉 δij

= ∑
i
〈a | ei〉 〈ei | b〉 .

Due to ai = 〈a | ei〉 and b̄i = 〈ei | b〉 we therefore have

〈a | b〉 = ∑
i

ai b̄i

Remark 2.24. Einstein pointed out that the sums over pairs of iden-
tical indices arise ubiquitously in calculations like to proof of Theo-
rem 2.3. He therefore adopted the convention that one always sums
over pairs of identical indices, and does no longer explicitly write
that down. This leads to substantially clearer representation of the
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calculation. For instance, the proof looks then as follows:

〈a | b〉 =
〈
〈a | ei〉 ei

∣∣∣ 〈b | ej〉 ej

〉
= 〈a | ei〉

〈
ei

∣∣∣ 〈b | ej〉 ej

〉
= 〈a | ei〉 〈b | ej〉 〈ei | ej〉 = 〈a | ei〉 〈b | ej〉 δij

= 〈a | ei〉 〈ei | b〉
⇒ 〈a | b〉 = ai b̄i

�

Remark 2.25. Dirac pointed out that the vector product 〈a | b〉
takes the form of the multiplication of a 1× D matrix for a and a
D× 1 matrix for b. He suggested to symbolically write down these
vectors as a bra vector 〈a| and a ket vector |b〉. When put together as
a bra-(c)-ket 〈a|b〉 one recovers the inner product, and introducing
|ei〉〈ei| and observing Einstein notation comes down to inserting a
unit matrix. For instance for 2× 2 vectors

〈a | b〉 = (a1, a2)

(
b̄1

b̄2

)
= (a1, a2)

(
1 0
0 1

)(
b̄1

b̄2

)
= 〈a | ei〉〈ei | b〉

Conceptually this is a very useful observation because it provides
an easy rule to sort out what changes in the equations when one
represents a problem in terms of a different basis. �

Example 2.22: Changing coordinates from basis (ei) to
basis (ni)

We observe Dirac’s observation that the expressions |ei〉〈ei|
and |ni〉〈ni| sandwiched between a bra and a ket amounts
to multiplication with one. Hence, the coordinates change
according to

a(n)i = 〈a | ni〉 = 〈a | ej〉〈ej|ni〉 = a(e)j 〈ej|ni〉

which amounts to multiplying the vector with entries
(a(e)j , j = 1, . . . , D) with the D× D matrix T with entries
tji = 〈ej|ni〉.
On the other hand, for the inner products we have

a(e)i b̄(e)i = 〈a | b〉 = 〈a | ei〉〈ei | b〉
= 〈a | nj〉〈nj | ei〉〈ei | nk〉〈nk|b〉 = 〈a | nj〉〈nj | nk〉〈nk|b〉

= 〈a | nj〉 δjk 〈nk|b〉 = 〈a | nj〉〈nj|b〉 = a(n)i b̄(n)i

Its value does not change, even though the coordinates take
entirely different values.

add worked example for an explicit coordinate transformation
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2.8.1 Self Test

Problem 2.19. Cartesian coordinates in the plane

a) Mark the following points in a Cartesian coordinate system:

(0, 0) (0, 3) (2, 5) (4, 3) (4, 0)

Add the points (0, 0) (4, 3) (0, 3) (4, 0), and connect the points
in the given order. What do you see?

b) What do you find when drawing a line segment connecting the
following points?

(0, 0) (1, 4) (2, 0) (−1, 3) (3, 3) (0, 0)

Problem 2.20. Geometric and algebraic form of the scalar product
The sketch in the margin shows a vector a in the plane, and its

representation as a linear combination of two orthonormal vectors
(ê1, ê2),

a = a cos θa ê1 + a sin θa ê2

Here, a is the length of the vector a,
and θ1 = ∠(ê1, a).

a) Analogously to a we consider another vector b with a represen-
tation

b = b cos θb ê1 + b sin θb ê2

Employ the rules of scalar products, vector addition and multi-
plication with scalars to show that

a · b = a b cos(θa − θb)

Hint: Work backwards, expressing cos(θa − θb) in terms of
cos θa, cos θb, sin θa, and sin θb.

b) As a shortcut to the explicit calculation of a) one can introduce
the coordinates a1 = a cos θa and a2 = a sin θa, and write a as a
tuple of two numbers. Proceeding analogously for b one obtains

a =

(
a1

a2

)
b =

(
b1

b2

)

How does the product a · b look like in terms of these coordi-
nates?

c) How do the arguments in a) and b) change for D dimensional
vectors that are represented as linear combinations of a set of
orthonormal basis vectors ê1, . . . , êD?

� What changes when the basis is not orthonormal?
What if it is not even orthogonal?
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Problem 2.21. Scalar product on RD

Show that the scalar product on RD takes exactly the same form
as for the complex case, Theorem 2.3.

However, complex conjugation is not necessary in that case.

Problem 2.22. Pauli matrices form a basis for a 4D vector space

Show that the Pauli matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

form a basis of the real vector space of 2× 2 Hermitian matrices, H,
with

A =

(
a11 a12

a21 a22

)
∈H ⇔ aij ∈ C ∧ aij = a∗ji

Show to that end

a) The matrices σ0, . . . , σ3 are linearly independent.

b) x0, . . . , x3 ∈ R ⇒
3

∑
i=0

xi σi ∈H

c) M ∈H ⇒ ∃x0, . . . , x3 ∈ R : M =
3

∑
i=0

xi σi

� What about linear combinations with coefficients z1, . . . , z3 ∈ C?
Is ∑3

i=0 zi σi Hermitian? Do these matrices form a vector space?

2.9 Cross products — torques

adapted from rachaelvoorhees from
arlington, va / wikimedia CC BY 2.0

The picture in the margin shows the sign of a seesaw, a playground
toy that works even for people with vastly different weight and
size. Figure 2.16a) shows a balanced scale. When the forces acting
on the scale do not add up to zero, we pick up the scale. It moves.

more explanation
needed.

The according force balance for the beam of the scale is shown in
Figure 2.16c). In general the beam does not stay at rest, when the
two masses are not attached at the same distance from the fulcrum.
The force balance, Figure 2.16c), still hods, and the beam turns,
rather than being lifted. The sum of attached forces tells us if an
object is displaced. In analogy we introduce the torque to describe
whether it turns.

When the beam is vertical there is no torque, and it takes its
maximum when the beam is horizontal. In the former case the
forces act parallel to the beam, and in the latter they act in orthog-
onal direction. Moreover, a weight that is attached at a larger dis-
tance to the fulcrum induces a larger torque, and the torque also
increases with mass. This is expressed in the lever rule.
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a)

b)

c)

l [m]

-1 -0.5 0 0.5 1 1.5 2

α
100.0

kg
100.0

kg

100.0
kg

100.0
kg

100.0
kg

100.0
kg

100.0
kg

100.0
kg

based on from Jahobr/wikimedia CC0 1.0
Figure 2.16: a) The lever is balanced
when two equal masses are attached
at the same distance from the fulcrum.
b) It is at (stable) rest only in a single
position when equal weighs are
attached at different distances. c) In all
positions the sum of the forces on the
beam, by the fulcrum and by the two
weights, add to zero.

Example 2.23: Torques on a Lever

The torque T exerted by a lever is given by the product,
T = l F, of the modulus of the force F acting vertical to the
lever and the distance l between the fulcrum and the point
where the force is applied, which is called length of the lever
arm.
When several forces act on the same lever, then the total
torque amounts to the sum of the torques induced by the
individual forces, T = ∑i li Fi. For the scale in Figure 2.16a)
and b) we find

Ta = (1 m) (100 kg) (−g) + (−1 m) (100 kg) (−g) = 0

Tb = (1.5 m) (100 kg) (−g) cos α + (−1 m) (100 kg) (−g) cos α

' −500 cos α kg m2/s2

The torque vanishes only when α = π/2 as shown in the fig-
ure, and for the unstable tipping point α = −π/2.

Pearson Scott Foresman / Public domain
Figure 2.17: Action of a crowbar.

Remark 2.26. Adopting a lever where force is applied on a long arm
allows one to move very heavy objects or break very stable objects.
Common technological applications are the crowbar and the lever.
Archimedes was so impressed by this principle that he is quoted to
have remarked “Δοσ μοι που στω και κινω την γην” (Archimedes,
1878), i.e. “Give me but one firm spot on which to stand, and I will
move the earth” (Oxford Dictionary of Quotations, 1953) �

Mechanic’s Magazine cover of Vol II, Knight
& Lacey, London, 1824./wikipedia, public
domain
Figure 2.18: Illustration of Archimedes’
remark about moving the earth.

estimate amplification of force the the crowbar

Observe the sign of the torque: In Example 2.23 it is positive for
counterclockwise motion, and negative for clockwise motion. The
axis of rotation is fixed by the fulcrum. However, when acting the
crowbar, one applies a horizontal force to get the crowbar under
the obstacle. This induces a rotation around a vertical axis. Subse-
quently, a vertical force is applied to lift the obstacle. It induces a
rotation around a horizontal axes. The relation between the direc-
tions of the lever arm, the force, and the rotation axis is commonly
illustrated by the right-hand rule (Figure 2.19): Here the arm points
in the direction of the lever arm, the fingers in the direction of the
applied force, and the thump along the rotation axis. This sug-
gests to define torque as a product of two vectors, the arm ` and
the force F that provide the torque, T , which is a vector of length
|`| |F| sin∠`, F in a direction normal to the plane defined by ` and
F. This operation, T = `× F defines the cross product. We explore
its properties in a mathematical digression.
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Schorschi2 at de.wikipediaderivative work:
Wizard191, public domain

Figure 2.19: Right-hand rule.

2.9.1 Algebraic properties of cross products

Definition 2.14: Cross product on R3

The cross product on the vector space R3 defines a binary
operation × : R3 × R3 → R3 with the following properties
for u, v, w ∈ R3 and c ∈ R

a) anti-commutativity: u× v = −v× u

b) distributivity: u× (v + w) = u× v + u×w

c) compatibility with scalar multiplication:
(c u)× v = u× (c v) = c (u× v)

d) symmetry of scalar triple product (Jacobi identity):
u · (v×w) = v · (w× u) = w · (u× v)

Moreover for every right-handed set of three orthonormal
vectors e1, e2, and e3 we require

e) normalization: e1 · (e2 × e3) = 1

Remark 2.27. The cross product of a vector with itself vanishes

∀v ∈ R3 : v× v = 0

�

Proof. Vanishing of v× v is a consequence of anti-commutativity:

v× v = −v× v ⇒ 2 v× v = 0 ⇒ v× v = 0

Theorem 2.4: Right-handed orthonormal basis in R3

Let e1, e2 ∈ R3 be orthonormal vectors, e1 · e2 = δ12. Then e1,
e2, and e3 = e1 × e2 form a right-handed orthonormal basis
for R3, and we have

ei · (ej × ek) =


1 for ijk ∈ {123, 231, 312}
−1 for ijk ∈ {132, 213, 321}

0 else

Remark 2.28 (Levi-Civita tensor εijk). It is convenient to introduce
the abbreviation εijk for

εijk =


1 for ijk ∈ {123, 231, 312}
−1 for ijk ∈ {132, 213, 321}

0 else

This symbol is denoted as Levi-Civita tensor εijk. With this symbol
the relations between right-handed orthogonal unit vectors of a
basis can more concisely be written as

ei · (ej × ek) = εijk
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Moreover, it immediately provides the following representation of
the scalar triple product u · (v ×w) in terms of coordinates ui, vj,
wk, i, j, k ∈ {1, 2, 3},

u = ∑3
i=1 ui ei

v = ∑3
j=1 vj ej

w = ∑3
k=1 wk ek

 ⇒ u · (v×w) =
3

∑
i,j,k=1

εijk ui vj wk

or even u · (v × w) = εijk ui vj wk with Einstein notation. The
symmetry of the triple scalar product is an immediate consequence
of the symmetry of the ε-tensor. �

Proof. The identity u · (v×w) = εijk ui vj wk follows from the com-
patibility with scalar product and the relation for the basis vectors
ei · (ej × ek). The details of the proof are given as Problem 2.23.

Proof of Theorem 2.4. We show that e1, e2, and e3 = e1 × e2 form
three orthonormal vectors. By assumption e1 and e2 are orthonor-
mal. Hence, we show that e3 is a unit vector that is orthogonal to e1

and e3:

e1 · e3 = e1 · (e1 × e2) = e2 · (e1 × e1) = e2 · 0 = 0

e2 · e3 = e2 · (e1 × e2) = e1 · (e2 × e2) = e1 · 0 = 0

e3 · e3 = e3 · (e1 × e2) = e1 · (e2 × e3) = 1

Remark 2.29 (bac-cab rule). The double cross product can be ex-
pressed in terms of scalar products. Commonly this relation is
stated in terms of three vectors a, b, and c ∈ R3,

a× (b× c) = b (a · c)− c (a · b)

and referred to as bac-cab rule. �

Proof. We express the three vectors in terms of their coordinates
with respect to the orthonormal basis e1, e2, e3,

a =
3

∑
i=1

ai ei b =
3

∑
j=1

bj ej c =
3

∑
k=1

ck ek with ai, bj, ck ∈ R

and use the rules defining the cross products and inner products

a× (b× c) =

(
3

∑
i=1

ai ei

)
×
[(

3

∑
j=1

bj ej

)
×
(

3

∑
k=1

ck ek

)]

=
3

∑
i,j,k=1

ai bj ckei × (ej × ek)

When j = k or when j and k are both different from i then the
summand vanishes due to Remark 2.27. For i = j 6= k one has
ei × (ej × ek) = −ek, and for i = k 6= j one has ei × (ej × ek) = ej.
Consequently,

a× (b× c) =
3

∑
i,k=1

ai bi ck(−ek) +
3

∑
i,j=1

ai bj ci(ej)

= b (a · c)− c (a · b)
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Remark 2.30 (Jacobi identity). The cross product obeys the Jacobi
identity:

u× (v×w) + v× (w× u) + w× (u× v) = 0

�

Proof. This can be verified by evaluating the triple cross products
by the bac-cab rule. Details are give as Problem 2.24.

Remark 2.31. In coordinate notation the cross product takes the form

a× b =

a1

a2

a3

×
b1

b2

b3

 =

a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1


�

Proof. For component k of a× b we have

[a× b]k = êk · (a× b) = êk ·
[(

3

∑
i=1

ai êi

)
×
(

3

∑
j=1

bj êj

)]

=
3

∑
i,j=1

ai bj êk ·
[
êi × êj

]
k =

3

∑
i,j=1

ai bj εijk

In the remark this is explicitly written out for k ∈ {1, 2, 3}.

2.9.2 Geometric interpretation of cross products

The cross product and the scalar triple product have distinct geo-
metrical interpretations. The geometric meaning of the cross prod-
uct a× b can best be seen by adopting a basis where the first basis
vector is parallel to e1 = a/|a|, and the second basis vector e2 lies
orthogonal to e1 in the plane spanned by a and b. The third basis
vector will then be e3 = e1 × e2. The angle between a and b, and
hence also of e1 and b is denoted as θ. Thus, b can be written as
b = b1 e1 + b2 e2 = |b| (cos θ e1 + sin θ e2), cf. Figure 2.20). For this
choice of the basis we find

a× b = |a| e1 × (b1 e1 + b2 e2) = |a| b1 e1 × e1 + |a| b2 e1 × e2

= |a| |b| sin θ e3
b

b1e1

b 2
 e
2

a=a1e1

|a×b|
e2

e1
θ

Figure 2.20: Geometric interpretation
of the absolute value of the cross
product.

Figure 2.20 illustrates that |a| |b| sin θ amounts to the area of the
parallelogram spanned by the vectors a and b. Hence, the cross
product amounts to a vector that is aligned vertically on the paral-
lelogram, with a length that amounts to the area of the parallelo-
gram.

b

a=a1e1

|a×b|
c c3e3

e2
e1θ

e3

Figure 2.21: Geometric interpretation
of the scalar triple product.

In order to evaluate also the product (a × b) · c we introduce
the coordinate representation of c as c = c1 e1 + c2 e2 + c3 e3 (Fig-
ure 2.21), and observe

(a× b) · c = |a× b| e3 · (c1 e1 + c2 e2 + c3 e3)

= |a× b| c3 = a1 b2 c3
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This amounts to the product of the area of the parallelogram
spanned by a and b multiplied by the height of the parallelepiped
spanned by the vectors a, b, c. Due to the special choice of the basis
this volume amount to a1 b2 c3 because all other contributions to
the general expression ∑ijk ai bj ck εijk vanish. The symmetry of the
scalar triple product, property d) in Definition 2.14, is understood
from this perspective as the statement that the volume of the par-
allelepiped is invariant under (cyclic) renaming of the vectors that
define its edges.

As a final remark, we emphasize that the geometric interpreta-
tion that we have given to the cross product holds in general — in
spite of the special basis adopted in the derivation. It is a distin-
guishing feature of vector spaces that the scalar numbers that are
derived from vectors take the same values every choice of the ba-
sis. It is up to the physicist to find the basis that admits the easiest
calculations.

2.9.3 The Torque

The cross product equips us with the mathematical notions to de-
fine the torque on a body.

Definition 2.15: Torque

The torque T defines a force that is going to rotate a body
around a position q0. Let Fi be the forces that attach the
body at the positions qi with respect to the considered ori-
gin. Then the torque is defined as

T = ∑
i
(qi − q0)× Fi

Remark 2.32. The value of the torque depends on the choice of the
reference position q0. �

Remark 2.33. In general, the torques induced by different forces
point in different directions. They are added as vectors. We will
further discuss this below in Example 2.24. �

Axiom 2.2: Torque balance

Let N forces F1, . . . , FN attack a body at the (body-fixed) po-
sitions qi. The body does not rotate around the position q0

as long as the sum of the torques induced by the forces add

to zero, i.e. iff 0 = T =
N

∑
i=1

(qi − q0)× Fi.

Example 2.24: Sailing boat

When a sailboat is going broad reach, as shown in Fig-
ure 2.22, the following forces are acting on the boat:

a) the wind in the sails generates a torque towards the bow
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around a horizontal axis that lies diagonal to the boat axis

b) the buoyancy of the water generates a torque along a
horizontal axis parallel to the boat the counteracts heeling

c) the water drag on the hull generates a torque towards the
bow around a horizontal axis that is orthogonal to the
boat axis

d) the fin and the rudder generate lift forces that generate a
torque around a vertical axis

e) the sailor stacks out in the trapeze to generate an addi-
tional torque in order to balance the torques

His aim is to minimize the heeling of the boat and to maxi-
mize the speed. The boat capsizes if he does not manage to
balance the torques.

Gwicke commonswiki, public domain
Figure 2.22: A sailor stacking out in
a trapeze in order to minimize the
heeling of his sailboat.

2.9.4 Self Test

Problem 2.23. Fill in the details of the proof for Remark 2.28.

Problem 2.24. Fill in the details of the proof for Remark 2.30.

Problem 2.25. Turning a wheel

Two forces of magnitude 4 N are acting on a wheel of radius r
that can freely rotate around its axis. What magnitude should a
third force, F, have that is attacking at a distance r/2 from the axis,
such that there is no net torque acting on the wheel?

Figure 2.23: Setup for Problem 2.25.

Problem 2.26. Nutcrackers

A common type of nutcrackers employs the principle of lever
arms to crack nuts with a reasonable amount of force (see Prob-
lem 2.26). We idealize the nut as a spring with spring constant
k = 1 kN/mm and assume that it breaks when it is compressed by
∆ = 0.6 mm. The nut is mounted at a distance of l = 3 cm from the
joint of the nutcracker and the hand exerts a force F at a distance L.

a) Demonstrate that a force of magnitude F =
lk∆
L

is required to
crack the nut.

b) Calculate the numerical value of F.

c) If you try to crack the nut by placing it under a heavy stone:
which mass should that stone have in order to crack the nut?

L

ℓ

F

based on Pearson Scott Foresman
nutcracker-tool, public domain
Figure 2.24: Setup for Problem 2.26.
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2.10 Worked example: Calder’s mobiles

We describe here the setup of a traditional mobile where beams
are supported by a string in the middle and balanced by attaching
masses or further beams at their outer ends. The setup of a mobile
can be laid out on a plane surface, as shown in Figure 2.25. The
different parts of the mobile should not run into each other. Hence,
they must not over overlap in the 2d layout.

Figure 2.25: Notations for the math-
ematical description of the motion of
a mobile. The mobile is suspended at
a string of length z that holds a beam
with two sections of length `0 to the
left and `1 to the right, respectively.
The string holds the total mass m of
the mobile. When suspended, the
beam can rotate by an angle θ out of
the plane.

The left arm of the uppermost
beam has length `0, and it holds an-
other beam with an overall additional
mass m0 that can take an angle θ0 out
of the plane in the suspended mobile.
Similarly, the right arm has length `1,
and it holds another beam with an
overall additional mass m1 that can
take an out-of-plane angle θ1. The
situation further down is described
by hierarchical binary indices, as
indicated in the figure.

The mobile can represented as a binary tree. Each beam has two
arms reaching left (0) and right (1). We assume that the mass of the
beams may be neglected, and reach the masses at the far ends of
the mobile, by going down from the suspension and marking the
track by a sequence of 0 and 1. The leftmost mass, 00, of the mobile
in Figure 2.25 is reached by going left, 0, twice. The next one in
counterclockwise direction by going left 0, right 1, left 0, and hence
denoted as 010, and so forth. Hence, the mobile is build of beams
that are labeled by some index I. They support a total mass mI , and
can rotated out of the plane by an angle θI . The beam has two arms
of length `I0 to the left and `I1 to the right that support masses mI0

and mI1 attached to strings of length zI0 and zI1. This hierarchical
setup of the descriptions allows us to reduce the requirement of
stability by a condition that the forces and torques acting on the
beams must be balanced. For the forces this implies

FI = FI0 + FI1 ⇒ mI = mI0 + mI1

and for the torques we find

`I0mI0g = `I1mI1g ⇒ `I0mI0 = `I1mI1
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When we take all masses to take the same value m in Figure 2.25,
we hence find

`010 = `011 `10 = `11 `00 = 2 `01 3 `0 = 2 `1

Moreover, vector calculus provides an effective means to spec-
ify the positions of the masses. We select the support of the mo-
bile as origin of the coordinate system. The support of the up-
permost beam is at position (0, 0,−z). Then the far ends of the
uppermost beam are at positions lo = (−`0 cos θ,−`0 sin θ,−z)
and l1 = (`1 cos θ,−`1 sin θ,−z), respectively. Moreover, from
the left end we reach the far ends of the next beam by the dis-
placement vectors l00 = (−`00 cos θ0,−`00 sin θ0,−z0) and l01 =

(`01 cos θ0, `01 sin θ0,−z0). Hence, the positions of the first two
masses can be represented by the following sums of vectors

q00 = l0 + l00 −

 0
0

z00

 =

−`0 cos θ − `00 cos θ0

−`0 sin θ − `00 sin θ0

−z− z0 − z00


q010 = l0 + l01 + l010 −

 0
0

z010

 =

−`0 cos θ + `01 cos θ0 − `010 cos θ01

−`0 sin θ + `01 sin θ0 − `010 sin θ01

−z− z0 − z01 − z010


We urge the reader to also work out the expressions for the posi-
tions of the other masses. add discussion and

stability analysis for
bended beams

2.11 Problems

2.11.1 Rehearsing Concepts

Problem 2.27. Tackling tackles and pulling pulleys

a) Which forces are required to hold the balance in the left and the
right sketch?

b) Let the sketched person and the weight have masses of m =

75 kg and M = 300 kg, respectively. Which power is required
then to haul the line at a speed of 1 m/s.
Hint: The power is defined here as the change of ) Mg z(t) and
(M + m) g z(t), per unit time, respectively. Verify by dimensional
analysis that this is a meaningful definition.

2.11.2 Practicing Concepts

Problem 2.28. Angles between three balanced forces

We consider three masses m1, m2, and m3. With three ropes they
are attached to a ring at position q0. The ropes with the attached
masses hang over the edge of a table at the fixed positions q1 =

(x1, 0), q2 = (0, y2), and q3 = (w, y3). Here, w denotes the width of
the table board. We now determine the angles θij between the ropes
from q0 to qi and qj, respectively.
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a) Let êi = (qi − q0)/|qi − q0| be the unit vectors pointing from the
ring to the positions where the ropes hang over the table edge,
and θij be the angle between êi and êj. Argue why

0 =
3

∑
i=1

mi êi

Multiplying this equation with ê1, . . . ê3 provides three equations
that are linear in cos θij. The first one is 0 = M1 + M2 cos θ12 +

M3 cos θ13. Find the other two equation, and solve the equations
as follows.
From the equation that is given above you find cos θ12 in terms of
cos θ13.
Inserting this into the other equation involving cos θ12 (and rear-
ranging terms) provides cos θ23 in terms of cos θ13.
Inserting this into the third equation provides

cos θ13 =
M2

2 −M2
1 −M2

3
2 M1 M3

b) Which angle θ23 do you find when M1 = M2 = M3? The three
forces have the same absolute value in this case. Which symme-
try argument does then also provide the value of the angle?

c) Determine also the other two angles θ13 and θ12. They can also
be found from a symmetry argument without calculation.
Hint: The angles do not care which mass you denote as 1, 2,
and 3.

d) Note that we found the angles θij without referring to the posi-
tions q1, . . . q3! Make a sketch what this implies for the position
of the ring, and how q0 changes qualitatively upon changing a
mass.

� The calculation of the position q0 can then be attacked by observ-
ing that

q0 = q1 + l1

(
cos β

sin β

)
= q2 + l2

(
sin α

− cos α

)
= q3 + l3

(
− sin γ

− cos γ

)
where li is the distance of the ring to the position where rope i
hangs over the table. Further, the fact that the angles of quadri-
laterals add to 2π provides

α = θ23 − γ and β =
3π

2
− γ− θ13

Altogether these are 8 equations to determine the two compo-
nents of q0, l1, . . . l3, and the angles α, β, and γ. Determine q0.

Problem 2.29. Torques acting on a ladder

The sketch in the margin shows the setup of a ladder leaning to
the roof of a hut. The indicated angle from the downwards vertical
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to the ladder is denoted as θ. There is a gravitational force of mag-
nitude Mg acting of a ladder of mass M. At the point where it leans
to the roof there is a normal force of magnitude Fr acting from the
roof to the ladder. At the ladder feet there is a normal force to the
ground of magnitude Fg, and a tangential friction force of magni-
tude γFf . This is again the sketch to the ladder leaning to the roof
of a hut. The angle from the downwards vertical to the ladder is
denoted θ. There is a gravitational force of magnitude Mg acting of
a ladder. At the point where it leans to the roof there is a normal
force of magnitude Fr. At the ladder feet there is a normal force
to the ground of magnitude Fg, and a tangential friction force of
magnitude Ff . change to problem given

on homework sheet 3.

original: Bradley, vector: Sarang / wikime-
dia public domain
Figure 2.27: Setup for Problem 2.29:
leaning a ladder to a roof.

a) In principle there also is a friction force γr Fr acting at the contact
from the ladder to the roof. Why is it admissible to neglect this
force?
Remark: There are at least two good arguments.

b) Determine the vertical and horizontal force balance for the lad-
der. Is there a unique solution?

c) The feet of the ladder start sliding when Ff exceeds the maxi-
mum static friction force γFg. What does this condition entail for
the angle θ?
Assume that γ ' 0.3 What does this imply for the critical angle
θc.

d) Where does the mass of the ladder enter the discussion? Do you
see why?

e) Determine the torque acting on the ladder. Does it matter whether
you consider the torque with respect to the contact point to the
roof, the center of mass, or the foot of the ladder?

f) The ladder slides when the modulus of the friction force Ff ex-
ceeds a maximum value µSFg where µ is the static friction coef-
ficient for of the ladder feet on the ground. For metal feet on a
wooden ground it takes a value of µS ' 2. What does that tell
about the angels where the ladder starts to slide?

g) Why does a ladder commonly starts sliding when when a man
has climbed to the top? Is there anything one can do against it?
Is that even true, or just an urban legend?

Problem 2.30. Walking a yoyo

The sketch to the right shows a yoyo of mass m standing on the
ground. It is held at a chord that extends to the top right. There are
four forces acting on the yoyo: gravity mg, a normal force N from
the ground, a friction force R at the contact to the ground, and the
force F due to the chord. The chord is wrapped around an axle of
radius r1. The outer radius of the yoyo is r2.
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a) Which conditions must hold such that there is no net force acting
on the center of mass of the yoyo?

b) For which angle θ does the torque vanish?

c) Perform an experiment: What happens for larger and for smaller
angels θ? How does the yoyo respond when fix the height where
you keep the chord and pull continuously?

Problem 2.31. Retro-reflector paths on bike wheels
The more traffic you encounter when it be-
comes dark the more important it becomes to
make your bikes visible. Retro-reflectors fixed
in the sparks enhance the visibility to the sides.
They trace a path of a curtate trochoid that is
characterized by the ratio ρ of the reflectors
distance d to the wheel axis and the wheel
radius r. A small stone in the profile traces a
cycloid (ρ = 1). Animations of the trajectories
can be found atbased on Kmhkmh Zykloiden, CC BY 4.0

https://en.wikipedia.org/wiki/Trochoid and http://katgym.

by.lo-net2.de/c.wolfseher/web/zykloiden/zykloiden.html.
A trochoid is most easily described in two steps: Let M(θ) be

the position of the center of the disk, and D(θ) the vector from the
center to the position q(θ) that we follow (i.e. the position of the
retro-reflector) such that q(θ) = M(θ) + D(θ).

a) The point of contact of the wheel with the street at the initial
time t0 is the origin of the coordinate system. Moreover, we
single out one spark and denote the change of its angle with
respect to its initial position as θ. Note that negative angles θ

describe forward motion of the wheel!

Sketch the setup and show that

M(θ) =

(
−rθ

r

)
, D(θ) =

(
−d sin(ϕ + θ)

d cos(ϕ + θ)

)
.

What is the meaning of ϕ in this equation?check signs of compo-
nents of D

b) The length of the track of a trochoid can be determined by inte-
grating the modulus of its velocity over time, L =

∫ t
t0

dt |q̇(θ(t))|.
Show that therefore

L = r
∫ θ

0
dθ
√

1 + ρ2 + 2ρ cos(ϕ + θ)

c) Consider now the case of a cycloid and use cos(2x) = cos2 x −
sin2 x to show that the expression for L can then be written as

L = 2 r
∫ θ

0
dθ

∣∣∣∣cos
ϕ + θ

2

∣∣∣∣
How long is one period of the track traced out by a stone picked
up by the wheel profile?
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2.11.3 Mathematical Foundation

Problem 2.32. The natural numbers modulo n are a group

We consider here groups Gn where the combined action of group
elements can be represented as a sum of two numbers modulo
n ∈ N. In other words, for the elements of Gn can be represented
by the numbers {0, . . . , n − 1}, and for all a, b ∈ Gn we define
a ◦ b = (a + b)modn.

a) Show that Gn is a group.

b) Show that Gn represents the rotations that interchange the ver-
tices of a regular n-sided polygon.

Problem 2.33. Groups with four elements

In Problem 2.32 we encountered the group Gn. Here, we will
study another group with four elements. The neutral element will
be denoted as n.

a) Show that the group has at least one non-trivial element e that is
self-inverse, e ◦ e = n.
Remark: Non-trivial means here that e 6= n.

�b) Show that the group is isomorphic to G4 if there is exactly one
non-trivial element that is self-inverse. In other words: the
group elements can be represented in that case by the numbers
{0, . . . , 3}, and the operation of the group on two of its elements
yields the same result as the action of G4 on the corresponding
numbers.

�c) Show that the group is isomorphic to G4 if there is at least one
element that is not self-inverse.

d) Determine the group table for the case where all group elements
are self-inverse. Show that it is unique, and that it is isomorphic
to the symmetry group of rectangles (cf. Problem 2.6).

e) Proof that all groups with four elements are commutative by
representing the group elements in terms of generating elements.
Do not refer to the group table.

-4 4 8
x̂

-8

-4

4

8
ŷ

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

Figure 2.28: Conic sections for different
eccentricity ε. i.e., the ratio of the slope
of the plane P and the surface of the
double cone, as observed in a plane
that contains the axis of the double
cone and is orthogonal to P.

Problem 2.34. Conic Sections

A conic section describes the line of intersection of a double cone
C and a plane P in three dimensions. In the margin we show the
shape of conic sections for different inclinations that are character-
ized by the eccentricity ε. Depending on the inclination of the plane
one observes

• a circle, when the axis of the cone is orthogonal to P, i.e. for
ε = 0,

• an ellipse, when the plane is slightly tilted, ε < 1,
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• a parabola, when its inclination matches with the opening angle
of the cone, ε = 1, and

• a hyperbola, when it intersects with both sides of the double
cone, ε > 1.

a) Sketch the different types of intersection of the double cone and
the plane.

b) Determine the vector a that points from the vertex of the dou-
ble cone to the point where the plane intersects the axis of the
double cone.

c) Describe the points in the intersection as sum of a and a vector b
that lies in the plane.

� d) Determine the length of the vector b as function of the angle θ

that characterizes the direction of b in P. How can this expres-
sion be used to plot the functions shown in Figure 4.19.

Problem 2.35. Linear dependence of three vectors in 2D

Definition 2.13 entails that every vector v = (v1, v2) of a two-
dimensional vector space can be represented as a unique linear
combination of two linearly independent vectors a and b,

v = α a + β b

In this exercise we revisit this statement for R2 with the standard
forms of vector addition and multiplication by scalars.

a) Provide a triple of vectors a, b and v such that v can not be rep-
resented as a scalar combination of a and b.

b) To be specific we henceforth fix

a =

(
−1
1

)
, b =

(
1
1

)
, v =

(
2
−2

)

Determine the numbers α and β such that

v = α a + β b

c) Consider now also a third vector

c =

(
0
1

)

and find two different choices for (α, β, γ) such that

v = α a + β b + γc

What is the general constraints on (α, β, γ) such that v = α a +

β b + γc.
What does this imply on the number of solutions?
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d) Discuss now the linear dependence of the vectors a, b and c by
exploring the solutions of

0 = α a + β b + γc

How are the constraints for the null vector related to those ob-
tained in part c)?

Problem 2.36. Algebraic number fields

Consider the set K = Q + IQ with I2 ∈ Q. We define the
operations + and · in analogy to those of the complex numbers
(cf. Example 2.13): For z1 = x1 + Iy1 and z2 = x2 + Iy2 we have
x1, y1, x2, y2 ∈ Q and

∀z1, z2 ∈ K :z1 + z2 = (x1 + x2) + I (y1 + y2)

z1 · z2 = (x1 x2 + I2 y1y2) + I (x1 y2 + y1 x2)

∀c ∈ Q, z = (x + Iy) ∈ K :cz = c x + I y

a) Let I be a rational number, I ∈ Q. Show that K = Q.

b) Consider I =
√

10. Show that K is a field that is different from Q.

c) Consider I =
√

8. In this case K is not a field! Why?

� Find the general rule: For which natural numbers n does I =
√

n
provide a non-trivial field?
Remark: Non-trivial means here different from Q.

Problem 2.37. Bases for polynomials

We consider the set of polynomials PN of degree N with real
coefficients pn, n ∈ {0, . . . , N},

PN :=

{
p =

(
N

∑
k=0

pk xk

)
mit pk ∈ R, k ∈ {0, . . . , N}

}

a) Demonstrate that (PN , R,+, ·) is a vector space when one adopts
the operations

∀ p =

(
N

∑
k=0

pk xk

)
∈ PN , q =

(
N

∑
k=0

qk xk

)
∈ PN , and c ∈ R :

p + q =

(
N

∑
k=0

(pk + qk) xk

)
and c · p =

(
N

∑
k=0

(c pk) xk

)
.

(b) Demonstrate that

p · q =

(∫ 1

0
dx

(
N

∑
k=0

pk xk

) (
N

∑
j=0

qj xj

))
,

establishes a scalar product on this vector space.
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(c) Demonstrate that the three polynomials b0 = (1), b1 = (x)
and b2 = (x2) form a basis of the vector space P2: For each
polynomial p in P2 there are real numbers xk, k ∈ {0, 1, 2}, such
that p = x0 b0 + x1 b1 + x2 b2. However, in general we have
xi 6= p · bi. Why is that?
Hint: Is this an orthonormal basis?

(d) Demonstrate that the three vectors ê0 = (1), ê1 =
√

3 (2 x − 1)
and ê2 =

√
5 (6 x2 − 6 x + 1) are orthonormal.

(e) Demonstrate that every vector p ∈ P2 can be written as a scalar
combination of (ê0, ê1, ê2),

p = (p · ê0) ê0 + (p · ê1) ê1 + (p · ê2) ê2 .

Hence, (ê0, ê1, ê2) form an orthonormal basis of P2.

*(f) Find a constant c and a vector n̂1, such that n̂0 = (c x) and n̂1

form an orthonormal basis of P1.

Problem 2.38. Systems of linear equations

A system of N linear equations of M variables x1, . . . xM com-
prises N equations of the form

b1 = a11 x1 + a12 x2 + · · ·+ a1M xM

b2 = a21 x1 + a22 x2 + · · ·+ a2M xM

...
...

bN = aN1 x1 + aN2 x2 + · · ·+ aNM xM

where bi, aij ∈ R for i ∈ {1, . . . , N} and j ∈ {1, . . . , M}.

a) Demonstrate that the linear equations (LM, R,+, ·) form a vector
space when one adopts the operations

∀ p =
[
p0 = p1 x1 + p2 x2 + · · ·+ pM xM

]
∈ LN ,

q =
[
q0 = q1 x1 + q2 x2 + · · ·+ qM xM

]
∈ LN ,

c ∈ R :

p + q =
[
p0 + q0 = (p1 + q1) x1 + (p2 + q2) x2 + · · ·+ (pM + qM) xM

]
c · p =

[
c p0 = c p1 x1 + c p2 x2 + · · ·+ c pM xM

]
.

How do these operations relate to the operations performed in
Gauss elimination to solve the system of linear equations?

b) The system of linear equations can also be stated in the following
form 

b1

b2
...

bN

 =


a11

a21
...

aN1

 x1 +


a12

a22
...

aN2

 x2 + · · ·+


a1M

a2M
...

aNM

 xM

⇔ b = x1 a1 + x2 a2 + · · ·+ xM aM
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where b is expressed as a linear combination of a1, . . . aM by
means of the numbers x1, . . . , xM. What do the conditions on
linear independence and representation of vectors by means of a
basis tell about the existence and uniqueness of the solutions of a
system of linear equations.

2.11.4 Transfer and Bonus Problems, Riddles

Problem 2.39. Crossing a river

A ferry is towed at the bank of a river of width B = 100 m that
is flowing at a velocity vF = 4 m/s to the right. At time t = 0 s it
departs and is heading with a constant velocity vB = 10 km/h to
the opposite bank.

a) When will it arrive at the other bank when it always heads
straight to the other side? (In other words, at any time its ve-
locity is perpendicular to the river bank.)

How far will it drift downstream on its journey?

b) In which direction (i.e. angle of velocity relative to the down-
stream velocity of the river) must the ferryman head to reach
exactly at the opposite side of the river?

Determine first the general solution. What happens when you
try to evaluate it for the given velocities?

Problem 2.40. Piling bricks

At Easter and Christmas Germans consume enormous amounts
of chocolate. If you happen to come across a considerable pile of
chocolate bars (or beer mats, or books, or anything else of that
form) I recommend the following experiment:

a) We consider N bars of length l piled on a table. What is the
maximum amount that the topmost bar can reach beyond the
edge of the table.

b) The sketch above shows the special case N = 4.
However, what about the limit N → ∞?

Problem 2.41. Where does the bike go?

Consider the picture of the bicycle to the left. The red arrow
indicates a force that is acting on the paddle in backward direction.

Will the bicycle move forwards or backwards?
Take a bike and do the experiment!

adapted from picture “Damenfahrrad
von 1900” in article “Fahrrad” of Lueger
(1926–1931)© Jürgen Vollmer — 2021-11-01 01:29:45+01:00
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Problem 2.42. Hypotrochoids, roulettes, and the Spirograph

A roulette is the curve traced by a point (called the generator or
pole) attached to a disk or other geometric object when that object
rolls without slipping along a fixed track. A pole on the circum-
ference of a disk that rolls on a straight line generates a cycloid. A
pole inside that disk generates a trochoid. If the disk rolls along the
inside or outside of a circular track it generates a hypotrochoid. The
latter curves can be drawn with a spirograph, a beautiful drawing
toy based on gears that illustrates the mathematical concepts of the
least common multiple (LCM) and the lowest common denomina-
tor (LCD).wikimedia, public domain

a) Consider the track of a pole attached to a disk with n cogs that
rolls inside a circular curve with m > n cogs. Why does the
resulting curve form a closed line? How many revolutions does
the disk make till the curve closes? What is the symmetry of
the resulting roulette? (The curves to the top left is an examples
with three-fold symmetry, and the one to the bottom left has
seven-fold symmetry.)

b) Adapt the description for the curves developed in Problem 2.31

such that you can describe hypotrochoids.

c) Test your result by writing a Python program that plots the
curves for given m and n.

2.12 Further reading

The second chapter of Großmann (2012) provides a clear and con-
cise introduction to the mathematical framework of vectors with an
emphasis on applications to physics problems.

A nice discussion of force and torque balances with many
worked exercises can be found in Chapter 2 of Morin (2007).

© Jürgen Vollmer — 2021-11-01 01:29:45+01:00
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